Commit ef17fdbc authored by Raymond Hettinger's avatar Raymond Hettinger Committed by Miss Islington (bot)

bpo-36018: Add special value tests and make minor tweaks to the docs (GH-12096)



https://bugs.python.org/issue36018
parent ae2ea33d
...@@ -482,9 +482,9 @@ of applications in statistics, including simulations and hypothesis testing. ...@@ -482,9 +482,9 @@ of applications in statistics, including simulations and hypothesis testing.
.. class:: NormalDist(mu=0.0, sigma=1.0) .. class:: NormalDist(mu=0.0, sigma=1.0)
Returns a new *NormalDist* object where *mu* represents the `arithmetic Returns a new *NormalDist* object where *mu* represents the `arithmetic
mean <https://en.wikipedia.org/wiki/Arithmetic_mean>`_ of data and *sigma* mean <https://en.wikipedia.org/wiki/Arithmetic_mean>`_ and *sigma*
represents the `standard deviation represents the `standard deviation
<https://en.wikipedia.org/wiki/Standard_deviation>`_ of the data. <https://en.wikipedia.org/wiki/Standard_deviation>`_.
If *sigma* is negative, raises :exc:`StatisticsError`. If *sigma* is negative, raises :exc:`StatisticsError`.
...@@ -579,7 +579,7 @@ of applications in statistics, including simulations and hypothesis testing. ...@@ -579,7 +579,7 @@ of applications in statistics, including simulations and hypothesis testing.
:class:`NormalDist` Examples and Recipes :class:`NormalDist` Examples and Recipes
---------------------------------------- ----------------------------------------
A :class:`NormalDist` readily solves classic probability problems. :class:`NormalDist` readily solves classic probability problems.
For example, given `historical data for SAT exams For example, given `historical data for SAT exams
<https://blog.prepscholar.com/sat-standard-deviation>`_ showing that scores <https://blog.prepscholar.com/sat-standard-deviation>`_ showing that scores
......
...@@ -735,7 +735,7 @@ class NormalDist: ...@@ -735,7 +735,7 @@ class NormalDist:
return exp((x - self.mu)**2.0 / (-2.0*variance)) / sqrt(tau * variance) return exp((x - self.mu)**2.0 / (-2.0*variance)) / sqrt(tau * variance)
def cdf(self, x): def cdf(self, x):
'Cumulative density function: P(X <= x)' 'Cumulative distribution function: P(X <= x)'
if not self.sigma: if not self.sigma:
raise StatisticsError('cdf() not defined when sigma is zero') raise StatisticsError('cdf() not defined when sigma is zero')
return 0.5 * (1.0 + erf((x - self.mu) / (self.sigma * sqrt(2.0)))) return 0.5 * (1.0 + erf((x - self.mu) / (self.sigma * sqrt(2.0))))
......
...@@ -2113,6 +2113,10 @@ class TestNormalDist(unittest.TestCase): ...@@ -2113,6 +2113,10 @@ class TestNormalDist(unittest.TestCase):
Y = NormalDist(100, 0) Y = NormalDist(100, 0)
with self.assertRaises(statistics.StatisticsError): with self.assertRaises(statistics.StatisticsError):
Y.pdf(90) Y.pdf(90)
# Special values
self.assertEqual(X.pdf(float('-Inf')), 0.0)
self.assertEqual(X.pdf(float('Inf')), 0.0)
self.assertTrue(math.isnan(X.pdf(float('NaN'))))
def test_cdf(self): def test_cdf(self):
NormalDist = statistics.NormalDist NormalDist = statistics.NormalDist
...@@ -2127,6 +2131,10 @@ class TestNormalDist(unittest.TestCase): ...@@ -2127,6 +2131,10 @@ class TestNormalDist(unittest.TestCase):
Y = NormalDist(100, 0) Y = NormalDist(100, 0)
with self.assertRaises(statistics.StatisticsError): with self.assertRaises(statistics.StatisticsError):
Y.cdf(90) Y.cdf(90)
# Special values
self.assertEqual(X.cdf(float('-Inf')), 0.0)
self.assertEqual(X.cdf(float('Inf')), 1.0)
self.assertTrue(math.isnan(X.cdf(float('NaN'))))
def test_properties(self): def test_properties(self):
X = statistics.NormalDist(100, 15) X = statistics.NormalDist(100, 15)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment