phi.go 14.5 KB
Newer Older
1 2 3 4 5 6 7 8
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/ssa"
9
	"cmd/internal/src"
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	"container/heap"
	"fmt"
)

// This file contains the algorithm to place phi nodes in a function.
// For small functions, we use Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau.
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
// For large functions, we use Sreedhar & Gao: A Linear Time Algorithm for Placing Φ-Nodes.
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.1979&rep=rep1&type=pdf

const smallBlocks = 500

const debugPhi = false

// insertPhis finds all the places in the function where a phi is
// necessary and inserts them.
// Uses FwdRef ops to find all uses of variables, and s.defvars to find
// all definitions.
// Phi values are inserted, and all FwdRefs are changed to a Copy
// of the appropriate phi or definition.
// TODO: make this part of cmd/compile/internal/ssa somehow?
func (s *state) insertPhis() {
32
	if len(s.f.Blocks) <= smallBlocks {
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
		sps := simplePhiState{s: s, f: s.f, defvars: s.defvars}
		sps.insertPhis()
		return
	}
	ps := phiState{s: s, f: s.f, defvars: s.defvars}
	ps.insertPhis()
}

type phiState struct {
	s       *state                 // SSA state
	f       *ssa.Func              // function to work on
	defvars []map[*Node]*ssa.Value // defined variables at end of each block

	varnum map[*Node]int32 // variable numbering

	// properties of the dominator tree
	idom  []*ssa.Block // dominator parents
	tree  []domBlock   // dominator child+sibling
	level []int32      // level in dominator tree (0 = root or unreachable, 1 = children of root, ...)

	// scratch locations
	priq   blockHeap    // priority queue of blocks, higher level (toward leaves) = higher priority
	q      []*ssa.Block // inner loop queue
	queued *sparseSet   // has been put in q
	hasPhi *sparseSet   // has a phi
	hasDef *sparseSet   // has a write of the variable we're processing

	// miscellaneous
	placeholder *ssa.Value // dummy value to use as a "not set yet" placeholder.
}

func (s *phiState) insertPhis() {
	if debugPhi {
		fmt.Println(s.f.String())
	}

	// Find all the variables for which we need to match up reads & writes.
	// This step prunes any basic-block-only variables from consideration.
	// Generate a numbering for these variables.
	s.varnum = map[*Node]int32{}
	var vars []*Node
	var vartypes []ssa.Type
	for _, b := range s.f.Blocks {
		for _, v := range b.Values {
			if v.Op != ssa.OpFwdRef {
				continue
			}
			var_ := v.Aux.(*Node)

			// Optimization: look back 1 block for the definition.
			if len(b.Preds) == 1 {
				c := b.Preds[0].Block()
				if w := s.defvars[c.ID][var_]; w != nil {
					v.Op = ssa.OpCopy
					v.Aux = nil
					v.AddArg(w)
					continue
				}
			}

			if _, ok := s.varnum[var_]; ok {
				continue
			}
			s.varnum[var_] = int32(len(vartypes))
			if debugPhi {
				fmt.Printf("var%d = %v\n", len(vartypes), var_)
			}
			vars = append(vars, var_)
			vartypes = append(vartypes, v.Type)
		}
	}

	if len(vartypes) == 0 {
		return
	}

	// Find all definitions of the variables we need to process.
	// defs[n] contains all the blocks in which variable number n is assigned.
	defs := make([][]*ssa.Block, len(vartypes))
	for _, b := range s.f.Blocks {
		for var_ := range s.defvars[b.ID] { // TODO: encode defvars some other way (explicit ops)? make defvars[n] a slice instead of a map.
			if n, ok := s.varnum[var_]; ok {
				defs[n] = append(defs[n], b)
			}
		}
	}

	// Make dominator tree.
	s.idom = s.f.Idom()
	s.tree = make([]domBlock, s.f.NumBlocks())
	for _, b := range s.f.Blocks {
		p := s.idom[b.ID]
		if p != nil {
			s.tree[b.ID].sibling = s.tree[p.ID].firstChild
			s.tree[p.ID].firstChild = b
		}
	}
	// Compute levels in dominator tree.
	// With parent pointers we can do a depth-first walk without
	// any auxiliary storage.
	s.level = make([]int32, s.f.NumBlocks())
	b := s.f.Entry
levels:
	for {
		if p := s.idom[b.ID]; p != nil {
			s.level[b.ID] = s.level[p.ID] + 1
			if debugPhi {
				fmt.Printf("level %s = %d\n", b, s.level[b.ID])
			}
		}
		if c := s.tree[b.ID].firstChild; c != nil {
			b = c
			continue
		}
		for {
			if c := s.tree[b.ID].sibling; c != nil {
				b = c
				continue levels
			}
			b = s.idom[b.ID]
			if b == nil {
				break levels
			}
		}
	}

	// Allocate scratch locations.
	s.priq.level = s.level
	s.q = make([]*ssa.Block, 0, s.f.NumBlocks())
	s.queued = newSparseSet(s.f.NumBlocks())
	s.hasPhi = newSparseSet(s.f.NumBlocks())
	s.hasDef = newSparseSet(s.f.NumBlocks())
	s.placeholder = s.s.entryNewValue0(ssa.OpUnknown, ssa.TypeInvalid)

	// Generate phi ops for each variable.
	for n := range vartypes {
		s.insertVarPhis(n, vars[n], defs[n], vartypes[n])
	}

	// Resolve FwdRefs to the correct write or phi.
	s.resolveFwdRefs()

	// Erase variable numbers stored in AuxInt fields of phi ops. They are no longer needed.
	for _, b := range s.f.Blocks {
		for _, v := range b.Values {
			if v.Op == ssa.OpPhi {
				v.AuxInt = 0
			}
		}
	}
}

func (s *phiState) insertVarPhis(n int, var_ *Node, defs []*ssa.Block, typ ssa.Type) {
	priq := &s.priq
	q := s.q
	queued := s.queued
	queued.clear()
	hasPhi := s.hasPhi
	hasPhi.clear()
	hasDef := s.hasDef
	hasDef.clear()

	// Add defining blocks to priority queue.
	for _, b := range defs {
		priq.a = append(priq.a, b)
		hasDef.add(b.ID)
		if debugPhi {
			fmt.Printf("def of var%d in %s\n", n, b)
		}
	}
	heap.Init(priq)

	// Visit blocks defining variable n, from deepest to shallowest.
	for len(priq.a) > 0 {
		currentRoot := heap.Pop(priq).(*ssa.Block)
		if debugPhi {
			fmt.Printf("currentRoot %s\n", currentRoot)
		}
		// Walk subtree below definition.
		// Skip subtrees we've done in previous iterations.
		// Find edges exiting tree dominated by definition (the dominance frontier).
		// Insert phis at target blocks.
		if queued.contains(currentRoot.ID) {
			s.s.Fatalf("root already in queue")
		}
		q = append(q, currentRoot)
		queued.add(currentRoot.ID)
		for len(q) > 0 {
			b := q[len(q)-1]
			q = q[:len(q)-1]
			if debugPhi {
				fmt.Printf("  processing %s\n", b)
			}

227
			currentRootLevel := s.level[currentRoot.ID]
228 229 230
			for _, e := range b.Succs {
				c := e.Block()
				// TODO: if the variable is dead at c, skip it.
231
				if s.level[c.ID] > currentRootLevel {
232 233 234 235 236 237
					// a D-edge, or an edge whose target is in currentRoot's subtree.
					continue
				}
				if !hasPhi.contains(c.ID) {
					// Add a phi to block c for variable n.
					hasPhi.add(c.ID)
238
					v := c.NewValue0I(currentRoot.Pos, ssa.OpPhi, typ, int64(n)) // TODO: line number right?
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
					// Note: we store the variable number in the phi's AuxInt field. Used temporarily by phi building.
					s.s.addNamedValue(var_, v)
					for i := 0; i < len(c.Preds); i++ {
						v.AddArg(s.placeholder) // Actual args will be filled in by resolveFwdRefs.
					}
					if debugPhi {
						fmt.Printf("new phi for var%d in %s: %s\n", n, c, v)
					}
					if !hasDef.contains(c.ID) {
						// There's now a new definition of this variable in block c.
						// Add it to the priority queue to explore.
						heap.Push(priq, c)
						hasDef.add(c.ID)
					}
				}
			}

			// Visit children if they have not been visited yet.
			for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
				if !queued.contains(c.ID) {
					q = append(q, c)
					queued.add(c.ID)
				}
			}
		}
	}
}

// resolveFwdRefs links all FwdRef uses up to their nearest dominating definition.
func (s *phiState) resolveFwdRefs() {
	// Do a depth-first walk of the dominator tree, keeping track
	// of the most-recently-seen value for each variable.

	// Map from variable ID to SSA value at the current point of the walk.
	values := make([]*ssa.Value, len(s.varnum))
	for i := range values {
		values[i] = s.placeholder
	}

	// Stack of work to do.
	type stackEntry struct {
		b *ssa.Block // block to explore

		// variable/value pair to reinstate on exit
		n int32 // variable ID
		v *ssa.Value

		// Note: only one of b or n,v will be set.
	}
	var stk []stackEntry

	stk = append(stk, stackEntry{b: s.f.Entry})
	for len(stk) > 0 {
		work := stk[len(stk)-1]
		stk = stk[:len(stk)-1]

		b := work.b
		if b == nil {
			// On exit from a block, this case will undo any assignments done below.
			values[work.n] = work.v
			continue
		}

		// Process phis as new defs. They come before FwdRefs in this block.
		for _, v := range b.Values {
			if v.Op != ssa.OpPhi {
				continue
			}
			n := int32(v.AuxInt)
			// Remember the old assignment so we can undo it when we exit b.
			stk = append(stk, stackEntry{n: n, v: values[n]})
			// Record the new assignment.
			values[n] = v
		}

		// Replace a FwdRef op with the current incoming value for its variable.
		for _, v := range b.Values {
			if v.Op != ssa.OpFwdRef {
				continue
			}
			n := s.varnum[v.Aux.(*Node)]
			v.Op = ssa.OpCopy
			v.Aux = nil
			v.AddArg(values[n])
		}

		// Establish values for variables defined in b.
		for var_, v := range s.defvars[b.ID] {
			n, ok := s.varnum[var_]
			if !ok {
				// some variable not live across a basic block boundary.
				continue
			}
			// Remember the old assignment so we can undo it when we exit b.
			stk = append(stk, stackEntry{n: n, v: values[n]})
			// Record the new assignment.
			values[n] = v
		}

		// Replace phi args in successors with the current incoming value.
		for _, e := range b.Succs {
			c, i := e.Block(), e.Index()
			for j := len(c.Values) - 1; j >= 0; j-- {
				v := c.Values[j]
				if v.Op != ssa.OpPhi {
					break // All phis will be at the end of the block during phi building.
				}
346 347 348 349 350 351
				// Only set arguments that have been resolved.
				// For very wide CFGs, this significantly speeds up phi resolution.
				// See golang.org/issue/8225.
				if w := values[v.AuxInt]; w.Op != ssa.OpUnknown {
					v.SetArg(i, w)
				}
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
			}
		}

		// Walk children in dominator tree.
		for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
			stk = append(stk, stackEntry{b: c})
		}
	}
}

// domBlock contains extra per-block information to record the dominator tree.
type domBlock struct {
	firstChild *ssa.Block // first child of block in dominator tree
	sibling    *ssa.Block // next child of parent in dominator tree
}

// A block heap is used as a priority queue to implement the PiggyBank
// from Sreedhar and Gao.  That paper uses an array which is better
// asymptotically but worse in the common case when the PiggyBank
// holds a sparse set of blocks.
type blockHeap struct {
	a     []*ssa.Block // block IDs in heap
	level []int32      // depth in dominator tree (static, used for determining priority)
}

func (h *blockHeap) Len() int      { return len(h.a) }
func (h *blockHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }

func (h *blockHeap) Push(x interface{}) {
	v := x.(*ssa.Block)
	h.a = append(h.a, v)
}
func (h *blockHeap) Pop() interface{} {
	old := h.a
	n := len(old)
	x := old[n-1]
	h.a = old[:n-1]
	return x
}
func (h *blockHeap) Less(i, j int) bool {
	return h.level[h.a[i].ID] > h.level[h.a[j].ID]
}

// TODO: stop walking the iterated domininance frontier when
// the variable is dead. Maybe detect that by checking if the
// node we're on is reverse dominated by all the reads?
// Reverse dominated by the highest common successor of all the reads?

// copy of ../ssa/sparseset.go
// TODO: move this file to ../ssa, then use sparseSet there.
type sparseSet struct {
	dense  []ssa.ID
	sparse []int32
}

// newSparseSet returns a sparseSet that can represent
// integers between 0 and n-1
func newSparseSet(n int) *sparseSet {
	return &sparseSet{dense: nil, sparse: make([]int32, n)}
}

func (s *sparseSet) contains(x ssa.ID) bool {
	i := s.sparse[x]
	return i < int32(len(s.dense)) && s.dense[i] == x
}

func (s *sparseSet) add(x ssa.ID) {
	i := s.sparse[x]
	if i < int32(len(s.dense)) && s.dense[i] == x {
		return
	}
	s.dense = append(s.dense, x)
	s.sparse[x] = int32(len(s.dense)) - 1
}

func (s *sparseSet) clear() {
	s.dense = s.dense[:0]
}

// Variant to use for small functions.
type simplePhiState struct {
	s       *state                 // SSA state
	f       *ssa.Func              // function to work on
	fwdrefs []*ssa.Value           // list of FwdRefs to be processed
	defvars []map[*Node]*ssa.Value // defined variables at end of each block
}

func (s *simplePhiState) insertPhis() {
440 441
	reachable := ssa.ReachableBlocks(s.f)

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	// Find FwdRef ops.
	for _, b := range s.f.Blocks {
		for _, v := range b.Values {
			if v.Op != ssa.OpFwdRef {
				continue
			}
			s.fwdrefs = append(s.fwdrefs, v)
			var_ := v.Aux.(*Node)
			if _, ok := s.defvars[b.ID][var_]; !ok {
				s.defvars[b.ID][var_] = v // treat FwdDefs as definitions.
			}
		}
	}

	var args []*ssa.Value

loop:
	for len(s.fwdrefs) > 0 {
		v := s.fwdrefs[len(s.fwdrefs)-1]
		s.fwdrefs = s.fwdrefs[:len(s.fwdrefs)-1]
		b := v.Block
		var_ := v.Aux.(*Node)
464 465 466 467 468 469
		if b == s.f.Entry {
			// No variable should be live at entry.
			s.s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, var_, v)
		}
		if !reachable[b.ID] {
			// This block is dead.
470 471 472 473 474 475 476 477
			// It doesn't matter what we use here as long as it is well-formed.
			v.Op = ssa.OpUnknown
			v.Aux = nil
			continue
		}
		// Find variable value on each predecessor.
		args = args[:0]
		for _, e := range b.Preds {
478
			args = append(args, s.lookupVarOutgoing(e.Block(), v.Type, var_, v.Pos))
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		}

		// Decide if we need a phi or not. We need a phi if there
		// are two different args (which are both not v).
		var w *ssa.Value
		for _, a := range args {
			if a == v {
				continue // self-reference
			}
			if a == w {
				continue // already have this witness
			}
			if w != nil {
				// two witnesses, need a phi value
				v.Op = ssa.OpPhi
				v.AddArgs(args...)
				v.Aux = nil
				continue loop
			}
			w = a // save witness
		}
		if w == nil {
			s.s.Fatalf("no witness for reachable phi %s", v)
		}
		// One witness. Make v a copy of w.
		v.Op = ssa.OpCopy
		v.Aux = nil
		v.AddArg(w)
	}
}

// lookupVarOutgoing finds the variable's value at the end of block b.
511
func (s *simplePhiState) lookupVarOutgoing(b *ssa.Block, t ssa.Type, var_ *Node, line src.XPos) *ssa.Value {
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	for {
		if v := s.defvars[b.ID][var_]; v != nil {
			return v
		}
		// The variable is not defined by b and we haven't looked it up yet.
		// If b has exactly one predecessor, loop to look it up there.
		// Otherwise, give up and insert a new FwdRef and resolve it later.
		if len(b.Preds) != 1 {
			break
		}
		b = b.Preds[0].Block()
	}
	// Generate a FwdRef for the variable and return that.
	v := b.NewValue0A(line, ssa.OpFwdRef, t, var_)
	s.defvars[b.ID][var_] = v
	s.s.addNamedValue(var_, v)
	s.fwdrefs = append(s.fwdrefs, v)
	return v
}