Commit e1b82479 authored by Mark Dickinson's avatar Mark Dickinson

Implementation of Fraction.limit_denominator.

Remove Fraction.to_continued_fraction and
Fraction.from_continued_fraction
parent a37430a0
...@@ -46,6 +46,24 @@ Fraction number class. ...@@ -46,6 +46,24 @@ Fraction number class.
:class:`decimal.Decimal`. :class:`decimal.Decimal`.
.. method:: Fraction.limit_denominator(max_denominator=1000000)
Finds and returns the closest :class:`Fraction` to ``self`` that
has denominator at most max_denominator. This method is useful for
finding rational approximations to a given floating-point number::
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)
or for recovering a rational number that's represented as a float::
>>> from math import pi, cos
>>> Fraction.from_float(cos(pi/3))
Fraction(4503599627370497L, 9007199254740992L)
>>> Fraction.from_float(cos(pi/3)).limit_denominator()
Fraction(1, 2)
.. method:: Fraction.__floor__() .. method:: Fraction.__floor__()
Returns the greatest :class:`int` ``<= self``. Will be accessible Returns the greatest :class:`int` ``<= self``. Will be accessible
......
...@@ -140,42 +140,60 @@ class Fraction(Rational): ...@@ -140,42 +140,60 @@ class Fraction(Rational):
else: else:
return Fraction(digits, 10 ** -exp) return Fraction(digits, 10 ** -exp)
@staticmethod def limit_denominator(self, max_denominator=1000000):
def from_continued_fraction(seq): """Closest Fraction to self with denominator at most max_denominator.
'Build a Fraction from a continued fraction expessed as a sequence'
n, d = 1, 0 >>> Fraction('3.141592653589793').limit_denominator(10)
for e in reversed(seq): Fraction(22, 7)
n, d = d, n >>> Fraction('3.141592653589793').limit_denominator(100)
n += e * d Fraction(311, 99)
return Fraction(n, d) if seq else Fraction(0) >>> Fraction(1234, 5678).limit_denominator(10000)
Fraction(1234, 5678)
def as_continued_fraction(self):
'Return continued fraction expressed as a list' """
n = self.numerator # Algorithm notes: For any real number x, define a *best upper
d = self.denominator # approximation* to x to be a rational number p/q such that:
cf = [] #
while d: # (1) p/q >= x, and
e = int(n // d) # (2) if p/q > r/s >= x then s > q, for any rational r/s.
cf.append(e) #
n -= e * d # Define *best lower approximation* similarly. Then it can be
n, d = d, n # proved that a rational number is a best upper or lower
return cf # approximation to x if, and only if, it is a convergent or
# semiconvergent of the (unique shortest) continued fraction
def approximate(self, max_denominator): # associated to x.
'Best rational approximation with a denominator <= max_denominator' #
# XXX First cut at algorithm # To find a best rational approximation with denominator <= M,
# Still needs rounding rules as specified at # we find the best upper and lower approximations with
# http://en.wikipedia.org/wiki/Continued_fraction # denominator <= M and take whichever of these is closer to x.
# In the event of a tie, the bound with smaller denominator is
# chosen. If both denominators are equal (which can happen
# only when max_denominator == 1 and self is midway between
# two integers) the lower bound---i.e., the floor of self, is
# taken.
if max_denominator < 1:
raise ValueError("max_denominator should be at least 1")
if self.denominator <= max_denominator: if self.denominator <= max_denominator:
return self return Fraction(self)
cf = self.as_continued_fraction()
result = Fraction(0) p0, q0, p1, q1 = 0, 1, 1, 0
for i in range(1, len(cf)): n, d = self.numerator, self.denominator
new = self.from_continued_fraction(cf[:i]) while True:
if new.denominator > max_denominator: a = n//d
q2 = q0+a*q1
if q2 > max_denominator:
break break
result = new p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
return result n, d = d, n-a*d
k = (max_denominator-q0)//q1
bound1 = Fraction(p0+k*p1, q0+k*q1)
bound2 = Fraction(p1, q1)
if abs(bound2 - self) <= abs(bound1-self):
return bound2
else:
return bound1
@property @property
def numerator(a): def numerator(a):
......
...@@ -188,28 +188,15 @@ class FractionTest(unittest.TestCase): ...@@ -188,28 +188,15 @@ class FractionTest(unittest.TestCase):
TypeError, "Cannot convert sNaN to Fraction.", TypeError, "Cannot convert sNaN to Fraction.",
R.from_decimal, Decimal("snan")) R.from_decimal, Decimal("snan"))
def testFromContinuedFraction(self): def testLimitDenominator(self):
self.assertRaises(TypeError, R.from_continued_fraction, None) rpi = R('3.1415926535897932')
phi = R.from_continued_fraction([1]*100) self.assertEqual(rpi.limit_denominator(10000), R(355, 113))
self.assertEquals(round(phi - (1 + 5 ** 0.5) / 2, 10), 0.0) self.assertEqual(-rpi.limit_denominator(10000), R(-355, 113))
self.assertEqual(rpi.limit_denominator(113), R(355, 113))
minusphi = R.from_continued_fraction([-1]*100) self.assertEqual(rpi.limit_denominator(112), R(333, 106))
self.assertEquals(round(minusphi + (1 + 5 ** 0.5) / 2, 10), 0.0) self.assertEqual(R(201, 200).limit_denominator(100), R(1))
self.assertEqual(R(201, 200).limit_denominator(101), R(102, 101))
self.assertEquals(R.from_continued_fraction([0]), R(0)) self.assertEqual(R(0).limit_denominator(10000), R(0))
self.assertEquals(R.from_continued_fraction([]), R(0))
def testAsContinuedFraction(self):
self.assertEqual(R.from_float(math.pi).as_continued_fraction()[:15],
[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3, 3])
self.assertEqual(R.from_float(-math.pi).as_continued_fraction()[:16],
[-4, 1, 6, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3, 3])
self.assertEqual(R(0).as_continued_fraction(), [0])
def testApproximateFrom(self):
self.assertEqual(R.from_float(math.pi).approximate(10000), R(355, 113))
self.assertEqual(R.from_float(-math.pi).approximate(10000), R(-355, 113))
self.assertEqual(R.from_float(0.0).approximate(10000), R(0))
def testConversions(self): def testConversions(self):
self.assertTypedEquals(-1, math.trunc(R(-11, 10))) self.assertTypedEquals(-1, math.trunc(R(-11, 10)))
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment