Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cpython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
cpython
Commits
9c91eb84
Commit
9c91eb84
authored
Jul 07, 2010
by
Mark Dickinson
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Minor refactoring in lgamma code, for clarity.
parent
7e4a6ebd
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
10 additions
and
14 deletions
+10
-14
Modules/mathmodule.c
Modules/mathmodule.c
+10
-14
No files found.
Modules/mathmodule.c
View file @
9c91eb84
...
...
@@ -69,6 +69,7 @@ extern double copysign(double, double);
static
const
double
pi
=
3
.
141592653589793238462643383279502884197
;
static
const
double
sqrtpi
=
1
.
772453850905516027298167483341145182798
;
static
const
double
logpi
=
1
.
144729885849400174143427351353058711647
;
static
double
sinpi
(
double
x
)
...
...
@@ -356,20 +357,15 @@ m_lgamma(double x)
if
(
absx
<
1e-20
)
return
-
log
(
absx
);
/* Lanczos' formula */
if
(
x
>
0
.
0
)
{
/* we could save a fraction of a ulp in accuracy by having a
second set of numerator coefficients for lanczos_sum that
absorbed the exp(-lanczos_g) term, and throwing out the
lanczos_g subtraction below; it's probably not worth it. */
r
=
log
(
lanczos_sum
(
x
))
-
lanczos_g
+
(
x
-
0
.
5
)
*
(
log
(
x
+
lanczos_g
-
0
.
5
)
-
1
);
}
else
{
r
=
log
(
pi
)
-
log
(
fabs
(
sinpi
(
absx
)))
-
log
(
absx
)
-
(
log
(
lanczos_sum
(
absx
))
-
lanczos_g
+
(
absx
-
0
.
5
)
*
(
log
(
absx
+
lanczos_g
-
0
.
5
)
-
1
));
}
/* Lanczos' formula. We could save a fraction of a ulp in accuracy by
having a second set of numerator coefficients for lanczos_sum that
absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
subtraction below; it's probably not worth it. */
r
=
log
(
lanczos_sum
(
absx
))
-
lanczos_g
;
r
+=
(
absx
-
0
.
5
)
*
(
log
(
absx
+
lanczos_g
-
0
.
5
)
-
1
);
if
(
x
<
0
.
0
)
/* Use reflection formula to get value for negative x. */
r
=
logpi
-
log
(
fabs
(
sinpi
(
absx
)))
-
log
(
absx
)
-
r
;
if
(
Py_IS_INFINITY
(
r
))
errno
=
ERANGE
;
return
r
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment