go_tutorial.html 49.7 KB
Newer Older
1
<!-- Let's Go -->
Rob Pike's avatar
Rob Pike committed
2
<h2>Introduction</h2>
3
<p>
Rob Pike's avatar
Rob Pike committed
4
This document is a tutorial introduction to the basics of the Go programming
5
language, intended for programmers familiar with C or C++. It is not a comprehensive
Rob Pike's avatar
Rob Pike committed
6
guide to the language; at the moment the document closest to that is the
Rob Pike's avatar
Rob Pike committed
7 8 9 10
<a href='/doc/go_spec.html'>language specification</a>.
After you've read this tutorial, you might want to look at
<a href='/doc/effective_go.html'>Effective Go</a>,
which digs deeper into how the language is used.
11
<p>
Rob Pike's avatar
Rob Pike committed
12
The presentation here proceeds through a series of modest programs to illustrate
13
key features of the language.  All the programs work (at time of writing) and are
Rob Pike's avatar
Rob Pike committed
14
checked into the repository in the directory <a href='/doc/progs'><code>/doc/progs/</code></a>.
15 16 17 18 19 20 21 22
<p>
Program snippets are annotated with the line number in the original file; for
cleanliness, blank lines remain blank.
<p>
<h2>Hello, World</h2>
<p>
Let's start in the usual way:
<p>
23 24
<pre> <!-- progs/helloworld.go /package/ END -->
05    package main
25
<p>
26
07    import fmt &quot;fmt&quot;  // Package implementing formatted I/O.
27
<p>
28 29 30
09    func main() {
10        fmt.Printf(&quot;Hello, world; or Καλημέρα κόσμε; or こんにちは 世界\n&quot;);
11    }
31 32 33 34 35 36 37 38 39 40
</pre>
<p>
Every Go source file declares, using a <code>package</code> statement, which package it's part of.
The <code>main</code> package's <code>main</code> function is where the program starts running (after
any initialization).  It may also import other packages to use their facilities.
This program imports the package <code>fmt</code> to gain access to
our old, now capitalized and package-qualified friend, <code>fmt.Printf</code>.
<p>
Function declarations are introduced with the <code>func</code> keyword.
<p>
Russ Cox's avatar
Russ Cox committed
41 42
String constants can contain Unicode characters, encoded in UTF-8.
(In fact, Go source files are defined to be encoded in UTF-8.)
43 44 45 46 47 48 49
<p>
The comment convention is the same as in C++:
<p>
<pre>
    /* ... */
    // ...
</pre>
Rob Pike's avatar
Rob Pike committed
50
<p>
51 52
Later we'll have much more to say about printing.
<p>
Rob Pike's avatar
Rob Pike committed
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
<h2>Compiling</h2>
<p>
Go is a compiled language.  At the moment there are two compilers.
<code>Gccgo</code> is a Go compiler that uses the GCC back end.  There is also a
suite of compilers with different (and odd) names for each architecture:
<code>6g</code> for the 64-bit x86, <code>8g</code> for the 32-bit x86, and more.  These
compilers run significantly faster but generate less efficient code
than <code>gccgo</code>.  At the time of writing (late 2009), they also have
a more robust run-time system although <code>gccgo</code> is catching up.
<p>
Here's how to compile and run our program.  With <code>6g</code>, say,
<p>
<pre>
    $ 6g helloworld.go  # compile; object goes into helloworld.6
    $ 6l helloworld.6   # link; output goes into 6.out
    $ 6.out
    Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
    $
</pre>
<p>
With <code>gccgo</code> it looks a little more traditional.
<p>
<pre>
    $ gccgo helloworld.go
    $ a.out
    Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
    $
</pre>
<p>
82 83 84 85
<h2>Echo</h2>
<p>
Next up, here's a version of the Unix utility <code>echo(1)</code>:
<p>
86 87 88 89 90
<pre> <!-- progs/echo.go /package/ END -->
05    package main
<p>
07    import (
08        &quot;os&quot;;
Russ Cox's avatar
Russ Cox committed
91
09        &quot;flag&quot;;  // command line option parser
92 93
10    )
<p>
Russ Cox's avatar
Russ Cox committed
94
12    var omitNewline = flag.Bool(&quot;n&quot;, false, &quot;don't print final newline&quot;)
95 96
<p>
14    const (
Rob Pike's avatar
Rob Pike committed
97 98
15        Space = &quot; &quot;;
16        Newline = &quot;\n&quot;;
99 100 101 102 103 104 105
17    )
<p>
19    func main() {
20        flag.Parse();   // Scans the arg list and sets up flags
21        var s string = &quot;&quot;;
22        for i := 0; i &lt; flag.NArg(); i++ {
23            if i &gt; 0 {
Rob Pike's avatar
Rob Pike committed
106
24                s += Space
107 108 109
25            }
26            s += flag.Arg(i)
27        }
Russ Cox's avatar
Russ Cox committed
110
28        if !*omitNewline {
Rob Pike's avatar
Rob Pike committed
111
29            s += Newline
112 113 114
30        }
31        os.Stdout.WriteString(s);
32    }
115 116 117
</pre>
<p>
This program is small but it's doing a number of new things.  In the last example,
Rob Pike's avatar
Rob Pike committed
118
we saw <code>func</code> introduce a function.  The keywords <code>var</code>, <code>const</code>, and <code>type</code>
119 120
(not used yet) also introduce declarations, as does <code>import</code>.
Notice that we can group declarations of the same sort into
Rob Pike's avatar
Rob Pike committed
121
parenthesized, semicolon-separated lists if we want, as on lines 7-10 and 14-17.
122 123 124 125 126 127
But it's not necessary to do so; we could have said
<p>
<pre>
    const Space = " "
    const Newline = "\n"
</pre>
Rob Pike's avatar
Rob Pike committed
128
<p>
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
Semicolons aren't needed here; in fact, semicolons are unnecessary after any
top-level declaration, even though they are needed as separators <i>within</i>
a parenthesized list of declarations.
<p>
This program imports the <code>&quot;os&quot;</code> package to access its <code>Stdout</code> variable, of type
<code>*os.File</code>.  The <code>import</code> statement is actually a declaration: in its general form,
as used in our ``hello world'' program,
it names the identifier (<code>fmt</code>)
that will be used to access members of the package imported from the file (<code>&quot;fmt&quot;</code>),
found in the current directory or in a standard location.
In this program, though, we've dropped the explicit name from the imports; by default,
packages are imported using the name defined by the imported package,
which by convention is of course the file name itself.  Our ``hello world'' program
could have said just <code>import &quot;fmt&quot;</code>.
<p>
You can specify your
own import names if you want but it's only necessary if you need to resolve
a naming conflict.
<p>
Given <code>os.Stdout</code> we can use its <code>WriteString</code> method to print the string.
<p>
150
Having imported the <code>flag</code> package, line 12 creates a global variable to hold
Russ Cox's avatar
Russ Cox committed
151
the value of echo's <code>-n</code> flag. The variable <code>omitNewline</code> has type <code>*bool</code>, pointer
152 153
to <code>bool</code>.
<p>
154
In <code>main.main</code>, we parse the arguments (line 20) and then create a local
155 156 157 158 159 160 161
string variable we will use to build the output.
<p>
The declaration statement has the form
<p>
<pre>
    var s string = "";
</pre>
Rob Pike's avatar
Rob Pike committed
162
<p>
163 164 165 166 167 168 169 170 171 172
This is the <code>var</code> keyword, followed by the name of the variable, followed by
its type, followed by an equals sign and an initial value for the variable.
<p>
Go tries to be terse, and this declaration could be shortened.  Since the
string constant is of type string, we don't have to tell the compiler that.
We could write
<p>
<pre>
    var s = "";
</pre>
Rob Pike's avatar
Rob Pike committed
173
<p>
174 175 176 177 178
or we could go even shorter and write the idiom
<p>
<pre>
    s := "";
</pre>
Rob Pike's avatar
Rob Pike committed
179
<p>
180 181 182 183
The <code>:=</code> operator is used a lot in Go to represent an initializing declaration.
There's one in the <code>for</code> clause on the next line:
<p>
<pre> <!-- progs/echo.go /for/ -->
184
22        for i := 0; i &lt; flag.NArg(); i++ {
185 186 187 188 189 190 191 192 193 194 195 196 197
</pre>
<p>
The <code>flag</code> package has parsed the arguments and left the non-flag arguments
in a list that can be iterated over in the obvious way.
<p>
The Go <code>for</code> statement differs from that of C in a number of ways.  First,
it's the only looping construct; there is no <code>while</code> or <code>do</code>.  Second,
there are no parentheses on the clause, but the braces on the body
are mandatory.  The same applies to the <code>if</code> and <code>switch</code> statements.
Later examples will show some other ways <code>for</code> can be written.
<p>
The body of the loop builds up the string <code>s</code> by appending (using <code>+=</code>)
the flags and separating spaces. After the loop, if the <code>-n</code> flag is not
Rob Pike's avatar
Rob Pike committed
198
set, the program appends a newline. Finally, it writes the result.
199 200 201 202 203 204 205 206
<p>
Notice that <code>main.main</code> is a niladic function with no return type.
It's defined that way.  Falling off the end of <code>main.main</code> means
''success''; if you want to signal an erroneous return, call
<p>
<pre>
    os.Exit(1)
</pre>
Rob Pike's avatar
Rob Pike committed
207
<p>
208
The <code>os</code> package contains other essentials for getting
Russ Cox's avatar
Russ Cox committed
209
started; for instance, <code>os.Args</code> is a slice used by the
210 211 212 213 214 215 216 217 218 219 220 221 222
<code>flag</code> package to access the command-line arguments.
<p>
<h2>An Interlude about Types</h2>
<p>
Go has some familiar types such as <code>int</code> and <code>float</code>, which represent
values of the ''appropriate'' size for the machine. It also defines
specifically-sized types such as <code>int8</code>, <code>float64</code>, and so on, plus
unsigned integer types such as <code>uint</code>, <code>uint32</code>, etc.  These are
distinct types; even if <code>int</code> and <code>int32</code> are both 32 bits in size,
they are not the same type.  There is also a <code>byte</code> synonym for
<code>uint8</code>, which is the element type for strings.
<p>
Speaking of <code>string</code>, that's a built-in type as well.  Strings are
Russ Cox's avatar
Russ Cox committed
223
<i>immutable values</i> - they are not just arrays of <code>byte</code> values.
224 225 226 227 228
Once you've built a string <i>value</i>, you can't change it, although
of course you can change a string <i>variable</i> simply by
reassigning it.  This snippet from <code>strings.go</code> is legal code:
<p>
<pre> <!-- progs/strings.go /hello/ /ciao/ -->
229 230 231 232 233
11        s := &quot;hello&quot;;
12        if s[1] != 'e' { os.Exit(1) }
13        s = &quot;good bye&quot;;
14        var p *string = &amp;s;
15        *p = &quot;ciao&quot;;
234 235 236 237 238 239 240 241 242
</pre>
<p>
However the following statements are illegal because they would modify
a <code>string</code> value:
<p>
<pre>
    s[0] = 'x';
    (*p)[1] = 'y';
</pre>
Rob Pike's avatar
Rob Pike committed
243
<p>
244 245 246 247 248 249 250 251 252
In C++ terms, Go strings are a bit like <code>const strings</code>, while pointers
to strings are analogous to <code>const string</code> references.
<p>
Yes, there are pointers.  However, Go simplifies their use a little;
read on.
<p>
Arrays are declared like this:
<p>
<pre>
Russ Cox's avatar
Russ Cox committed
253
    var arrayOfInt [10]int;
254
</pre>
Rob Pike's avatar
Rob Pike committed
255
<p>
256
Arrays, like strings, are values, but they are mutable. This differs
Russ Cox's avatar
Russ Cox committed
257
from C, in which <code>arrayOfInt</code> would be usable as a pointer to <code>int</code>.
258 259 260 261 262 263
In Go, since arrays are values, it's meaningful (and useful) to talk
about pointers to arrays.
<p>
The size of the array is part of its type; however, one can declare
a <i>slice</i> variable, to which one can assign a pointer to
any array
Rob Pike's avatar
Rob Pike committed
264
with the same element type or&mdash;much more commonly&mdash;a <i>slice
265 266 267 268 269 270 271 272
expression</i> of the form <code>a[low : high]</code>, representing
the subarray indexed by <code>low</code> through <code>high-1</code>.
Slices look a lot like arrays but have
no explicit size (<code>[]</code> vs. <code>[10]</code>) and they reference a segment of
an underlying, often anonymous, regular array.  Multiple slices
can share data if they represent pieces of the same array;
multiple arrays can never share data.
<p>
Russ Cox's avatar
Russ Cox committed
273
Slices are much more common in Go programs than
274 275 276 277 278 279 280 281
regular arrays; they're more flexible, have reference semantics,
and are efficient.  What they lack is the precise control of storage
layout of a regular array; if you want to have a hundred elements
of an array stored within your structure, you should use a regular
array.
<p>
When passing an array to a function, you almost always want
to declare the formal parameter to be a slice.  When you call
Russ Cox's avatar
Russ Cox committed
282
the function, take the address of the array and  Go will
283 284 285 286 287
create (efficiently) a slice reference and pass that.
<p>
Using slices one can write this function (from <code>sum.go</code>):
<p>
<pre> <!-- progs/sum.go /sum/ /^}/ -->
288 289 290 291 292 293 294
09    func sum(a []int) int {   // returns an int
10        s := 0;
11        for i := 0; i &lt; len(a); i++ {
12            s += a[i]
13        }
14        return s
15    }
295 296 297 298 299
</pre>
<p>
and invoke it like this:
<p>
<pre> <!-- progs/sum.go /1,2,3/ -->
300
19        s := sum(&amp;[3]int{1,2,3});  // a slice of the array is passed to sum
301 302 303 304
</pre>
<p>
Note how the return type (<code>int</code>) is defined for <code>sum()</code> by stating it
after the parameter list.
Russ Cox's avatar
Russ Cox committed
305 306
The expression <code>[3]int{1,2,3}</code> - a type followed by a brace-bounded expression
- is a constructor for a value, in this case an array of 3 <code>ints</code>.  Putting an <code>&amp;</code>
307
in front gives us the address of a unique instance of the value.  We pass the
Russ Cox's avatar
Russ Cox committed
308
pointer to <code>sum()</code> by (implicitly) promoting it to a slice.
309 310 311 312 313 314 315
<p>
If you are creating a regular array but want the compiler to count the
elements for you, use <code>...</code> as the array size:
<p>
<pre>
    s := sum(&amp;[...]int{1,2,3});
</pre>
Rob Pike's avatar
Rob Pike committed
316
<p>
317
In practice, though, unless you're meticulous about storage layout within a
Rob Pike's avatar
Rob Pike committed
318
data structure, a slice itself - using empty brackets and no <code>&amp;</code> - is all you need:
319 320 321 322
<p>
<pre>
    s := sum([]int{1,2,3});
</pre>
Rob Pike's avatar
Rob Pike committed
323
<p>
324 325 326
There are also maps, which you can initialize like this:
<p>
<pre>
Rob Pike's avatar
Rob Pike committed
327
    m := map[string]int{"one":1 , "two":2}
328
</pre>
Rob Pike's avatar
Rob Pike committed
329
<p>
330 331
The built-in function <code>len()</code>, which returns number of elements,
makes its first appearance in <code>sum</code>.  It works on strings, arrays,
Russ Cox's avatar
Russ Cox committed
332
slices, maps, and channels.
333 334 335 336 337 338
<p>
<p>
<h2>An Interlude about Allocation</h2>
<p>
Most types in Go are values. If you have an <code>int</code> or a <code>struct</code>
or an array, assignment
Russ Cox's avatar
Russ Cox committed
339 340
copies the contents of the object.
To allocate a new variable, use <code>new()</code>, which
341 342 343 344 345 346
returns a pointer to the allocated storage.
<p>
<pre>
    type T struct { a, b int }
    var t *T = new(T);
</pre>
Rob Pike's avatar
Rob Pike committed
347
<p>
348 349 350 351 352
or the more idiomatic
<p>
<pre>
    t := new(T);
</pre>
Rob Pike's avatar
Rob Pike committed
353
<p>
354 355 356 357 358 359
Some types - maps, slices, and channels (see below) - have reference semantics.
If you're holding a slice or a map and you modify its contents, other variables
referencing the same underlying data will see the modification.  For these three
types you want to use the built-in function <code>make()</code>:
<p>
<pre>
Rob Pike's avatar
Rob Pike committed
360
    m := make(map[string]int);
361
</pre>
Rob Pike's avatar
Rob Pike committed
362
<p>
363 364 365 366
This statement initializes a new map ready to store entries.
If you just declare the map, as in
<p>
<pre>
Rob Pike's avatar
Rob Pike committed
367
    var m map[string]int;
368
</pre>
Rob Pike's avatar
Rob Pike committed
369
<p>
370
it creates a <code>nil</code> reference that cannot hold anything. To use the map,
Russ Cox's avatar
Russ Cox committed
371
you must first initialize the reference using <code>make()</code> or by assignment of an
372 373 374 375 376 377 378 379 380 381
existing map.
<p>
Note that <code>new(T)</code> returns type <code>*T</code> while <code>make(T)</code> returns type
<code>T</code>.  If you (mistakenly) allocate a reference object with <code>new()</code>,
you receive a pointer to an uninitialized reference, equivalent to
declaring an uninitialized variable and taking its address.
<p>
<h2>An Interlude about Constants</h2>
<p>
Although integers come in lots of sizes in Go, integer constants do not.
Rob Pike's avatar
Rob Pike committed
382
There are no constants like <code>0LL</code> or <code>0x0UL</code>.   Instead, integer
383
constants are evaluated as large-precision values that
384 385 386 387
can overflow only when they are assigned to an integer variable with
too little precision to represent the value.
<p>
<pre>
Russ Cox's avatar
Russ Cox committed
388
    const hardEight = (1 &lt;&lt; 100) &gt;&gt; 97  // legal
389
</pre>
Rob Pike's avatar
Rob Pike committed
390
<p>
391 392 393 394 395 396 397 398 399 400 401 402
There are nuances that deserve redirection to the legalese of the
language specification but here are some illustrative examples:
<p>
<pre>
    var a uint64 = 0  // a has type uint64, value 0
    a := uint64(0)    // equivalent; use a "conversion"
    i := 0x1234       // i gets default type: int
    var j int = 1e6   // legal - 1000000 is representable in an int
    x := 1.5          // a float
    i3div2 := 3/2     // integer division - result is 1
    f3div2 := 3./2.   // floating point division - result is 1.5
</pre>
Rob Pike's avatar
Rob Pike committed
403
<p>
404 405 406 407 408 409 410 411 412 413 414 415
Conversions only work for simple cases such as converting <code>ints</code> of one
sign or size to another, and between <code>ints</code> and <code>floats</code>, plus a few other
simple cases.  There are no automatic numeric conversions of any kind in Go,
other than that of making constants have concrete size and type when
assigned to a variable.
<p>
<h2>An I/O Package</h2>
<p>
Next we'll look at a simple package for doing file I/O with the usual
sort of open/close/read/write interface.  Here's the start of <code>file.go</code>:
<p>
<pre> <!-- progs/file.go /package/ /^}/ -->
416
05    package file
417
<p>
418 419 420 421
07    import (
08        &quot;os&quot;;
09        &quot;syscall&quot;;
10    )
422
<p>
423
12    type File struct {
Rob Pike's avatar
Rob Pike committed
424
13        fd      int;    // file descriptor number
425 426
14        name    string; // file name at Open time
15    }
427 428
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
429 430
The first few lines declare the name of the package - <code>file</code> -
and then import two packages.  The <code>os</code> package hides the differences
431
between various operating systems to give a consistent view of files and
Russ Cox's avatar
Russ Cox committed
432
so on; here we're going to use its error handling utilities
433 434 435 436 437 438 439 440 441 442 443 444
and reproduce the rudiments of its file I/O.
<p>
The other item is the low-level, external <code>syscall</code> package, which provides
a primitive interface to the underlying operating system's calls.
<p>
Next is a type definition: the <code>type</code> keyword introduces a type declaration,
in this case a data structure called <code>File</code>.
To make things a little more interesting, our <code>File</code> includes the name of the file
that the file descriptor refers to.
<p>
Because <code>File</code> starts with a capital letter, the type is available outside the package,
that is, by users of the package.   In Go the rule about visibility of information is
Rob Pike's avatar
Rob Pike committed
445 446
simple: if a name (of a top-level type, function, method, constant or variable, or of
a structure field or method) is capitalized, users of the package may see it. Otherwise, the
447 448 449 450 451 452 453
name and hence the thing being named is visible only inside the package in which
it is declared.  This is more than a convention; the rule is enforced by the compiler.
In Go, the term for publicly visible names is ''exported''.
<p>
In the case of <code>File</code>, all its fields are lower case and so invisible to users, but we
will soon give it some exported, upper-case methods.
<p>
Russ Cox's avatar
Russ Cox committed
454
First, though, here is a factory to create a <code>File</code>:
455 456
<p>
<pre> <!-- progs/file.go /newFile/ /^}/ -->
457 458 459 460 461 462
17    func newFile(fd int, name string) *File {
18        if fd &lt; 0 {
19            return nil
20        }
21        return &amp;File{fd, name}
22    }
463 464 465 466 467 468 469 470 471 472 473 474 475
</pre>
<p>
This returns a pointer to a new <code>File</code> structure with the file descriptor and name
filled in.  This code uses Go's notion of a ''composite literal'', analogous to
the ones used to build maps and arrays, to construct a new heap-allocated
object.  We could write
<p>
<pre>
    n := new(File);
    n.fd = fd;
    n.name = name;
    return n
</pre>
Rob Pike's avatar
Rob Pike committed
476
<p>
477
but for simple structures like <code>File</code> it's easier to return the address of a nonce
478
composite literal, as is done here on line 21.
479 480 481 482
<p>
We can use the factory to construct some familiar, exported variables of type <code>*File</code>:
<p>
<pre> <!-- progs/file.go /var/ /^.$/ -->
483 484 485 486 487
24    var (
25        Stdin  = newFile(0, &quot;/dev/stdin&quot;);
26        Stdout = newFile(1, &quot;/dev/stdout&quot;);
27        Stderr = newFile(2, &quot;/dev/stderr&quot;);
28    )
488 489 490 491 492 493
</pre>
<p>
The <code>newFile</code> function was not exported because it's internal. The proper,
exported factory to use is <code>Open</code>:
<p>
<pre> <!-- progs/file.go /func.Open/ /^}/ -->
494 495 496 497 498 499 500
30    func Open(name string, mode int, perm int) (file *File, err os.Error) {
31        r, e := syscall.Open(name, mode, perm);
32        if e != 0 {
33            err = os.Errno(e);
34        }
35        return newFile(r, name), err
36    }
501 502 503 504 505 506 507 508 509
</pre>
<p>
There are a number of new things in these few lines.  First, <code>Open</code> returns
multiple values, an <code>File</code> and an error (more about errors in a moment).
We declare the
multi-value return as a parenthesized list of declarations; syntactically
they look just like a second parameter list.  The function
<code>syscall.Open</code>
also has a multi-value return, which we can grab with the multi-variable
510
declaration on line 31; it declares <code>r</code> and <code>e</code> to hold the two values,
Russ Cox's avatar
Russ Cox committed
511
both of type <code>int</code> (although you'd have to look at the <code>syscall</code> package
512
to see that).  Finally, line 35 returns two values: a pointer to the new <code>File</code>
513 514 515
and the error.  If <code>syscall.Open</code> fails, the file descriptor <code>r</code> will
be negative and <code>NewFile</code> will return <code>nil</code>.
<p>
Russ Cox's avatar
Russ Cox committed
516 517
About those errors:  The <code>os</code> library includes a general notion of an error.
It's a good idea to use its facility in your own interfaces, as we do here, for
518
consistent error handling throughout Go code.   In <code>Open</code> we use a
Russ Cox's avatar
Russ Cox committed
519 520
conversion to translate Unix's integer <code>errno</code> value into the integer type
<code>os.Errno</code>, which implements <code>os.Error</code>.
521 522 523 524 525 526 527 528
<p>
Now that we can build <code>Files</code>, we can write methods for them. To declare
a method of a type, we define a function to have an explicit receiver
of that type, placed
in parentheses before the function name. Here are some methods for <code>*File</code>,
each of which declares a receiver variable <code>file</code>.
<p>
<pre> <!-- progs/file.go /Close/ END -->
529 530 531 532 533 534 535 536 537 538 539
38    func (file *File) Close() os.Error {
39        if file == nil {
40            return os.EINVAL
41        }
42        e := syscall.Close(file.fd);
43        file.fd = -1;  // so it can't be closed again
44        if e != 0 {
45            return os.Errno(e);
46        }
47        return nil
48    }
540
<p>
541 542 543
50    func (file *File) Read(b []byte) (ret int, err os.Error) {
51        if file == nil {
52            return -1, os.EINVAL
544
53        }
545 546 547 548 549 550 551 552 553 554
54        r, e := syscall.Read(file.fd, b);
55        if e != 0 {
56            err = os.Errno(e);
57        }
58        return int(r), err
59    }
<p>
61    func (file *File) Write(b []byte) (ret int, err os.Error) {
62        if file == nil {
63            return -1, os.EINVAL
555
64        }
556 557 558 559 560
65        r, e := syscall.Write(file.fd, b);
66        if e != 0 {
67            err = os.Errno(e);
68        }
69        return int(r), err
561
70    }
562 563 564 565
<p>
72    func (file *File) String() string {
73        return file.name
74    }
566 567 568 569 570
</pre>
<p>
There is no implicit <code>this</code> and the receiver variable must be used to access
members of the structure.  Methods are not declared within
the <code>struct</code> declaration itself.  The <code>struct</code> declaration defines only data members.
Russ Cox's avatar
Russ Cox committed
571
In fact, methods can be created for almost any type you name, such as an integer or
572 573
array, not just for <code>structs</code>.   We'll see an example with arrays later.
<p>
Rob Pike's avatar
Rob Pike committed
574
The <code>String</code> method is so called because of a printing convention we'll
575 576 577 578 579 580 581 582
describe later.
<p>
The methods use the public variable <code>os.EINVAL</code> to return the (<code>os.Error</code>
version of the) Unix error code <code>EINVAL</code>.  The <code>os</code> library defines a standard
set of such error values.
<p>
We can now use our new package:
<p>
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
<pre> <!-- progs/helloworld3.go /package/ END -->
05    package main
<p>
07    import (
08        &quot;./file&quot;;
09        &quot;fmt&quot;;
10        &quot;os&quot;;
11    )
<p>
13    func main() {
14        hello := []byte{'h', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '\n'};
15        file.Stdout.Write(hello);
16        file, err := file.Open(&quot;/does/not/exist&quot;,  0,  0);
17        if file == nil {
18            fmt.Printf(&quot;can't open file; err=%s\n&quot;,  err.String());
19            os.Exit(1);
20        }
21    }
601 602
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
603
The ''<code>./</code>'' in the import of ''<code>./file</code>'' tells the compiler to use our own package rather than
604 605 606 607 608 609 610 611
something from the directory of installed packages.
<p>
Finally we can run the program:
<p>
<pre>
    % helloworld3
    hello, world
    can't open file; err=No such file or directory
612
    %
613
</pre>
Rob Pike's avatar
Rob Pike committed
614
<p>
615 616 617 618 619
<h2>Rotting cats</h2>
<p>
Building on the <code>file</code> package, here's a simple version of the Unix utility <code>cat(1)</code>,
<code>progs/cat.go</code>:
<p>
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
<pre> <!-- progs/cat.go /package/ END -->
05    package main
<p>
07    import (
08        &quot;./file&quot;;
09        &quot;flag&quot;;
10        &quot;fmt&quot;;
11        &quot;os&quot;;
12    )
<p>
14    func cat(f *file.File) {
15        const NBUF = 512;
16        var buf [NBUF]byte;
17        for {
18            switch nr, er := f.Read(&amp;buf); true {
19            case nr &lt; 0:
Rob Pike's avatar
Rob Pike committed
636
20                fmt.Fprintf(os.Stderr, &quot;cat: error reading from %s: %s\n&quot;, f.String(), er.String());
637 638 639 640 641
21                os.Exit(1);
22            case nr == 0:  // EOF
23                return;
24            case nr &gt; 0:
25                if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
Rob Pike's avatar
Rob Pike committed
642
26                    fmt.Fprintf(os.Stderr, &quot;cat: error writing from %s: %s\n&quot;, f.String(), ew.String());
643 644 645 646
27                }
28            }
29        }
30    }
647
<p>
648 649 650 651 652 653 654 655
32    func main() {
33        flag.Parse();   // Scans the arg list and sets up flags
34        if flag.NArg() == 0 {
35            cat(file.Stdin);
36        }
37        for i := 0; i &lt; flag.NArg(); i++ {
38            f, err := file.Open(flag.Arg(i), 0, 0);
39            if f == nil {
Rob Pike's avatar
Rob Pike committed
656
40                fmt.Fprintf(os.Stderr, &quot;cat: can't open %s: error %s\n&quot;, flag.Arg(i), err);
657 658 659 660 661 662
41                os.Exit(1);
42            }
43            cat(f);
44            f.Close();
45        }
46    }
663 664 665 666
</pre>
<p>
By now this should be easy to follow, but the <code>switch</code> statement introduces some
new features.  Like a <code>for</code> loop, an <code>if</code> or <code>switch</code> can include an
667 668
initialization statement.  The <code>switch</code> on line 18 uses one to create variables
<code>nr</code> and <code>er</code> to hold the return values from <code>f.Read()</code>.  (The <code>if</code> on line 25
669 670 671 672 673
has the same idea.)  The <code>switch</code> statement is general: it evaluates the cases
from  top to bottom looking for the first case that matches the value; the
case expressions don't need to be constants or even integers, as long as
they all have the same type.
<p>
Russ Cox's avatar
Russ Cox committed
674
Since the <code>switch</code> value is just <code>true</code>, we could leave it off - as is also
675 676 677 678 679
the situation
in a <code>for</code> statement, a missing value means <code>true</code>.  In fact, such a <code>switch</code>
is a form of <code>if-else</code> chain. While we're here, it should be mentioned that in
<code>switch</code> statements each <code>case</code> has an implicit <code>break</code>.
<p>
680
Line 25 calls <code>Write()</code> by slicing the incoming buffer, which is itself a slice.
681 682 683 684 685 686 687 688 689 690 691
Slices provide the standard Go way to handle I/O buffers.
<p>
Now let's make a variant of <code>cat</code> that optionally does <code>rot13</code> on its input.
It's easy to do by just processing the bytes, but instead we will exploit
Go's notion of an <i>interface</i>.
<p>
The <code>cat()</code> subroutine uses only two methods of <code>f</code>: <code>Read()</code> and <code>String()</code>,
so let's start by defining an interface that has exactly those two methods.
Here is code from <code>progs/cat_rot13.go</code>:
<p>
<pre> <!-- progs/cat_rot13.go /type.reader/ /^}/ -->
692 693 694 695
26    type reader interface {
27        Read(b []byte) (ret int, err os.Error);
28        String() string;
29    }
696 697
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
698 699
Any type that has the two methods of <code>reader</code> - regardless of whatever
other methods the type may also have - is said to <i>implement</i> the
700 701 702 703 704 705 706 707 708
interface.  Since <code>file.File</code> implements these methods, it implements the
<code>reader</code> interface.  We could tweak the <code>cat</code> subroutine to accept a <code>reader</code>
instead of a <code>*file.File</code> and it would work just fine, but let's embellish a little
first by writing a second type that implements <code>reader</code>, one that wraps an
existing <code>reader</code> and does <code>rot13</code> on the data. To do this, we just define
the type and implement the methods and with no other bookkeeping,
we have a second implementation of the <code>reader</code> interface.
<p>
<pre> <!-- progs/cat_rot13.go /type.rotate13/ /end.of.rotate13/ -->
709 710
31    type rotate13 struct {
32        source    reader;
711 712
33    }
<p>
713 714 715
35    func newRotate13(source reader) *rotate13 {
36        return &amp;rotate13{source}
37    }
716
<p>
717 718 719 720 721 722
39    func (r13 *rotate13) Read(b []byte) (ret int, err os.Error) {
40        r, e := r13.source.Read(b);
41        for i := 0; i &lt; r; i++ {
42            b[i] = rot13(b[i])
43        }
44        return r, e
723
45    }
724 725 726 727 728
<p>
47    func (r13 *rotate13) String() string {
48        return r13.source.String()
49    }
50    // end of rotate13 implementation
729 730
</pre>
<p>
Rob Pike's avatar
Rob Pike committed
731
(The <code>rot13</code> function called on line 42 is trivial and not worth reproducing here.)
732 733 734
<p>
To use the new feature, we define a flag:
<p>
Russ Cox's avatar
Russ Cox committed
735 736
<pre> <!-- progs/cat_rot13.go /rot13Flag/ -->
14    var rot13Flag = flag.Bool(&quot;rot13&quot;, false, &quot;rot13 the input&quot;)
737 738 739 740 741
</pre>
<p>
and use it from within a mostly unchanged <code>cat()</code> function:
<p>
<pre> <!-- progs/cat_rot13.go /func.cat/ /^}/ -->
742 743 744 745
52    func cat(r reader) {
53        const NBUF = 512;
54        var buf [NBUF]byte;
<p>
Russ Cox's avatar
Russ Cox committed
746
56        if *rot13Flag {
747 748 749 750 751
57            r = newRotate13(r)
58        }
59        for {
60            switch nr, er := r.Read(&amp;buf); {
61            case nr &lt; 0:
Rob Pike's avatar
Rob Pike committed
752
62                fmt.Fprintf(os.Stderr, &quot;cat: error reading from %s: %s\n&quot;, r.String(), er.String());
753 754 755 756 757 758
63                os.Exit(1);
64            case nr == 0:  // EOF
65                return;
66            case nr &gt; 0:
67                nw, ew := file.Stdout.Write(buf[0:nr]);
68                if nw != nr {
Rob Pike's avatar
Rob Pike committed
759
69                    fmt.Fprintf(os.Stderr, &quot;cat: error writing from %s: %s\n&quot;, r.String(), ew.String());
760 761 762 763
70                }
71            }
72        }
73    }
764 765 766 767
</pre>
<p>
(We could also do the wrapping in <code>main</code> and leave <code>cat()</code> mostly alone, except
for changing the type of the argument; consider that an exercise.)
Rob Pike's avatar
Rob Pike committed
768
Lines 56 through 58 set it all up: If the <code>rot13</code> flag is true, wrap the <code>reader</code>
769 770 771 772 773 774 775 776 777 778 779
we received into a <code>rotate13</code> and proceed.  Note that the interface variables
are values, not pointers: the argument is of type <code>reader</code>, not <code>*reader</code>,
even though under the covers it holds a pointer to a <code>struct</code>.
<p>
Here it is in action:
<p>
<pre>
    % echo abcdefghijklmnopqrstuvwxyz | ./cat
    abcdefghijklmnopqrstuvwxyz
    % echo abcdefghijklmnopqrstuvwxyz | ./cat --rot13
    nopqrstuvwxyzabcdefghijklm
780
    %
781 782 783 784 785
</pre>
<p>
Fans of dependency injection may take cheer from how easily interfaces
allow us to substitute the implementation of a file descriptor.
<p>
Russ Cox's avatar
Russ Cox committed
786
Interfaces are a distinctive feature of Go.  An interface is implemented by a
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
type if the type implements all the methods declared in the interface.
This means
that a type may implement an arbitrary number of different interfaces.
There is no type hierarchy; things can be much more <i>ad hoc</i>,
as we saw with <code>rot13</code>.  The type <code>file.File</code> implements <code>reader</code>; it could also
implement a <code>writer</code>, or any other interface built from its methods that
fits the current situation. Consider the <i>empty interface</i>
<p>
<pre>
    type Empty interface {}
</pre>
<p>
<i>Every</i> type implements the empty interface, which makes it
useful for things like containers.
<p>
<h2>Sorting</h2>
<p>
Russ Cox's avatar
Russ Cox committed
804
Interfaces provide a simple form of polymorphism.  They completely
805 806 807 808 809 810 811
separate the definition of what an object does from how it does it, allowing
distinct implementations to be represented at different times by the
same interface variable.
<p>
As an example, consider this simple sort algorithm taken from <code>progs/sort.go</code>:
<p>
<pre> <!-- progs/sort.go /func.Sort/ /^}/ -->
812 813 814 815 816 817 818
13    func Sort(data Interface) {
14        for i := 1; i &lt; data.Len(); i++ {
15            for j := i; j &gt; 0 &amp;&amp; data.Less(j, j-1); j-- {
16                data.Swap(j, j-1);
17            }
18        }
19    }
819 820
</pre>
<p>
821
The code needs only three methods, which we wrap into sort's <code>Interface</code>:
822 823
<p>
<pre> <!-- progs/sort.go /interface/ /^}/ -->
824 825 826 827 828
07    type Interface interface {
08        Len() int;
09        Less(i, j int) bool;
10        Swap(i, j int);
11    }
829 830 831 832 833 834
</pre>
<p>
We can apply <code>Sort</code> to any type that implements <code>Len</code>, <code>Less</code>, and <code>Swap</code>.
The <code>sort</code> package includes the necessary methods to allow sorting of
arrays of integers, strings, etc.; here's the code for arrays of <code>int</code>
<p>
835 836
<pre> <!-- progs/sort.go /type.*IntArray/ /Swap/ -->
33    type IntArray []int
837
<p>
838 839 840
35    func (p IntArray) Len() int            { return len(p); }
36    func (p IntArray) Less(i, j int) bool  { return p[i] &lt; p[j]; }
37    func (p IntArray) Swap(i, j int)       { p[i], p[j] = p[j], p[i]; }
841 842 843 844 845 846 847 848 849 850
</pre>
<p>
Here we see methods defined for non-<code>struct</code> types.  You can define methods
for any type you define and name in your package.
<p>
And now a routine to test it out, from <code>progs/sortmain.go</code>.  This
uses a function in the <code>sort</code> package, omitted here for brevity,
to test that the result is sorted.
<p>
<pre> <!-- progs/sortmain.go /func.ints/ /^}/ -->
851 852 853 854 855 856 857 858
12    func ints() {
13        data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586};
14        a := sort.IntArray(data);
15        sort.Sort(a);
16        if !sort.IsSorted(a) {
17            panic()
18        }
19    }
859 860 861 862 863 864
</pre>
<p>
If we have a new type we want to be able to sort, all we need to do is
to implement the three methods for that type, like this:
<p>
<pre> <!-- progs/sortmain.go /type.day/ /Swap/ -->
865 866
30    type day struct {
31        num        int;
Rob Pike's avatar
Rob Pike committed
867 868
32        shortName  string;
33        longName   string;
869 870
34    }
<p>
871 872 873 874 875 876 877
36    type dayArray struct {
37        data []*day;
38    }
<p>
40    func (p *dayArray) Len() int            { return len(p.data); }
41    func (p *dayArray) Less(i, j int) bool  { return p.data[i].num &lt; p.data[j].num; }
42    func (p *dayArray) Swap(i, j int)       { p.data[i], p.data[j] = p.data[j], p.data[i]; }
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
</pre>
<p>
<p>
<h2>Printing</h2>
<p>
The examples of formatted printing so far have been modest.  In this section
we'll talk about how formatted I/O can be done well in Go.
<p>
We've seen simple uses of the package <code>fmt</code>, which
implements <code>Printf</code>, <code>Fprintf</code>, and so on.
Within the <code>fmt</code> package, <code>Printf</code> is declared with this signature:
<p>
<pre>
    Printf(format string, v ...) (n int, errno os.Error)
</pre>
Rob Pike's avatar
Rob Pike committed
893
<p>
894
That <code>...</code> represents the variadic argument list that in C would
Russ Cox's avatar
Russ Cox committed
895 896
be handled using the <code>stdarg.h</code> macros but in Go is passed using
an empty interface variable (<code>interface {}</code>) and then unpacked
897 898 899 900 901 902 903 904 905 906
using the reflection library.  It's off topic here but the use of
reflection helps explain some of the nice properties of Go's <code>Printf</code>,
due to the ability of <code>Printf</code> to discover the type of its arguments
dynamically.
<p>
For example, in C each format must correspond to the type of its
argument.  It's easier in many cases in Go.  Instead of <code>%llud</code> you
can just say <code>%d</code>; <code>Printf</code> knows the size and signedness of the
integer and can do the right thing for you.  The snippet
<p>
907 908 909
<pre> <!-- progs/print.go NR==10 NR==11 -->
10        var u64 uint64 = 1&lt;&lt;64-1;
11        fmt.Printf(&quot;%d %d\n&quot;, u64, int64(u64));
910 911 912 913 914 915 916
</pre>
<p>
prints
<p>
<pre>
    18446744073709551615 -1
</pre>
Rob Pike's avatar
Rob Pike committed
917
<p>
918 919 920
In fact, if you're lazy the format <code>%v</code> will print, in a simple
appropriate style, any value, even an array or structure.  The output of
<p>
921 922 923 924 925
<pre> <!-- progs/print.go NR==14 NR==17 -->
14        type T struct { a int; b string };
15        t := T{77, &quot;Sunset Strip&quot;};
16        a := []int{1, 2, 3, 4};
17        fmt.Printf(&quot;%v %v %v\n&quot;, u64, t, a);
926 927 928 929 930 931 932
</pre>
<p>
is
<p>
<pre>
    18446744073709551615 {77 Sunset Strip} [1 2 3 4]
</pre>
Rob Pike's avatar
Rob Pike committed
933
<p>
934 935 936
You can drop the formatting altogether if you use <code>Print</code> or <code>Println</code>
instead of <code>Printf</code>.  Those routines do fully automatic formatting.
The <code>Print</code> function just prints its elements out using the equivalent
Russ Cox's avatar
Russ Cox committed
937
of <code>%v</code> while <code>Println</code> inserts spaces between arguments
938 939 940
and adds a newline.  The output of each of these two lines is identical
to that of the <code>Printf</code> call above.
<p>
941 942 943
<pre> <!-- progs/print.go NR==18 NR==19 -->
18        fmt.Print(u64, &quot; &quot;, t, &quot; &quot;, a, &quot;\n&quot;);
19        fmt.Println(u64, t, a);
944 945 946 947 948 949 950 951
</pre>
<p>
If you have your own type you'd like <code>Printf</code> or <code>Print</code> to format,
just give it a <code>String()</code> method that returns a string.  The print
routines will examine the value to inquire whether it implements
the method and if so, use it rather than some other formatting.
Here's a simple example.
<p>
952
<pre> <!-- progs/print_string.go NR==9 END -->
953 954 955 956 957 958 959 960 961 962
09    type testType struct { a int; b string }
<p>
11    func (t *testType) String() string {
12        return fmt.Sprint(t.a) + &quot; &quot; + t.b
13    }
<p>
15    func main() {
16        t := &amp;testType{77, &quot;Sunset Strip&quot;};
17        fmt.Println(t)
18    }
963 964
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
965
Since <code>*testType</code> has a <code>String()</code> method, the
966 967 968 969 970
default formatter for that type will use it and produce the output
<p>
<pre>
    77 Sunset Strip
</pre>
Rob Pike's avatar
Rob Pike committed
971
<p>
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
Observe that the <code>String()</code> method calls <code>Sprint</code> (the obvious Go
variant that returns a string) to do its formatting; special formatters
can use the <code>fmt</code> library recursively.
<p>
Another feature of <code>Printf</code> is that the format <code>%T</code> will print a string
representation of the type of a value, which can be handy when debugging
polymorphic code.
<p>
It's possible to write full custom print formats with flags and precisions
and such, but that's getting a little off the main thread so we'll leave it
as an exploration exercise.
<p>
You might ask, though, how <code>Printf</code> can tell whether a type implements
the <code>String()</code> method.  Actually what it does is ask if the value can
be converted to an interface variable that implements the method.
Schematically, given a value <code>v</code>, it does this:
<p>
<p>
<pre>
    type Stringer interface {
        String() string
    }
Rob Pike's avatar
Rob Pike committed
994 995 996
</pre>
<p>
<pre>
997 998 999 1000
    s, ok := v.(Stringer);  // Test whether v implements "String()"
    if ok {
        result = s.String()
    } else {
Rob Pike's avatar
Rob Pike committed
1001
        result = defaultOutput(v)
1002 1003
    }
</pre>
Rob Pike's avatar
Rob Pike committed
1004
<p>
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
The code uses a ``type assertion'' (<code>v.(Stringer)</code>) to test if the value stored in
<code>v</code> satisfies the <code>Stringer</code> interface; if it does, <code>s</code>
will become an interface variable implementing the method and <code>ok</code> will
be <code>true</code>.  We then use the interface variable to call the method.
(The ''comma, ok'' pattern is a Go idiom used to test the success of
operations such as type conversion, map update, communications, and so on,
although this is the only appearance in this tutorial.)
If the value does not satisfy the interface, <code>ok</code> will be false.
<p>
In this snippet the name <code>Stringer</code> follows the convention that we add <code>[e]r</code>
to interfaces describing simple method sets like this.
<p>
One last wrinkle.  To complete the suite, besides <code>Printf</code> etc. and <code>Sprintf</code>
etc., there are also <code>Fprintf</code> etc.  Unlike in C, <code>Fprintf</code>'s first argument is
not a file.  Instead, it is a variable of type <code>io.Writer</code>, which is an
interface type defined in the <code>io</code> library:
<p>
<pre>
    type Writer interface {
        Write(p []byte) (n int, err os.Error);
    }
</pre>
Rob Pike's avatar
Rob Pike committed
1027
<p>
1028 1029 1030
(This interface is another conventional name, this time for <code>Write</code>; there are also
<code>io.Reader</code>, <code>io.ReadWriter</code>, and so on.)
Thus you can call <code>Fprintf</code> on any type that implements a standard <code>Write()</code>
Rob Pike's avatar
Rob Pike committed
1031
method, not just files but also network channels, buffers, whatever
1032 1033 1034 1035
you want.
<p>
<h2>Prime numbers</h2>
<p>
Russ Cox's avatar
Russ Cox committed
1036
Now we come to processes and communication - concurrent programming.
1037 1038
It's a big subject so to be brief we assume some familiarity with the topic.
<p>
Rob Pike's avatar
Rob Pike committed
1039 1040 1041 1042
A classic program in the style is a prime sieve.
(The sieve of Eratosthenes is computationationally more efficient than
the algorithm presented here, but we are more interested in concurrency than
algorithmics at the moment.)
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
It works by taking a stream of all the natural numbers and introducing
a sequence of filters, one for each prime, to winnow the multiples of
that prime.  At each step we have a sequence of filters of the primes
so far, and the next number to pop out is the next prime, which triggers
the creation of the next filter in the chain.
<p>
Here's a flow diagram; each box represents a filter element whose
creation is triggered by the first number that flowed from the
elements before it.
<p>
<br>
<p>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src='sieve.gif'>
<p>
<br>
<p>
To create a stream of integers, we use a Go <i>channel</i>, which,
borrowing from CSP's descendants, represents a communications
channel that can connect two concurrent computations.
In Go, channel variables are references to a run-time object that
coordinates the communication; as with maps and slices, use
<code>make</code> to create a new channel.
<p>
Here is the first function in <code>progs/sieve.go</code>:
<p>
<pre> <!-- progs/sieve.go /Send/ /^}/ -->
1069 1070 1071 1072 1073 1074
09    // Send the sequence 2, 3, 4, ... to channel 'ch'.
10    func generate(ch chan int) {
11        for i := 2; ; i++ {
12            ch &lt;- i  // Send 'i' to channel 'ch'.
13        }
14    }
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
</pre>
<p>
The <code>generate</code> function sends the sequence 2, 3, 4, 5, ... to its
argument channel, <code>ch</code>, using the binary communications operator <code>&lt;-</code>.
Channel operations block, so if there's no recipient for the value on <code>ch</code>,
the send operation will wait until one becomes available.
<p>
The <code>filter</code> function has three arguments: an input channel, an output
channel, and a prime number.  It copies values from the input to the
output, discarding anything divisible by the prime.  The unary communications
operator <code>&lt;-</code> (receive) retrieves the next value on the channel.
<p>
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
<pre> <!-- progs/sieve.go /Copy.the/ /^}/ -->
16    // Copy the values from channel 'in' to channel 'out',
17    // removing those divisible by 'prime'.
18    func filter(in, out chan int, prime int) {
19        for {
20            i := &lt;-in;  // Receive value of new variable 'i' from 'in'.
21            if i % prime != 0 {
22                out &lt;- i  // Send 'i' to channel 'out'.
23            }
24        }
25    }
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
</pre>
<p>
The generator and filters execute concurrently.  Go has
its own model of process/threads/light-weight processes/coroutines,
so to avoid notational confusion we'll call concurrently executing
computations in Go <i>goroutines</i>.  To start a goroutine,
invoke the function, prefixing the call with the keyword <code>go</code>;
this starts the function running in parallel with the current
computation but in the same address space:
<p>
<pre>
Russ Cox's avatar
Russ Cox committed
1109
    go sum(hugeArray); // calculate sum in the background
1110
</pre>
Rob Pike's avatar
Rob Pike committed
1111
<p>
1112 1113 1114 1115 1116
If you want to know when the calculation is done, pass a channel
on which it can report back:
<p>
<pre>
    ch := make(chan int);
Russ Cox's avatar
Russ Cox committed
1117
    go sum(hugeArray, ch);
1118 1119 1120
    // ... do something else for a while
    result := &lt;-ch;  // wait for, and retrieve, result
</pre>
Rob Pike's avatar
Rob Pike committed
1121
<p>
1122 1123 1124 1125
Back to our prime sieve.  Here's how the sieve pipeline is stitched
together:
<p>
<pre> <!-- progs/sieve.go /func.main/ /^}/ -->
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
28    func main() {
29        ch := make(chan int);  // Create a new channel.
30        go generate(ch);  // Start generate() as a goroutine.
31        for {
32            prime := &lt;-ch;
33            fmt.Println(prime);
34            ch1 := make(chan int);
35            go filter(ch, ch1, prime);
36            ch = ch1
37        }
38    }
1137 1138
</pre>
<p>
1139
Line 29 creates the initial channel to pass to <code>generate</code>, which it
1140 1141 1142 1143 1144 1145 1146 1147 1148
then starts up.  As each prime pops out of the channel, a new <code>filter</code>
is added to the pipeline and <i>its</i> output becomes the new value
of <code>ch</code>.
<p>
The sieve program can be tweaked to use a pattern common
in this style of programming.  Here is a variant version
of <code>generate</code>, from <code>progs/sieve1.go</code>:
<p>
<pre> <!-- progs/sieve1.go /func.generate/ /^}/ -->
1149 1150 1151 1152 1153 1154 1155 1156 1157
10    func generate() chan int {
11        ch := make(chan int);
12        go func(){
13            for i := 2; ; i++ {
14                ch &lt;- i
15            }
16        }();
17        return ch;
18    }
1158 1159 1160
</pre>
<p>
This version does all the setup internally. It creates the output
Russ Cox's avatar
Russ Cox committed
1161
channel, launches a goroutine running a function literal, and
1162 1163 1164
returns the channel to the caller.  It is a factory for concurrent
execution, starting the goroutine and returning its connection.
<p>
1165
The function literal notation (lines 12-16) allows us to construct an
1166 1167 1168 1169 1170 1171 1172
anonymous function and invoke it on the spot. Notice that the local
variable <code>ch</code> is available to the function literal and lives on even
after <code>generate</code> returns.
<p>
The same change can be made to <code>filter</code>:
<p>
<pre> <!-- progs/sieve1.go /func.filter/ /^}/ -->
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
21    func filter(in chan int, prime int) chan int {
22        out := make(chan int);
23        go func() {
24            for {
25                if i := &lt;-in; i % prime != 0 {
26                    out &lt;- i
27                }
28            }
29        }();
30        return out;
31    }
1184 1185 1186 1187 1188 1189
</pre>
<p>
The <code>sieve</code> function's main loop becomes simpler and clearer as a
result, and while we're at it let's turn it into a factory too:
<p>
<pre> <!-- progs/sieve1.go /func.sieve/ /^}/ -->
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
33    func sieve() chan int {
34        out := make(chan int);
35        go func() {
36            ch := generate();
37            for {
38                prime := &lt;-ch;
39                out &lt;- prime;
40                ch = filter(ch, prime);
41            }
42        }();
43        return out;
44    }
1202 1203 1204 1205 1206
</pre>
<p>
Now <code>main</code>'s interface to the prime sieve is a channel of primes:
<p>
<pre> <!-- progs/sieve1.go /func.main/ /^}/ -->
1207 1208 1209 1210 1211 1212
46    func main() {
47        primes := sieve();
48        for {
49            fmt.Println(&lt;-primes);
50        }
51    }
1213 1214 1215 1216 1217
</pre>
<p>
<h2>Multiplexing</h2>
<p>
With channels, it's possible to serve multiple independent client goroutines without
Russ Cox's avatar
Russ Cox committed
1218
writing an explicit multiplexer.  The trick is to send the server a channel in the message,
1219 1220 1221 1222 1223 1224
which it will then use to reply to the original sender.
A realistic client-server program is a lot of code, so here is a very simple substitute
to illustrate the idea.  It starts by defining a <code>request</code> type, which embeds a channel
that will be used for the reply.
<p>
<pre> <!-- progs/server.go /type.request/ /^}/ -->
1225 1226 1227 1228
09    type request struct {
10        a, b    int;
11        replyc  chan int;
12    }
1229 1230 1231 1232 1233 1234
</pre>
<p>
The server will be trivial: it will do simple binary operations on integers.  Here's the
code that invokes the operation and responds to the request:
<p>
<pre> <!-- progs/server.go /type.binOp/ /^}/ -->
1235
14    type binOp func(a, b int) int
1236
<p>
1237 1238 1239 1240
16    func run(op binOp, req *request) {
17        reply := op(req.a, req.b);
18        req.replyc &lt;- reply;
19    }
1241 1242
</pre>
<p>
1243
Line 18 defines the name <code>binOp</code> to be a function taking two integers and
1244 1245 1246 1247 1248 1249
returning a third.
<p>
The <code>server</code> routine loops forever, receiving requests and, to avoid blocking due to
a long-running operation, starting a goroutine to do the actual work.
<p>
<pre> <!-- progs/server.go /func.server/ /^}/ -->
1250 1251 1252 1253 1254 1255
21    func server(op binOp, service chan *request) {
22        for {
23            req := &lt;-service;
24            go run(op, req);  // don't wait for it
25        }
26    }
1256 1257
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1258 1259
We construct a server in a familiar way, starting it and returning a channel
connected to it:
1260 1261
<p>
<pre> <!-- progs/server.go /func.startServer/ /^}/ -->
1262 1263 1264 1265 1266
28    func startServer(op binOp) chan *request {
29        req := make(chan *request);
30        go server(op, req);
31        return req;
32    }
1267 1268
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1269 1270
Here's a simple test.  It starts a server with an addition operator and sends out
<code>N</code> requests without waiting for the replies.  Only after all the requests are sent
1271 1272 1273
does it check the results.
<p>
<pre> <!-- progs/server.go /func.main/ /^}/ -->
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
34    func main() {
35        adder := startServer(func(a, b int) int { return a + b });
36        const N = 100;
37        var reqs [N]request;
38        for i := 0; i &lt; N; i++ {
39            req := &amp;reqs[i];
40            req.a = i;
41            req.b = i + N;
42            req.replyc = make(chan int);
43            adder &lt;- req;
44        }
45        for i := N-1; i &gt;= 0; i-- {   // doesn't matter what order
46            if &lt;-reqs[i].replyc != N + 2*i {
47                fmt.Println(&quot;fail at&quot;, i);
48            }
49        }
50        fmt.Println(&quot;done&quot;);
51    }
1292 1293
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1294
One annoyance with this program is that it doesn't shut down the server cleanly; when <code>main</code> returns
1295 1296 1297 1298
there are a number of lingering goroutines blocked on communication.  To solve this,
we can provide a second, <code>quit</code> channel to the server:
<p>
<pre> <!-- progs/server1.go /func.startServer/ /^}/ -->
1299 1300 1301 1302 1303 1304
32    func startServer(op binOp) (service chan *request, quit chan bool) {
33        service = make(chan *request);
34        quit = make(chan bool);
35        go server(op, service, quit);
36        return service, quit;
37    }
1305 1306 1307 1308 1309
</pre>
<p>
It passes the quit channel to the <code>server</code> function, which uses it like this:
<p>
<pre> <!-- progs/server1.go /func.server/ /^}/ -->
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
21    func server(op binOp, service chan *request, quit chan bool) {
22        for {
23            select {
24            case req := &lt;-service:
25                go run(op, req);  // don't wait for it
26            case &lt;-quit:
27                return;
28            }
29        }
30    }
1320 1321
</pre>
<p>
Russ Cox's avatar
Russ Cox committed
1322
Inside <code>server</code>, the <code>select</code> statement chooses which of the multiple communications
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
listed by its cases can proceed.  If all are blocked, it waits until one can proceed; if
multiple can proceed, it chooses one at random.  In this instance, the <code>select</code> allows
the server to honor requests until it receives a quit message, at which point it
returns, terminating its execution.
<p>
<p>
All that's left is to strobe the <code>quit</code> channel
at the end of main:
<p>
<pre> <!-- progs/server1.go /adder,.quit/ -->
1333
40        adder, quit := startServer(func(a, b int) int { return a + b });
1334 1335 1336
</pre>
...
<pre> <!-- progs/server1.go /quit....true/ -->
1337
55        quit &lt;- true;
1338 1339 1340 1341
</pre>
<p>
There's a lot more to Go programming and concurrent programming in general but this
quick tour should give you some of the basics.