Commit a871ef2b authored by Armin Rigo's avatar Armin Rigo

Added the cProfile module.

Based on lsprof (patch #1212837) by Brett Rosen and Ted Czotter.
With further editing by Michael Hudson and myself.
History in svn repo: http://codespeak.net/svn/user/arigo/hack/misc/lsprof

* Module/_lsprof.c is the internal C module, Lib/cProfile.py a wrapper.
* pstats.py updated to display cProfile's caller/callee timings if available.
* setup.py and NEWS updated.
* documentation updates in the profiler section:
   - explain the differences between the three profilers that we have now
   - profile and cProfile can use a unified documentation, like (c)Pickle
   - mention that hotshot is "for specialized usage" now
   - removed references to the "old profiler" that no longer exists
* test updates:
   - extended test_profile to cover delicate cases like recursion
   - added tests for the caller/callee displays
   - added test_cProfile, performing the same tests for cProfile
* TO-DO:
   - cProfile gives a nicer name to built-in, particularly built-in methods,
     which could be backported to profile.
   - not tested on Windows recently!
parent 5eefdca6
......@@ -358,7 +358,7 @@ and how to embed it in other applications.
\input{libpdb} % The Python Debugger
\input{libprofile} % The Python Profiler
\input{libhotshot} % New profiler
\input{libhotshot} % unmaintained C profiler
\input{libtimeit}
......
......@@ -14,6 +14,17 @@ Hotshot is a replacement for the existing \refmodule{profile} module. As it's
written mostly in C, it should result in a much smaller performance impact
than the existing \refmodule{profile} module.
\begin{notice}[note]
The \module{hotshot} module focuses on minimizing the overhead
while profiling, at the expense of long data post-processing times.
For common usages it is recommended to use \module{cProfile} instead.
\module{hotshot} is not maintained and might be removed from the
standard library in the future.
\end{notice}
\versionchanged[the results should be more meaningful than in the
past: the timing core contained a critical bug]{2.5}
\begin{notice}[warning]
The \module{hotshot} profiler does not yet work well with threads.
It is useful to use an unthreaded script to run the profiler over
......
This diff is collapsed.
#! /usr/bin/env python
"""Python interface for the 'lsprof' profiler.
Compatible with the 'profile' module.
"""
__all__ = ["run", "runctx", "help", "Profile"]
import _lsprof
# ____________________________________________________________
# Simple interface
def run(statement, filename=None, sort=-1):
"""Run statement under profiler optionally saving results in filename
This function takes a single argument that can be passed to the
"exec" statement, and an optional file name. In all cases this
routine attempts to "exec" its first argument and gather profiling
statistics from the execution. If no file name is present, then this
function automatically prints a simple profiling report, sorted by the
standard name string (file/line/function-name) that is presented in
each line.
"""
prof = Profile()
result = None
try:
try:
prof = prof.run(statement)
except SystemExit:
pass
finally:
if filename is not None:
prof.dump_stats(filename)
else:
result = prof.print_stats(sort)
return result
def runctx(statement, globals, locals, filename=None):
"""Run statement under profiler, supplying your own globals and locals,
optionally saving results in filename.
statement and filename have the same semantics as profile.run
"""
prof = Profile()
result = None
try:
try:
prof = prof.runctx(statement, globals, locals)
except SystemExit:
pass
finally:
if filename is not None:
prof.dump_stats(filename)
else:
result = prof.print_stats()
return result
# Backwards compatibility.
def help():
print "Documentation for the profile/cProfile modules can be found "
print "in the Python Library Reference, section 'The Python Profiler'."
# ____________________________________________________________
class Profile(_lsprof.Profiler):
"""Profile(custom_timer=None, time_unit=None, subcalls=True, builtins=True)
Builds a profiler object using the specified timer function.
The default timer is a fast built-in one based on real time.
For custom timer functions returning integers, time_unit can
be a float specifying a scale (i.e. how long each integer unit
is, in seconds).
"""
# Most of the functionality is in the base class.
# This subclass only adds convenient and backward-compatible methods.
def print_stats(self, sort=-1):
import pstats
pstats.Stats(self).strip_dirs().sort_stats(sort).print_stats()
def dump_stats(self, file):
import marshal
f = open(file, 'wb')
self.create_stats()
marshal.dump(self.stats, f)
f.close()
def create_stats(self):
self.disable()
self.snapshot_stats()
def snapshot_stats(self):
entries = self.getstats()
self.stats = {}
callersdicts = {}
# call information
for entry in entries:
func = label(entry.code)
nc = entry.callcount # ncalls column of pstats (before '/')
cc = nc - entry.reccallcount # ncalls column of pstats (after '/')
tt = entry.inlinetime # tottime column of pstats
ct = entry.totaltime # cumtime column of pstats
callers = {}
callersdicts[id(entry.code)] = callers
self.stats[func] = cc, nc, tt, ct, callers
# subcall information
for entry in entries:
if entry.calls:
func = label(entry.code)
for subentry in entry.calls:
try:
callers = callersdicts[id(subentry.code)]
except KeyError:
continue
nc = subentry.callcount
cc = nc - subentry.reccallcount
tt = subentry.inlinetime
ct = subentry.totaltime
if func in callers:
prev = callers[func]
nc += prev[0]
cc += prev[1]
tt += prev[2]
ct += prev[3]
callers[func] = nc, cc, tt, ct
# The following two methods can be called by clients to use
# a profiler to profile a statement, given as a string.
def run(self, cmd):
import __main__
dict = __main__.__dict__
return self.runctx(cmd, dict, dict)
def runctx(self, cmd, globals, locals):
self.enable()
try:
exec cmd in globals, locals
finally:
self.disable()
return self
# This method is more useful to profile a single function call.
def runcall(self, func, *args, **kw):
self.enable()
try:
return func(*args, **kw)
finally:
self.disable()
# ____________________________________________________________
def label(code):
if isinstance(code, str):
return ('~', 0, code) # built-in functions ('~' sorts at the end)
else:
return (code.co_filename, code.co_firstlineno, code.co_name)
# ____________________________________________________________
def main():
import os, sys
from optparse import OptionParser
usage = "cProfile.py [-o output_file_path] [-s sort] scriptfile [arg] ..."
parser = OptionParser(usage=usage)
parser.allow_interspersed_args = False
parser.add_option('-o', '--outfile', dest="outfile",
help="Save stats to <outfile>", default=None)
parser.add_option('-s', '--sort', dest="sort",
help="Sort order when printing to stdout, based on pstats.Stats class", default=-1)
if not sys.argv[1:]:
parser.print_usage()
sys.exit(2)
(options, args) = parser.parse_args()
sys.argv[:] = args
if (len(sys.argv) > 0):
sys.path.insert(0, os.path.dirname(sys.argv[0]))
run('execfile(%r)' % (sys.argv[0],), options.outfile, options.sort)
else:
parser.print_usage()
return parser
# When invoked as main program, invoke the profiler on a script
if __name__ == '__main__':
main()
......@@ -371,27 +371,47 @@ class Stats:
self.print_call_heading(width, "was called by...")
for func in list:
cc, nc, tt, ct, callers = self.stats[func]
self.print_call_line(width, func, callers)
self.print_call_line(width, func, callers, "<-")
print
print
return self
def print_call_heading(self, name_size, column_title):
print "Function ".ljust(name_size) + column_title
def print_call_line(self, name_size, source, call_dict):
print func_std_string(source).ljust(name_size),
# print sub-header only if we have new-style callers
subheader = False
for cc, nc, tt, ct, callers in self.stats.itervalues():
if callers:
value = callers.itervalues().next()
subheader = isinstance(value, tuple)
break
if subheader:
print " "*name_size + " ncalls tottime cumtime"
def print_call_line(self, name_size, source, call_dict, arrow="->"):
print func_std_string(source).ljust(name_size) + arrow,
if not call_dict:
print "--"
print
return
clist = call_dict.keys()
clist.sort()
name_size = name_size + 1
indent = ""
for func in clist:
name = func_std_string(func)
print indent*name_size + name + '(%r)' % (call_dict[func],), \
f8(self.stats[func][3])
value = call_dict[func]
if isinstance(value, tuple):
nc, cc, tt, ct = value
if nc != cc:
substats = '%d/%d' % (nc, cc)
else:
substats = '%d' % (nc,)
substats = '%s %s %s %s' % (substats.rjust(7+2*len(indent)),
f8(tt), f8(ct), name)
left_width = name_size + 1
else:
substats = '%s(%r) %s' % (name, value, f8(self.stats[func][3]))
left_width = name_size + 3
print indent*left_width + substats
indent = " "
def print_title(self):
......@@ -448,7 +468,15 @@ def func_get_function_name(func):
return func[2]
def func_std_string(func_name): # match what old profile produced
return "%s:%d(%s)" % func_name
if func_name[:2] == ('~', 0):
# special case for built-in functions
name = func_name[2]
if name.startswith('<') and name.endswith('>'):
return '{%s}' % name[1:-1]
else:
return name
else:
return "%s:%d(%s)" % func_name
#**************************************************************************
# The following functions combine statists for pairs functions.
......
test_cProfile
126 function calls (106 primitive calls) in 1.000 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 1.000 1.000 <string>:1(<module>)
8 0.064 0.008 0.080 0.010 test_cProfile.py:103(subhelper)
28 0.028 0.001 0.028 0.001 test_cProfile.py:115(__getattr__)
1 0.270 0.270 1.000 1.000 test_cProfile.py:30(testfunc)
23/3 0.150 0.007 0.170 0.057 test_cProfile.py:40(factorial)
20 0.020 0.001 0.020 0.001 test_cProfile.py:53(mul)
2 0.040 0.020 0.600 0.300 test_cProfile.py:60(helper)
4 0.116 0.029 0.120 0.030 test_cProfile.py:78(helper1)
2 0.000 0.000 0.140 0.070 test_cProfile.py:89(helper2_indirect)
8 0.312 0.039 0.400 0.050 test_cProfile.py:93(helper2)
12 0.000 0.000 0.012 0.001 {hasattr}
4 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
8 0.000 0.000 0.000 0.000 {range}
4 0.000 0.000 0.000 0.000 {sys.exc_info}
Ordered by: standard name
Function called...
ncalls tottime cumtime
<string>:1(<module>) -> 1 0.270 1.000 test_cProfile.py:30(testfunc)
test_cProfile.py:103(subhelper) -> 16 0.016 0.016 test_cProfile.py:115(__getattr__)
8 0.000 0.000 {range}
test_cProfile.py:115(__getattr__) ->
test_cProfile.py:30(testfunc) -> 1 0.014 0.130 test_cProfile.py:40(factorial)
2 0.040 0.600 test_cProfile.py:60(helper)
test_cProfile.py:40(factorial) -> 20/3 0.130 0.147 test_cProfile.py:40(factorial)
20 0.020 0.020 test_cProfile.py:53(mul)
test_cProfile.py:53(mul) ->
test_cProfile.py:60(helper) -> 4 0.116 0.120 test_cProfile.py:78(helper1)
2 0.000 0.140 test_cProfile.py:89(helper2_indirect)
6 0.234 0.300 test_cProfile.py:93(helper2)
test_cProfile.py:78(helper1) -> 4 0.000 0.004 {hasattr}
4 0.000 0.000 {method 'append' of 'list' objects}
4 0.000 0.000 {sys.exc_info}
test_cProfile.py:89(helper2_indirect) -> 2 0.006 0.040 test_cProfile.py:40(factorial)
2 0.078 0.100 test_cProfile.py:93(helper2)
test_cProfile.py:93(helper2) -> 8 0.064 0.080 test_cProfile.py:103(subhelper)
8 0.000 0.008 {hasattr}
{hasattr} -> 12 0.012 0.012 test_cProfile.py:115(__getattr__)
{method 'append' of 'list' objects} ->
{method 'disable' of '_lsprof.Profiler' objects} ->
{range} ->
{sys.exc_info} ->
Ordered by: standard name
Function was called by...
ncalls tottime cumtime
<string>:1(<module>) <-
test_cProfile.py:103(subhelper) <- 8 0.064 0.080 test_cProfile.py:93(helper2)
test_cProfile.py:115(__getattr__) <- 16 0.016 0.016 test_cProfile.py:103(subhelper)
12 0.012 0.012 {hasattr}
test_cProfile.py:30(testfunc) <- 1 0.270 1.000 <string>:1(<module>)
test_cProfile.py:40(factorial) <- 1 0.014 0.130 test_cProfile.py:30(testfunc)
20/3 0.130 0.147 test_cProfile.py:40(factorial)
2 0.006 0.040 test_cProfile.py:89(helper2_indirect)
test_cProfile.py:53(mul) <- 20 0.020 0.020 test_cProfile.py:40(factorial)
test_cProfile.py:60(helper) <- 2 0.040 0.600 test_cProfile.py:30(testfunc)
test_cProfile.py:78(helper1) <- 4 0.116 0.120 test_cProfile.py:60(helper)
test_cProfile.py:89(helper2_indirect) <- 2 0.000 0.140 test_cProfile.py:60(helper)
test_cProfile.py:93(helper2) <- 6 0.234 0.300 test_cProfile.py:60(helper)
2 0.078 0.100 test_cProfile.py:89(helper2_indirect)
{hasattr} <- 4 0.000 0.004 test_cProfile.py:78(helper1)
8 0.000 0.008 test_cProfile.py:93(helper2)
{method 'append' of 'list' objects} <- 4 0.000 0.000 test_cProfile.py:78(helper1)
{method 'disable' of '_lsprof.Profiler' objects} <-
{range} <- 8 0.000 0.000 test_cProfile.py:103(subhelper)
{sys.exc_info} <- 4 0.000 0.000 test_cProfile.py:78(helper1)
test_profile
74 function calls in 1.000 CPU seconds
127 function calls (107 primitive calls) in 1.000 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
4 0.000 0.000 0.000 0.000 :0(append)
4 0.000 0.000 0.000 0.000 :0(exc_info)
12 0.000 0.000 0.012 0.001 :0(hasattr)
8 0.000 0.000 0.000 0.000 :0(range)
1 0.000 0.000 0.000 0.000 :0(setprofile)
1 0.000 0.000 1.000 1.000 <string>:1(<module>)
0 0.000 0.000 profile:0(profiler)
1 0.000 0.000 1.000 1.000 profile:0(testfunc())
1 0.400 0.400 1.000 1.000 test_profile.py:23(testfunc)
2 0.080 0.040 0.600 0.300 test_profile.py:32(helper)
4 0.116 0.029 0.120 0.030 test_profile.py:50(helper1)
8 0.312 0.039 0.400 0.050 test_profile.py:58(helper2)
8 0.064 0.008 0.080 0.010 test_profile.py:68(subhelper)
28 0.028 0.001 0.028 0.001 test_profile.py:80(__getattr__)
8 0.064 0.008 0.080 0.010 test_profile.py:103(subhelper)
28 0.028 0.001 0.028 0.001 test_profile.py:115(__getattr__)
1 0.270 0.270 1.000 1.000 test_profile.py:30(testfunc)
23/3 0.150 0.007 0.170 0.057 test_profile.py:40(factorial)
20 0.020 0.001 0.020 0.001 test_profile.py:53(mul)
2 0.040 0.020 0.600 0.300 test_profile.py:60(helper)
4 0.116 0.029 0.120 0.030 test_profile.py:78(helper1)
2 0.000 0.000 0.140 0.070 test_profile.py:89(helper2_indirect)
8 0.312 0.039 0.400 0.050 test_profile.py:93(helper2)
Ordered by: standard name
Function called...
:0(append) ->
:0(exc_info) ->
:0(hasattr) -> test_profile.py:115(__getattr__)(12) 0.028
:0(range) ->
:0(setprofile) ->
<string>:1(<module>) -> test_profile.py:30(testfunc)(1) 1.000
profile:0(profiler) -> profile:0(testfunc())(1) 1.000
profile:0(testfunc()) -> :0(setprofile)(1) 0.000
<string>:1(<module>)(1) 1.000
test_profile.py:103(subhelper) -> :0(range)(8) 0.000
test_profile.py:115(__getattr__)(16) 0.028
test_profile.py:115(__getattr__) ->
test_profile.py:30(testfunc) -> test_profile.py:40(factorial)(1) 0.170
test_profile.py:60(helper)(2) 0.600
test_profile.py:40(factorial) -> test_profile.py:40(factorial)(20) 0.170
test_profile.py:53(mul)(20) 0.020
test_profile.py:53(mul) ->
test_profile.py:60(helper) -> test_profile.py:78(helper1)(4) 0.120
test_profile.py:89(helper2_indirect)(2) 0.140
test_profile.py:93(helper2)(6) 0.400
test_profile.py:78(helper1) -> :0(append)(4) 0.000
:0(exc_info)(4) 0.000
:0(hasattr)(4) 0.012
test_profile.py:89(helper2_indirect) -> test_profile.py:40(factorial)(2) 0.170
test_profile.py:93(helper2)(2) 0.400
test_profile.py:93(helper2) -> :0(hasattr)(8) 0.012
test_profile.py:103(subhelper)(8) 0.080
Ordered by: standard name
Function was called by...
:0(append) <- test_profile.py:78(helper1)(4) 0.120
:0(exc_info) <- test_profile.py:78(helper1)(4) 0.120
:0(hasattr) <- test_profile.py:78(helper1)(4) 0.120
test_profile.py:93(helper2)(8) 0.400
:0(range) <- test_profile.py:103(subhelper)(8) 0.080
:0(setprofile) <- profile:0(testfunc())(1) 1.000
<string>:1(<module>) <- profile:0(testfunc())(1) 1.000
profile:0(profiler) <-
profile:0(testfunc()) <- profile:0(profiler)(1) 0.000
test_profile.py:103(subhelper) <- test_profile.py:93(helper2)(8) 0.400
test_profile.py:115(__getattr__) <- :0(hasattr)(12) 0.012
test_profile.py:103(subhelper)(16) 0.080
test_profile.py:30(testfunc) <- <string>:1(<module>)(1) 1.000
test_profile.py:40(factorial) <- test_profile.py:30(testfunc)(1) 1.000
test_profile.py:40(factorial)(20) 0.170
test_profile.py:89(helper2_indirect)(2) 0.140
test_profile.py:53(mul) <- test_profile.py:40(factorial)(20) 0.170
test_profile.py:60(helper) <- test_profile.py:30(testfunc)(2) 1.000
test_profile.py:78(helper1) <- test_profile.py:60(helper)(4) 0.600
test_profile.py:89(helper2_indirect) <- test_profile.py:60(helper)(2) 0.600
test_profile.py:93(helper2) <- test_profile.py:60(helper)(6) 0.600
test_profile.py:89(helper2_indirect)(2) 0.140
"""Test suite for the cProfile module."""
import cProfile, pstats, sys
# In order to have reproducible time, we simulate a timer in the global
# variable 'ticks', which represents simulated time in milliseconds.
# (We can't use a helper function increment the timer since it would be
# included in the profile and would appear to consume all the time.)
ticks = 0
# IMPORTANT: this is an output test. *ALL* NUMBERS in the expected
# output are relevant. If you change the formatting of pstats,
# please don't just regenerate output/test_cProfile without checking
# very carefully that not a single number has changed.
def test_main():
global ticks
ticks = 42000
prof = cProfile.Profile(timer, 0.001)
prof.runctx("testfunc()", globals(), locals())
assert ticks == 43000, ticks
st = pstats.Stats(prof)
st.strip_dirs().sort_stats('stdname').print_stats()
st.print_callees()
st.print_callers()
def timer():
return ticks
def testfunc():
# 1 call
# 1000 ticks total: 270 ticks local, 730 ticks in subfunctions
global ticks
ticks += 99
helper() # 300
helper() # 300
ticks += 171
factorial(14) # 130
def factorial(n):
# 23 calls total
# 170 ticks total, 150 ticks local
# 3 primitive calls, 130, 20 and 20 ticks total
# including 116, 17, 17 ticks local
global ticks
if n > 0:
ticks += n
return mul(n, factorial(n-1))
else:
ticks += 11
return 1
def mul(a, b):
# 20 calls
# 1 tick, local
global ticks
ticks += 1
return a * b
def helper():
# 2 calls
# 300 ticks total: 20 ticks local, 260 ticks in subfunctions
global ticks
ticks += 1
helper1() # 30
ticks += 2
helper1() # 30
ticks += 6
helper2() # 50
ticks += 3
helper2() # 50
ticks += 2
helper2() # 50
ticks += 5
helper2_indirect() # 70
ticks += 1
def helper1():
# 4 calls
# 30 ticks total: 29 ticks local, 1 tick in subfunctions
global ticks
ticks += 10
hasattr(C(), "foo") # 1
ticks += 19
lst = []
lst.append(42) # 0
sys.exc_info() # 0
def helper2_indirect():
helper2() # 50
factorial(3) # 20
def helper2():
# 8 calls
# 50 ticks local: 39 ticks local, 11 ticks in subfunctions
global ticks
ticks += 11
hasattr(C(), "bar") # 1
ticks += 13
subhelper() # 10
ticks += 15
def subhelper():
# 8 calls
# 10 ticks total: 8 ticks local, 2 ticks in subfunctions
global ticks
ticks += 2
for i in range(2): # 0
try:
C().foo # 1 x 2
except AttributeError:
ticks += 3 # 3 x 2
class C:
def __getattr__(self, name):
# 28 calls
# 1 tick, local
global ticks
ticks += 1
raise AttributeError
if __name__ == "__main__":
test_main()
"""Test suite for the profile module."""
import profile
import os
from test.test_support import TESTFN, vereq
import profile, pstats, sys
# In order to have reproducible time, we simulate a timer in the global
# variable 'ticks', which represents simulated time in milliseconds.
......@@ -10,50 +8,87 @@ from test.test_support import TESTFN, vereq
# included in the profile and would appear to consume all the time.)
ticks = 0
def test_1():
# IMPORTANT: this is an output test. *ALL* NUMBERS in the expected
# output are relevant. If you change the formatting of pstats,
# please don't just regenerate output/test_profile without checking
# very carefully that not a single number has changed.
def test_main():
global ticks
ticks = 0
ticks = 42000
prof = profile.Profile(timer)
prof.runctx("testfunc()", globals(), globals())
prof.print_stats()
prof.runctx("testfunc()", globals(), locals())
assert ticks == 43000, ticks
st = pstats.Stats(prof)
st.strip_dirs().sort_stats('stdname').print_stats()
st.print_callees()
st.print_callers()
def timer():
return ticks*0.001
def testfunc():
# 1 call
# 1000 ticks total: 400 ticks local, 600 ticks in subfunctions
# 1000 ticks total: 270 ticks local, 730 ticks in subfunctions
global ticks
ticks += 199
ticks += 99
helper() # 300
helper() # 300
ticks += 201
ticks += 171
factorial(14) # 130
def factorial(n):
# 23 calls total
# 170 ticks total, 150 ticks local
# 3 primitive calls, 130, 20 and 20 ticks total
# including 116, 17, 17 ticks local
global ticks
if n > 0:
ticks += n
return mul(n, factorial(n-1))
else:
ticks += 11
return 1
def mul(a, b):
# 20 calls
# 1 tick, local
global ticks
ticks += 1
return a * b
def helper():
# 2 calls
# 300 ticks total: 40 ticks local, 260 ticks in subfunctions
# 300 ticks total: 20 ticks local, 260 ticks in subfunctions
global ticks
ticks += 1
helper1() # 30
ticks += 3
ticks += 2
helper1() # 30
ticks += 6
helper2() # 50
ticks += 5
helper2() # 50
ticks += 4
ticks += 3
helper2() # 50
ticks += 7
ticks += 2
helper2() # 50
ticks += 14
ticks += 5
helper2_indirect() # 70
ticks += 1
def helper1():
# 4 calls
# 30 ticks total: 29 ticks local, 1 tick in subfunctions
global ticks
ticks += 10
hasattr(C(), "foo")
hasattr(C(), "foo") # 1
ticks += 19
lst = []
lst.append(42) # 0
sys.exc_info() # 0
def helper2_indirect():
helper2() # 50
factorial(3) # 20
def helper2():
# 8 calls
......@@ -70,7 +105,7 @@ def subhelper():
# 10 ticks total: 8 ticks local, 2 ticks in subfunctions
global ticks
ticks += 2
for i in range(2):
for i in range(2): # 0
try:
C().foo # 1 x 2
except AttributeError:
......@@ -84,36 +119,5 @@ class C:
ticks += 1
raise AttributeError
def test_2():
d = globals().copy()
def testfunc():
global x
x = 1
d['testfunc'] = testfunc
profile.runctx("testfunc()", d, d, TESTFN)
vereq (x, 1)
os.unlink (TESTFN)
def test_3():
result = []
def testfunc1():
try: len(None)
except: pass
try: len(None)
except: pass
result.append(True)
def testfunc2():
testfunc1()
testfunc1()
profile.runctx("testfunc2()", locals(), locals(), TESTFN)
vereq(result, [True, True])
os.unlink(TESTFN)
def test_main():
test_1()
test_2()
test_3()
if __name__ == "__main__":
test_main()
......@@ -2019,6 +2019,11 @@ Extension modules
Library
-------
- Added a new module: cProfile, a C profiler with the same interface as the
profile module. cProfile avoids some of the drawbacks of the hotshot
profiler and provides a bit more information than the other two profilers.
Based on "lsprof" (patch #1212837).
- Bug #1266283: The new function "lexists" is now in os.path.__all__.
- Bug #981530: Fix UnboundLocalError in shutil.rmtree(). This affects
......
This diff is collapsed.
#include "rotatingtree.h"
#define KEY_LOWER_THAN(key1, key2) ((char*)(key1) < (char*)(key2))
/* The randombits() function below is a fast-and-dirty generator that
* is probably irregular enough for our purposes. Note that it's biased:
* I think that ones are slightly more probable than zeroes. It's not
* important here, though.
*/
static unsigned int random_value = 1;
static unsigned int random_stream = 0;
static int
randombits(int bits)
{
int result;
if (random_stream < (1<<bits)) {
random_value *= 1082527;
random_stream = random_value;
}
result = random_stream & ((1<<bits)-1);
random_stream >>= bits;
return result;
}
/* Insert a new node into the tree.
(*root) is modified to point to the new root. */
void
RotatingTree_Add(rotating_node_t **root, rotating_node_t *node)
{
while (*root != NULL) {
if (KEY_LOWER_THAN(node->key, (*root)->key))
root = &((*root)->left);
else
root = &((*root)->right);
}
node->left = NULL;
node->right = NULL;
*root = node;
}
/* Locate the node with the given key. This is the most complicated
function because it occasionally rebalances the tree to move the
resulting node closer to the root. */
rotating_node_t *
RotatingTree_Get(rotating_node_t **root, void *key)
{
if (randombits(3) != 4) {
/* Fast path, no rebalancing */
rotating_node_t *node = *root;
while (node != NULL) {
if (node->key == key)
return node;
if (KEY_LOWER_THAN(key, node->key))
node = node->left;
else
node = node->right;
}
return NULL;
}
else {
rotating_node_t **pnode = root;
rotating_node_t *node = *pnode;
rotating_node_t *next;
int rotate;
if (node == NULL)
return NULL;
while (1) {
if (node->key == key)
return node;
rotate = !randombits(1);
if (KEY_LOWER_THAN(key, node->key)) {
next = node->left;
if (next == NULL)
return NULL;
if (rotate) {
node->left = next->right;
next->right = node;
*pnode = next;
}
else
pnode = &(node->left);
}
else {
next = node->right;
if (next == NULL)
return NULL;
if (rotate) {
node->right = next->left;
next->left = node;
*pnode = next;
}
else
pnode = &(node->right);
}
node = next;
}
}
}
/* Enumerate all nodes in the tree. The callback enumfn() should return
zero to continue the enumeration, or non-zero to interrupt it.
A non-zero value is directly returned by RotatingTree_Enum(). */
int
RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn,
void *arg)
{
int result;
rotating_node_t *node;
while (root != NULL) {
result = RotatingTree_Enum(root->left, enumfn, arg);
if (result != 0) return result;
node = root->right;
result = enumfn(root, arg);
if (result != 0) return result;
root = node;
}
return 0;
}
/* "Rotating trees" (Armin Rigo)
*
* Google "splay trees" for the general idea.
*
* It's a dict-like data structure that works best when accesses are not
* random, but follow a strong pattern. The one implemented here is for
* accesses patterns where the same small set of keys is looked up over
* and over again, and this set of keys evolves slowly over time.
*/
#include <stdlib.h>
#define EMPTY_ROTATING_TREE ((rotating_node_t *)NULL)
typedef struct rotating_node_s rotating_node_t;
typedef int (*rotating_tree_enum_fn) (rotating_node_t *node, void *arg);
struct rotating_node_s {
void *key;
rotating_node_t *left;
rotating_node_t *right;
};
void RotatingTree_Add(rotating_node_t **root, rotating_node_t *node);
rotating_node_t* RotatingTree_Get(rotating_node_t **root, void *key);
int RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn,
void *arg);
......@@ -328,7 +328,6 @@ class PyBuildExt(build_ext):
# Some modules that are normally always on:
exts.append( Extension('regex', ['regexmodule.c', 'regexpr.c']) )
exts.append( Extension('_hotshot', ['_hotshot.c']) )
exts.append( Extension('_weakref', ['_weakref.c']) )
# array objects
......@@ -363,6 +362,9 @@ class PyBuildExt(build_ext):
exts.append( Extension("functional", ["functionalmodule.c"]) )
# Python C API test module
exts.append( Extension('_testcapi', ['_testcapimodule.c']) )
# profilers (_lsprof is for cProfile.py)
exts.append( Extension('_hotshot', ['_hotshot.c']) )
exts.append( Extension('_lsprof', ['_lsprof.c', 'rotatingtree.c']) )
# static Unicode character database
if have_unicode:
exts.append( Extension('unicodedata', ['unicodedata.c']) )
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment