Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cpython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
cpython
Commits
b7057640
Commit
b7057640
authored
May 13, 1998
by
Guido van Rossum
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Tim's quicksort on May 10.
parent
01fc65d9
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
99 additions
and
68 deletions
+99
-68
Objects/listobject.c
Objects/listobject.c
+99
-68
No files found.
Objects/listobject.c
View file @
b7057640
...
...
@@ -624,6 +624,15 @@ docompare(x, y, compare)
return
0
;
}
/* MINSIZE is the smallest array we care to partition; smaller arrays
are sorted using a straight insertion sort (above). It must be at
least 3 for the quicksort implementation to work. Assuming that
comparisons are more expensive than everything else (and this is a
good assumption for Python), it should be 10, which is the cutoff
point: quicksort requires more comparisons than insertion sort for
smaller arrays. */
#define MINSIZE 12
/* Straight insertion sort. More efficient for sorting small arrays. */
static
int
...
...
@@ -640,30 +649,23 @@ insertionsort(array, size, compare)
register
PyObject
*
key
=
*
p
;
register
PyObject
**
q
=
p
;
while
(
--
q
>=
a
)
{
register
int
k
=
docompare
(
*
q
,
key
,
compare
);
register
int
k
=
docompare
(
key
,
*
q
,
compare
);
/* if (p-q >= MINSIZE)
fprintf(stderr, "OUCH! %d\n", p-q); */
if
(
k
==
CMPERROR
)
return
-
1
;
if
(
k
<=
0
)
if
(
k
<
0
)
{
*
(
q
+
1
)
=
*
q
;
*
q
=
key
;
/* For consistency */
}
else
break
;
*
(
q
+
1
)
=
*
q
;
*
q
=
key
;
/* For consistency */
}
}
return
0
;
}
/* MINSIZE is the smallest array we care to partition; smaller arrays
are sorted using a straight insertion sort (above). It must be at
least 2 for the quicksort implementation to work. Assuming that
comparisons are more expensive than everything else (and this is a
good assumption for Python), it should be 10, which is the cutoff
point: quicksort requires more comparisons than insertion sort for
smaller arrays. */
#define MINSIZE 10
/* STACKSIZE is the size of our work stack. A rough estimate is that
this allows us to sort arrays of MINSIZE * 2**STACKSIZE, or large
enough. (Because of the way we push the biggest partition first,
...
...
@@ -682,8 +684,9 @@ quicksort(array, size, compare)
PyObject
*
compare
;
/* Comparison function object, or NULL for default */
{
register
PyObject
*
tmp
,
*
pivot
;
register
PyObject
**
lo
,
**
hi
,
**
l
,
**
r
;
int
top
,
k
,
n
,
n2
;
register
PyObject
**
l
,
**
r
,
**
p
;
register
PyObject
**
lo
,
**
hi
;
int
top
,
k
,
n
;
PyObject
**
lostack
[
STACKSIZE
];
PyObject
**
histack
[
STACKSIZE
];
...
...
@@ -699,88 +702,117 @@ quicksort(array, size, compare)
/* If it's a small one, use straight insertion sort */
n
=
hi
-
lo
;
if
(
n
<
MINSIZE
)
{
/*
* skip it. The insertion sort at the end will
* catch these
*/
if
(
n
<
MINSIZE
)
continue
;
}
/* Choose median of first, middle and last item as pivot */
l
=
lo
+
(
n
>>
1
);
/* Middle */
r
=
hi
-
1
;
/* Last */
/* Choose median of first, middle and last as pivot;
these 3 are reverse-sorted in the process; the ends
will be swapped on the first do-loop iteration.
*/
l
=
lo
;
/* First */
p
=
lo
+
(
n
>>
1
);
/* Middle */
r
=
hi
-
1
;
/* Last */
k
=
docompare
(
*
l
,
*
lo
,
compare
);
k
=
docompare
(
*
l
,
*
p
,
compare
);
if
(
k
==
CMPERROR
)
return
-
1
;
if
(
k
<
0
)
{
tmp
=
*
l
o
;
*
lo
=
*
l
;
*
l
=
tmp
;
}
{
tmp
=
*
l
;
*
l
=
*
p
;
*
p
=
tmp
;
}
k
=
docompare
(
*
r
,
*
l
,
compare
);
k
=
docompare
(
*
p
,
*
r
,
compare
);
if
(
k
==
CMPERROR
)
return
-
1
;
if
(
k
<
0
)
{
tmp
=
*
r
;
*
r
=
*
l
;
*
l
=
tmp
;
}
{
tmp
=
*
p
;
*
p
=
*
r
;
*
r
=
tmp
;
}
k
=
docompare
(
*
l
,
*
lo
,
compare
);
k
=
docompare
(
*
l
,
*
p
,
compare
);
if
(
k
==
CMPERROR
)
return
-
1
;
if
(
k
<
0
)
{
tmp
=
*
l
;
*
l
=
*
lo
;
*
lo
=
tmp
;
}
pivot
=
*
l
;
{
tmp
=
*
l
;
*
l
=
*
p
;
*
p
=
tmp
;
}
/* Move pivot off to the side (swap with lo+1) */
*
l
=
*
(
lo
+
1
);
*
(
lo
+
1
)
=
pivot
;
pivot
=
*
p
;
/* Partition the array */
l
=
lo
+
2
;
r
=
hi
-
2
;
do
{
tmp
=
*
l
;
*
l
=
*
r
;
*
r
=
tmp
;
if
(
l
==
p
)
{
p
=
r
;
l
++
;
}
else
if
(
r
==
p
)
{
p
=
l
;
r
--
;
}
else
{
l
++
;
r
--
;
}
/* Move left index to element >= pivot */
while
(
l
<
hi
)
{
k
=
docompare
(
*
l
,
pivot
,
compare
);
while
(
l
<
p
)
{
k
=
docompare
(
*
l
,
pivot
,
compare
);
if
(
k
==
CMPERROR
)
return
-
1
;
if
(
k
>=
0
)
if
(
k
<
0
)
l
++
;
else
break
;
l
++
;
}
/* Move right index to element <= pivot */
while
(
r
>
lo
)
{
while
(
r
>
p
)
{
k
=
docompare
(
pivot
,
*
r
,
compare
);
if
(
k
==
CMPERROR
)
return
-
1
;
if
(
k
>=
0
)
if
(
k
<
0
)
r
--
;
else
break
;
r
--
;
}
/* If they crossed, we're through */
if
(
l
<=
r
)
{
/* Swap elements and continue */
tmp
=
*
l
;
*
l
=
*
r
;
*
r
=
tmp
;
l
++
;
r
--
;
}
}
while
(
l
<=
r
);
/* Swap pivot back into place; *r <= pivot */
*
(
lo
+
1
)
=
*
r
;
*
r
=
pivot
;
}
while
(
l
<
r
);
/* lo < l == p == r < hi-1
*p == pivot
All in [lo,p) are <= pivot
At p == pivot
All in [p+1,hi) are >= pivot
Now extend as far as possible (around p) so that:
All in [lo,r) are <= pivot
All in [r,l) are == pivot
All in [l,hi) are >= pivot
This wastes two compares if no elements are == to the
pivot, but can win big when there are duplicates.
Mildly tricky: continue using only "<" -- we deduce
equality indirectly.
*/
while
(
r
>
lo
)
{
/* because r-1 < p, *(r-1) <= pivot is known */
k
=
docompare
(
*
(
r
-
1
),
pivot
,
compare
);
if
(
k
==
CMPERROR
)
return
-
1
;
if
(
k
<
0
)
break
;
/* <= and not < implies == */
r
--
;
}
/* We have now reached the following conditions:
lo <= r < l <= hi
all x in [lo,r) are <= pivot
all x in [r,l) are == pivot
all x in [l,hi) are >= pivot
The partitions are [lo,r) and [l,hi)
*/
l
++
;
while
(
l
<
hi
)
{
/* because l > p, pivot <= *l is known */
k
=
docompare
(
pivot
,
*
l
,
compare
);
if
(
k
==
CMPERROR
)
return
-
1
;
if
(
k
<
0
)
break
;
/* <= and not < implies == */
l
++
;
}
/* Push biggest partition first */
n
=
r
-
lo
;
n2
=
hi
-
l
;
if
(
n
>
n2
)
{
if
(
r
-
lo
>=
hi
-
l
)
{
/* First one is bigger */
lostack
[
top
]
=
lo
;
histack
[
top
++
]
=
r
;
...
...
@@ -793,22 +825,21 @@ quicksort(array, size, compare)
lostack
[
top
]
=
lo
;
histack
[
top
++
]
=
r
;
}
/* Should assert top <= STACKSIZE */
}
/*
* Ouch - even if I screwed up the quicksort above, the
* insertionsort below will cover up the problem - just a
* performance hit would be noticable.
* performance hit would be noticable.
*/
/* insertionsort is pretty fast on the partially sorted list */
if
(
insertionsort
(
array
,
size
,
compare
)
<
0
)
return
-
1
;
/* Succes */
/* Succes
s
*/
return
0
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment