Commit 9e46ef81 authored by Raymond Hettinger's avatar Raymond Hettinger

Add functools.lfu_cache() and functools.lru_cache().

parent 17e3d698
......@@ -37,6 +37,57 @@ The :mod:`functools` module defines the following functions:
.. versionadded:: 3.2
.. decorator:: lfu_cache(maxsize)
Decorator to wrap a function with a memoizing callable that saves up to the
*maxsize* most frequent calls. It can save time when an expensive or I/O
bound function is periodically called with the same arguments.
The *maxsize* parameter defaults to 100. Since a dictionary is used to cache
results, the positional and keyword arguments to the function must be
hashable.
The wrapped function is instrumented with two attributes, :attr:`hits`
and :attr:`misses` which count the number of successful or unsuccessful
cache lookups. These statistics are helpful for tuning the *maxsize*
parameter and for measuring the cache's effectiveness.
The wrapped function also has a :attr:`clear` attribute which can be
called (with no arguments) to clear the cache.
A `LFU (least frequently used) cache
<http://en.wikipedia.org/wiki/Cache_algorithms#Least-Frequently_Used>`_
is indicated when the pattern of calls does not change over time, when
more the most common calls already seen are the best predictors of the
most common upcoming calls.
.. versionadded:: 3.2
.. decorator:: lru_cache(maxsize)
Decorator to wrap a function with a memoizing callable that saves up to the
*maxsize* most recent calls. It can save time when an expensive or I/O bound
function is periodically called with the same arguments.
The *maxsize* parameter defaults to 100. Since a dictionary is used to cache
results, the positional and keyword arguments to the function must be
hashable.
The wrapped function is instrumented with two attributes, :attr:`hits`
and :attr:`misses` which count the number of successful or unsuccessful
cache lookups. These statistics are helpful for tuning the *maxsize*
parameter and for measuring the cache's effectiveness.
The wrapped function also has a :attr:`clear` attribute which can be
called (with no arguments) to clear the cache.
A `LRU (least recently used) cache
<http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used>`_
is indicated when the pattern of calls changes over time, such as
when more recent calls are the best predictors of upcoming calls.
.. versionadded:: 3.2
.. decorator:: total_ordering
Given a class defining one or more rich comparison ordering methods, this
......
......@@ -4,10 +4,17 @@
# to allow utilities written in Python to be added
# to the functools module.
# Written by Nick Coghlan <ncoghlan at gmail.com>
# Copyright (C) 2006 Python Software Foundation.
# and Raymond Hettinger <python at rcn.com>
# Copyright (C) 2006-2010 Python Software Foundation.
# See C source code for _functools credits/copyright
__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
'total_ordering', 'cmp_to_key', 'lfu_cache', 'lru_cache']
from _functools import partial, reduce
from collections import OrderedDict, Counter
from heapq import nsmallest
from operator import itemgetter
# update_wrapper() and wraps() are tools to help write
# wrapper functions that can handle naive introspection
......@@ -97,3 +104,88 @@ def cmp_to_key(mycmp):
def __hash__(self):
raise TypeError('hash not implemented')
return K
def lfu_cache(maxsize=100):
'''Least-frequently-used cache decorator.
Arguments to the cached function must be hashable.
Cache performance statistics stored in f.hits and f.misses.
Clear the cache using f.clear().
http://en.wikipedia.org/wiki/Cache_algorithms#Least-Frequently_Used
'''
def decorating_function(user_function):
cache = {} # mapping of args to results
use_count = Counter() # times each key has been accessed
kwd_mark = object() # separate positional and keyword args
@wraps(user_function)
def wrapper(*args, **kwds):
key = args
if kwds:
key += (kwd_mark,) + tuple(sorted(kwds.items()))
use_count[key] += 1 # count a use of this key
try:
result = cache[key]
wrapper.hits += 1
except KeyError:
result = user_function(*args, **kwds)
cache[key] = result
wrapper.misses += 1
if len(cache) > maxsize:
# purge the 10% least frequently used entries
for key, _ in nsmallest(maxsize // 10,
use_count.items(),
key=itemgetter(1)):
del cache[key], use_count[key]
return result
def clear():
'Clear the cache and cache statistics'
cache.clear()
use_count.clear()
wrapper.hits = wrapper.misses = 0
wrapper.hits = wrapper.misses = 0
wrapper.clear = clear
return wrapper
return decorating_function
def lru_cache(maxsize=100):
'''Least-recently-used cache decorator.
Arguments to the cached function must be hashable.
Cache performance statistics stored in f.hits and f.misses.
Clear the cache using f.clear().
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
'''
def decorating_function(user_function):
cache = OrderedDict() # ordered least recent to most recent
kwd_mark = object() # separate positional and keyword args
@wraps(user_function)
def wrapper(*args, **kwds):
key = args
if kwds:
key += (kwd_mark,) + tuple(sorted(kwds.items()))
try:
result = cache.pop(key)
wrapper.hits += 1
except KeyError:
result = user_function(*args, **kwds)
wrapper.misses += 1
if len(cache) >= maxsize:
cache.popitem(0) # purge least recently used cache entry
cache[key] = result # record recent use of this key
return result
def clear():
'Clear the cache and cache statistics'
cache.clear()
wrapper.hits = wrapper.misses = 0
wrapper.hits = wrapper.misses = 0
wrapper.clear = clear
return wrapper
return decorating_function
......@@ -4,6 +4,7 @@ import unittest
from test import support
from weakref import proxy
import pickle
from random import choice
@staticmethod
def PythonPartial(func, *args, **keywords):
......@@ -454,6 +455,50 @@ class TestTotalOrdering(unittest.TestCase):
class A:
pass
class TestLRU(unittest.TestCase):
def test_lru(self):
def orig(x, y):
return 3*x+y
f = functools.lru_cache(maxsize=20)(orig)
domain = range(5)
for i in range(1000):
x, y = choice(domain), choice(domain)
actual = f(x, y)
expected = orig(x, y)
self.assertEquals(actual, expected)
self.assert_(f.hits > f.misses)
self.assertEquals(f.hits + f.misses, 1000)
f.clear() # test clearing
self.assertEqual(f.hits, 0)
self.assertEqual(f.misses, 0)
f(x, y)
self.assertEqual(f.hits, 0)
self.assertEqual(f.misses, 1)
def test_lfu(self):
def orig(x, y):
return 3*x+y
f = functools.lfu_cache(maxsize=20)(orig)
domain = range(5)
for i in range(1000):
x, y = choice(domain), choice(domain)
actual = f(x, y)
expected = orig(x, y)
self.assertEquals(actual, expected)
self.assert_(f.hits > f.misses)
self.assertEquals(f.hits + f.misses, 1000)
f.clear() # test clearing
self.assertEqual(f.hits, 0)
self.assertEqual(f.misses, 0)
f(x, y)
self.assertEqual(f.hits, 0)
self.assertEqual(f.misses, 1)
def test_main(verbose=None):
test_classes = (
TestPartial,
......@@ -461,7 +506,8 @@ def test_main(verbose=None):
TestPythonPartial,
TestUpdateWrapper,
TestWraps,
TestReduce
TestReduce,
TestLRU,
)
support.run_unittest(*test_classes)
......
......@@ -504,6 +504,8 @@ Library
- Issue #4179: In pdb, allow "list ." as a command to return to the currently
debugged line.
- Add lfu_cache() and lru_cache() decorators to the functools module.
- Issue #4108: In urllib.robotparser, if there are multiple 'User-agent: *'
entries, consider the first one.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment