Commit ea690c4b authored by Fred Drake's avatar Fred Drake

- improve the description of how user-defined method

    objects get made
  - improve the description of attribute retrieval from
    classes and class instances
  - add brief documentation of static method and
    class method objects.
parent 38d7c1bb
......@@ -499,22 +499,41 @@ module the method was defined in, or \code{None} if unavailable.
Methods also support accessing (but not setting) the arbitrary
function attributes on the underlying function object.
User-defined method objects are created in two ways: when getting an
attribute of a class that is a user-defined function object, or when
getting an attribute of a class instance that is a user-defined
function object defined by the class of the instance. In the former
case (class attribute), the \member{im_self} attribute is \code{None},
and the method object is said to be unbound; in the latter case
(instance attribute), \method{im_self} is the instance, and the method
object is said to be bound. For
instance, when \class{C} is a class which has a method
\method{f()}, \code{C.f} does not yield the function object
\code{f}; rather, it yields an unbound method object \code{m} where
\code{m.im_class} is \class{C}, \code{m.im_func} is \method{f()}, and
\code{m.im_self} is \code{None}. When \code{x} is a \class{C}
instance, \code{x.f} yields a bound method object \code{m} where
\code{m.im_class} is \code{C}, \code{m.im_func} is \method{f()}, and
\code{m.im_self} is \code{x}.
User-defined method objects may be created when getting an attribute
of a class (perhaps via an instance of that class), if that attribute
is a user-defined function object, an unbound user-defined method object,
or a class method object.
When the attribute is a user-defined method object, a new
method object is only created if the class from which it is being
retrieved is the same as, or a derived class of, the class stored
in the original method object; otherwise, the original method object
is used as it is.
When a user-defined method object is created by retrieving
a user-defined function object from a class, its \member{im_self}
attribute is \code{None} and the method object is said to be unbound.
When one is created by retrieving a user-defined function object
from a class via one of its instances, its \member{im_self} attribute
is the instance, and the method object is said to be bound.
In either case, the new method's \member{im_class} attribute
is the class from which the retrieval takes place, and
its \member{im_func} attribute is the original function object.
\withsubitem{(method attribute)}{
\ttindex{im_class}\ttindex{im_func}\ttindex{im_self}}
When a user-defined method object is created by retrieving another
method object from a class or instance, the behaviour is the same
as for a function object, except that the \member{im_func} attribute
of the new instance is not the original method object but its
\member{im_func} attribute.
\withsubitem{(method attribute)}{
\ttindex{im_func}}
When a user-defined method object is created by retrieving a
class method object from a class or instance, its \member{im_self}
attribute is the class itself (the same as the \member{im_class}
attribute), and its \member{im_func} attribute is the function
object underlying the class method.
\withsubitem{(method attribute)}{
\ttindex{im_class}\ttindex{im_func}\ttindex{im_self}}
......@@ -530,6 +549,12 @@ function (\member{im_func}) is called, inserting the class instance
\method{f()}, and \code{x} is an instance of \class{C}, calling
\code{x.f(1)} is equivalent to calling \code{C.f(x, 1)}.
When a user-defined method object is derived from a class method object,
the ``class instance'' stored in \member{im_self} will actually be the
class itself, so that calling either \code{x.f(1)} or \code{C.f(1)} is
equivalent to calling \code{f(C,1)} where \code{f} is the underlying
function.
Note that the transformation from function object to (unbound or
bound) method object happens each time the attribute is retrieved from
the class or instance. In some cases, a fruitful optimization is to
......@@ -654,10 +679,19 @@ When the attribute name is not found
there, the attribute search continues in the base classes. The search
is depth-first, left-to-right in the order of occurrence in the
base class list.
When a class attribute reference would yield a user-defined function
object, it is transformed into an unbound user-defined method object
(see above). The \member{im_class} attribute of this method object is the
class for which the attribute reference was initiated.
When a class attribute reference (for class \class{C}, say)
would yield a user-defined function object or
an unbound user-defined method object whose associated class is either
\class{C} or one of its base classes, it is transformed into an unbound
user-defined method object whose \member{im_class} attribute is~\class{C}.
When it would yield a class method object, it is transformed into
a bound user-defined method object whose \member{im_class} and
\member{im_self} attributes are both~\class{C}. When it would yield
a static method object, it is transformed into the object wrapped
by the static method object. See section~\ref{descriptors} for another
way in which attributes retrieved from a class may differ from those
actually contained in its \member{__dict__}.
\obindex{class}
\obindex{class instance}
\obindex{instance}
......@@ -695,11 +729,18 @@ is the first place in which
attribute references are searched. When an attribute is not found
there, and the instance's class has an attribute by that name,
the search continues with the class attributes. If a class attribute
is found that is a user-defined function object (and in no other
case), it is transformed into an unbound user-defined method object
(see above). The \member{im_class} attribute of this method object is
the
class of the instance for which the attribute reference was initiated.
is found that is a user-defined function object or an unbound
user-defined method object whose associated class is the class
(call it~\class{C}) of the instance for which the attribute reference
was initiated or one of its bases,
it is transformed into a bound user-defined method object whose
\member{im_class} attribute is~\class{C} whose \member{im_self} attribute
is the instance. Static method and class method objects are also
transformed, as if they had been retrieved from class~\class{C};
see above under ``Classes''. See section~\ref{descriptors} for
another way in which attributes of a class retrieved via its
instances may differ from the objects actually stored in the
class's \member{__dict__}.
If no class attribute is found, and the object's class has a
\method{__getattr__()} method, that is called to satisfy the lookup.
\obindex{class instance}
......@@ -938,6 +979,25 @@ with regular slices.
\versionadded{2.3}
\end{methoddesc}
\item[Static method objects]
Static method objects provide a way of defeating the transformation
of function objects to method objects described above. A static method
object is a wrapper around any other object, usually a user-defined
method object. When a static method object is retrieved from a class
or a class instance, the object actually returned is the wrapped object,
which is not subject to any further transformation. Static method
objects are not themselves callable, although the objects they
wrap usually are. Static method objects are created by the built-in
\function{staticmethod()} constructor.
\item[Class method objects]
A class method object, like a static method object, is a wrapper
around another object that alters the way in which that object
is retrieved from classes and class instances. The behaviour of
class method objects upon such retrieval is described above,
under ``User-defined methods''. Class method objects are created
by the built-in \function{classmethod()} constructor.
\end{description} % Internal types
\end{description} % Types
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment