Commit c5299678 authored by Mark Dickinson's avatar Mark Dickinson Committed by GitHub

bpo-36027: Extend three-argument pow to negative second argument (GH-13266)

parent 5ae299ac
......@@ -1277,9 +1277,24 @@ are always available. They are listed here in alphabetical order.
operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are
converted to float and a float result is delivered. For example, ``10**2``
returns ``100``, but ``10**-2`` returns ``0.01``. If the second argument is
negative, the third argument must be omitted. If *z* is present, *x* and *y*
must be of integer types, and *y* must be non-negative.
returns ``100``, but ``10**-2`` returns ``0.01``.
For :class:`int` operands *x* and *y*, if *z* is present, *z* must also be
of integer type and *z* must be nonzero. If *z* is present and *y* is
negative, *x* must be relatively prime to *z*. In that case, ``pow(inv_x,
-y, z)`` is returned, where *inv_x* is an inverse to *x* modulo *z*.
Here's an example of computing an inverse for ``38`` modulo ``97``::
>>> pow(38, -1, 97)
23
>>> 23 * 38 % 97 == 1
True
.. versionchanged:: 3.8
For :class:`int` operands, the three-argument form of ``pow`` now allows
the second argument to be negative, permitting computation of modular
inverses.
.. function:: print(*objects, sep=' ', end='\\n', file=sys.stdout, flush=False)
......
......@@ -304,6 +304,12 @@ Other Language Changes
* Added new ``replace()`` method to the code type (:class:`types.CodeType`).
(Contributed by Victor Stinner in :issue:`37032`.)
* For integers, the three-argument form of the :func:`pow` function now permits
the exponent to be negative in the case where the base is relatively prime to
the modulus. It then computes a modular inverse to the base when the exponent
is ``-1``, and a suitable power of that inverse for other negative exponents.
(Contributed by Mark Dickinson in :issue:`36027`.)
New Modules
===========
......
......@@ -1195,7 +1195,8 @@ class BuiltinTest(unittest.TestCase):
self.assertAlmostEqual(pow(-1, 0.5), 1j)
self.assertAlmostEqual(pow(-1, 1/3), 0.5 + 0.8660254037844386j)
self.assertRaises(ValueError, pow, -1, -2, 3)
# See test_pow for additional tests for three-argument pow.
self.assertEqual(pow(-1, -2, 3), 1)
self.assertRaises(ValueError, pow, 1, 2, 0)
self.assertRaises(TypeError, pow)
......
import math
import unittest
class PowTest(unittest.TestCase):
......@@ -119,5 +120,30 @@ class PowTest(unittest.TestCase):
eq(pow(a, -fiveto), expected)
eq(expected, 1.0) # else we didn't push fiveto to evenness
def test_negative_exponent(self):
for a in range(-50, 50):
for m in range(-50, 50):
with self.subTest(a=a, m=m):
if m != 0 and math.gcd(a, m) == 1:
# Exponent -1 should give an inverse, with the
# same sign as m.
inv = pow(a, -1, m)
self.assertEqual(inv, inv % m)
self.assertEqual((inv * a - 1) % m, 0)
# Larger exponents
self.assertEqual(pow(a, -2, m), pow(inv, 2, m))
self.assertEqual(pow(a, -3, m), pow(inv, 3, m))
self.assertEqual(pow(a, -1001, m), pow(inv, 1001, m))
else:
with self.assertRaises(ValueError):
pow(a, -1, m)
with self.assertRaises(ValueError):
pow(a, -2, m)
with self.assertRaises(ValueError):
pow(a, -1001, m)
if __name__ == "__main__":
unittest.main()
Allow computation of modular inverses via three-argument ``pow``: the second
argument is now permitted to be negative in the case where the first and
third arguments are relatively prime.
......@@ -4174,6 +4174,98 @@ long_divmod(PyObject *a, PyObject *b)
return z;
}
/* Compute an inverse to a modulo n, or raise ValueError if a is not
invertible modulo n. Assumes n is positive. The inverse returned
is whatever falls out of the extended Euclidean algorithm: it may
be either positive or negative, but will be smaller than n in
absolute value.
Pure Python equivalent for long_invmod:
def invmod(a, n):
b, c = 1, 0
while n:
q, r = divmod(a, n)
a, b, c, n = n, c, b - q*c, r
# at this point a is the gcd of the original inputs
if a == 1:
return b
raise ValueError("Not invertible")
*/
static PyLongObject *
long_invmod(PyLongObject *a, PyLongObject *n)
{
PyLongObject *b, *c;
/* Should only ever be called for positive n */
assert(Py_SIZE(n) > 0);
b = (PyLongObject *)PyLong_FromLong(1L);
if (b == NULL) {
return NULL;
}
c = (PyLongObject *)PyLong_FromLong(0L);
if (c == NULL) {
Py_DECREF(b);
return NULL;
}
Py_INCREF(a);
Py_INCREF(n);
/* references now owned: a, b, c, n */
while (Py_SIZE(n) != 0) {
PyLongObject *q, *r, *s, *t;
if (l_divmod(a, n, &q, &r) == -1) {
goto Error;
}
Py_DECREF(a);
a = n;
n = r;
t = (PyLongObject *)long_mul(q, c);
Py_DECREF(q);
if (t == NULL) {
goto Error;
}
s = (PyLongObject *)long_sub(b, t);
Py_DECREF(t);
if (s == NULL) {
goto Error;
}
Py_DECREF(b);
b = c;
c = s;
}
/* references now owned: a, b, c, n */
Py_DECREF(c);
Py_DECREF(n);
if (long_compare(a, _PyLong_One)) {
/* a != 1; we don't have an inverse. */
Py_DECREF(a);
Py_DECREF(b);
PyErr_SetString(PyExc_ValueError,
"base is not invertible for the given modulus");
return NULL;
}
else {
/* a == 1; b gives an inverse modulo n */
Py_DECREF(a);
return b;
}
Error:
Py_DECREF(a);
Py_DECREF(b);
Py_DECREF(c);
Py_DECREF(n);
return NULL;
}
/* pow(v, w, x) */
static PyObject *
long_pow(PyObject *v, PyObject *w, PyObject *x)
......@@ -4207,21 +4299,15 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
Py_RETURN_NOTIMPLEMENTED;
}
if (Py_SIZE(b) < 0) { /* if exponent is negative */
if (c) {
PyErr_SetString(PyExc_ValueError, "pow() 2nd argument "
"cannot be negative when 3rd argument specified");
goto Error;
}
else {
/* else return a float. This works because we know
if (Py_SIZE(b) < 0 && c == NULL) {
/* if exponent is negative and there's no modulus:
return a float. This works because we know
that this calls float_pow() which converts its
arguments to double. */
Py_DECREF(a);
Py_DECREF(b);
return PyFloat_Type.tp_as_number->nb_power(v, w, x);
}
}
if (c) {
/* if modulus == 0:
......@@ -4255,6 +4341,26 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
goto Done;
}
/* if exponent is negative, negate the exponent and
replace the base with a modular inverse */
if (Py_SIZE(b) < 0) {
temp = (PyLongObject *)_PyLong_Copy(b);
if (temp == NULL)
goto Error;
Py_DECREF(b);
b = temp;
temp = NULL;
_PyLong_Negate(&b);
if (b == NULL)
goto Error;
temp = long_invmod(a, c);
if (temp == NULL)
goto Error;
Py_DECREF(a);
a = temp;
}
/* Reduce base by modulus in some cases:
1. If base < 0. Forcing the base non-negative makes things easier.
2. If base is obviously larger than the modulus. The "small
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment