Commit a0690b69 authored by Charles L. Dorian's avatar Charles L. Dorian Committed by Russ Cox

math: add functions; update tests and special cases

Added special cases to comments for asin.go and fabs.go.
Added Trunc() to floor.go and floor_386.s.  Fixed formatting
error in hypot_386.s  Added new functions Acosh, Asinh,
Atanh, Copysign, Erf, Erfc, Expm1, and Log1p.  Added
386 FPU version of Fmod.  Added tests, benchmarks, and
precision to expected results in all_test.go.  Edited
makefile so it all compiles.

R=rsc
CC=golang-dev
https://golang.org/cl/195052
parent 0bd41e2f
......@@ -15,6 +15,7 @@ OFILES_386=\
exp_386.$O\
fabs_386.$O\
floor_386.$O\
fmod_386.$O\
hypot_386.$O\
log_386.$O\
sin_386.$O\
......@@ -25,17 +26,24 @@ OFILES=\
$(OFILES_$(GOARCH))
ALLGOFILES=\
acosh.go\
asin.go\
asinh.go\
atan.go\
atanh.go\
atan2.go\
bits.go\
const.go\
copysign.go\
erf.go\
exp.go\
expm1.go\
fabs.go\
floor.go\
fmod.go\
hypot.go\
log.go\
log1p.go\
pow.go\
pow10.go\
sin.go\
......
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// __ieee754_acosh(x)
// Method :
// Based on
// acosh(x) = log [ x + sqrt(x*x-1) ]
// we have
// acosh(x) := log(x)+ln2, if x is large; else
// acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
// acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
//
// Special cases:
// acosh(x) is NaN with signal if x<1.
// acosh(NaN) is NaN without signal.
//
// Acosh(x) calculates the inverse hyperbolic cosine of x.
//
// Special cases are:
// Acosh(x) = NaN if x < 1
// Acosh(NaN) = NaN
func Acosh(x float64) float64 {
const (
Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
Large = 1 << 28 // 2^28
)
switch {
case x < 1 || IsNaN(x):
return NaN()
case x == 1:
return 0
case x >= Large:
return Log(x) + Ln2 // x > 2^28
case x > 2:
return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2^28 > x > 2
}
t := x - 1
return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
}
This diff is collapsed.
......@@ -6,13 +6,16 @@ package math
/*
Floating-point sine and cosine.
Floating-point arcsine and arccosine.
They are implemented by computing the arctangent
after appropriate range reduction.
*/
// Asin returns the arcsine of x.
//
// Special case is:
// Asin(x) = NaN if x < -1 or x > 1
func Asin(x float64) float64 {
sign := false
if x < 0 {
......@@ -37,4 +40,7 @@ func Asin(x float64) float64 {
}
// Acos returns the arccosine of x.
//
// Special case is:
// Acos(x) = NaN if x < -1 or x > 1
func Acos(x float64) float64 { return Pi/2 - Asin(x) }
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_asinh.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// asinh(x)
// Method :
// Based on
// asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
// we have
// asinh(x) := x if 1+x*x=1,
// := sign(x)*(log(x)+ln2)) for large |x|, else
// := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
// := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
//
// Asinh(x) calculates the inverse hyperbolic sine of x.
//
// Special cases are:
// Asinh(+Inf) = +Inf
// Asinh(-Inf) = -Inf
// Asinh(NaN) = NaN
func Asinh(x float64) float64 {
const (
Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
NearZero = 1.0 / (1 << 28) // 2^-28
Large = 1 << 28 // 2^28
)
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
// special cases
if x != x || x > MaxFloat64 || x < -MaxFloat64 { // IsNaN(x) || IsInf(x, 0)
return x
}
sign := false
if x < 0 {
x = -x
sign = true
}
var temp float64
switch {
case x > Large:
temp = Log(x) + Ln2 // |x| > 2^28
case x > 2:
temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2^28 > |x| > 2.0
case x < NearZero:
temp = x // |x| < 2^-28
default:
temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2^-28
}
if sign {
temp = -temp
}
return temp
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_atanh.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// __ieee754_atanh(x)
// Method :
// 1. Reduce x to positive by atanh(-x) = -atanh(x)
// 2. For x>=0.5
// 1 2x x
// atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
// 2 1 - x 1 - x
//
// For x<0.5
// atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
//
// Special cases:
// atanh(x) is NaN if |x| > 1 with signal;
// atanh(NaN) is that NaN with no signal;
// atanh(+-1) is +-INF with signal.
//
// Atanh(x) calculates the inverse hyperbolic tangent of x.
//
// Special cases are:
// Atanh(x) = NaN if x < -1 or x > 1
// Atanh(1) = +Inf
// Atanh(-1) = -Inf
// Atanh(NaN) = NaN
func Atanh(x float64) float64 {
const NearZero = 1.0 / (1 << 28) // 2^-28
// TODO(rsc): Remove manual inlining of IsNaN
// when compiler does it for us
// special cases
switch {
case x < -1 || x > 1 || x != x: // x < -1 || x > 1 || IsNaN(x):
return NaN()
case x == 1:
return Inf(1)
case x == -1:
return Inf(-1)
}
sign := false
if x < 0 {
x = -x
sign = true
}
var temp float64
switch {
case x < NearZero:
temp = x
case x < 0.5:
temp = x + x
temp = 0.5 * Log1p(temp+temp*x/(1-x))
default:
temp = 0.5 * Log1p((x+x)/(1-x))
}
if sign {
temp = -temp
}
return temp
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// Copysign(x, y) returns a value with the magnitude
// of x and the sign of y.
func Copysign(x, y float64) float64 {
if x < 0 && y > 0 || x > 0 && y < 0 {
return -x
}
return x
}
This diff is collapsed.
......@@ -86,7 +86,7 @@ package math
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to -Inf or +Inf.
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
func Exp(x float64) float64 {
const (
......
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_expm1.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// expm1(x)
// Returns exp(x)-1, the exponential of x minus 1.
//
// Method
// 1. Argument reduction:
// Given x, find r and integer k such that
//
// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
//
// Here a correction term c will be computed to compensate
// the error in r when rounded to a floating-point number.
//
// 2. Approximating expm1(r) by a special rational function on
// the interval [0,0.34658]:
// Since
// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
// we define R1(r*r) by
// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
// That is,
// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
// We use a special Reme algorithm on [0,0.347] to generate
// a polynomial of degree 5 in r*r to approximate R1. The
// maximum error of this polynomial approximation is bounded
// by 2**-61. In other words,
// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
// where Q1 = -1.6666666666666567384E-2,
// Q2 = 3.9682539681370365873E-4,
// Q3 = -9.9206344733435987357E-6,
// Q4 = 2.5051361420808517002E-7,
// Q5 = -6.2843505682382617102E-9;
// (where z=r*r, and the values of Q1 to Q5 are listed below)
// with error bounded by
// | 5 | -61
// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
// | |
//
// expm1(r) = exp(r)-1 is then computed by the following
// specific way which minimize the accumulation rounding error:
// 2 3
// r r [ 3 - (R1 + R1*r/2) ]
// expm1(r) = r + --- + --- * [--------------------]
// 2 2 [ 6 - r*(3 - R1*r/2) ]
//
// To compensate the error in the argument reduction, we use
// expm1(r+c) = expm1(r) + c + expm1(r)*c
// ~ expm1(r) + c + r*c
// Thus c+r*c will be added in as the correction terms for
// expm1(r+c). Now rearrange the term to avoid optimization
// screw up:
// ( 2 2 )
// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
// ( )
//
// = r - E
// 3. Scale back to obtain expm1(x):
// From step 1, we have
// expm1(x) = either 2^k*[expm1(r)+1] - 1
// = or 2^k*[expm1(r) + (1-2^-k)]
// 4. Implementation notes:
// (A). To save one multiplication, we scale the coefficient Qi
// to Qi*2^i, and replace z by (x^2)/2.
// (B). To achieve maximum accuracy, we compute expm1(x) by
// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
// (ii) if k=0, return r-E
// (iii) if k=-1, return 0.5*(r-E)-0.5
// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
// else return 1.0+2.0*(r-E);
// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
// (vii) return 2^k(1-((E+2^-k)-r))
//
// Special cases:
// expm1(INF) is INF, expm1(NaN) is NaN;
// expm1(-INF) is -1, and
// for finite argument, only expm1(0)=0 is exact.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Misc. info.
// For IEEE double
// if x > 7.09782712893383973096e+02 then expm1(x) overflow
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Expm1 returns e^x - 1, the base-e exponential of x minus 1.
// It is more accurate than Exp(x) - 1 when x is near zero.
//
// Special cases are:
// Expm1(+Inf) = +Inf
// Expm1(-Inf) = -1
// Expm1(NaN) = NaN
// Very large values overflow to -1 or +Inf.
func Expm1(x float64) float64 {
const (
Othreshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
Ln2X56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
Ln2HalfX3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
Ln2Half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
Ln2Hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
Ln2Lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
InvLn2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
Tiny = 1.0 / (1 << 54) // 2^-54 = 0x3c90000000000000
// scaled coefficients related to expm1
Q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
Q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585
Q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
Q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239
Q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
)
// special cases
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
switch {
case x > MaxFloat64 || x != x: // IsInf(x, 1) || IsNaN(x):
return x
case x < -MaxFloat64: // IsInf(x, -1):
return -1
}
absx := x
sign := false
if x < 0 {
absx = -absx
sign = true
}
// filter out huge argument
if absx >= Ln2X56 { // if |x| >= 56 * ln2
if absx >= Othreshold { // if |x| >= 709.78...
return Inf(1) // overflow
}
if sign {
return -1 // x < -56*ln2, return -1.0
}
}
// argument reduction
var c float64
var k int
if absx > Ln2Half { // if |x| > 0.5 * ln2
var hi, lo float64
if absx < Ln2HalfX3 { // and |x| < 1.5 * ln2
if !sign {
hi = x - Ln2Hi
lo = Ln2Lo
k = 1
} else {
hi = x + Ln2Hi
lo = -Ln2Lo
k = -1
}
} else {
if !sign {
k = int(InvLn2*x + 0.5)
} else {
k = int(InvLn2*x - 0.5)
}
t := float64(k)
hi = x - t*Ln2Hi // t * Ln2Hi is exact here
lo = t * Ln2Lo
}
x = hi - lo
c = (hi - x) - lo
} else if absx < Tiny { // when |x| < 2^-54, return x
return x
} else {
k = 0
}
// x is now in primary range
hfx := 0.5 * x
hxs := x * hfx
r1 := 1 + hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))))
t := 3 - r1*hfx
e := hxs * ((r1 - t) / (6.0 - x*t))
if k != 0 {
e = (x*(e-c) - c)
e -= hxs
switch {
case k == -1:
return 0.5*(x-e) - 0.5
case k == 1:
if x < -0.25 {
return -2 * (e - (x + 0.5))
}
return 1 + 2*(x-e)
case k <= -2 || k > 56: // suffice to return exp(x)-1
y := 1 - (e - x)
y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
return y - 1
}
if k < 20 {
t := Float64frombits(0x3ff0000000000000 - (0x20000000000000 >> uint(k))) // t=1-2^-k
y := t - (e - x)
y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
return y
}
t := Float64frombits(uint64((0x3ff - k) << 52)) // 2^-k
y := x - (e + t)
y += 1
y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
return y
}
return x - (x*e - hxs) // c is 0
}
......@@ -5,6 +5,11 @@
package math
// Fabs returns the absolute value of x.
//
// Special cases are:
// Fabs(+Inf) = +Inf
// Fabs(-Inf) = +Inf
// Fabs(NaN) = NaN
func Fabs(x float64) float64 {
if x < 0 {
return -x
......
// Copyright 2009 The Go Authors. All rights reserved.
// Copyright 2009-2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
......@@ -12,6 +12,8 @@ package math
// Floor(-Inf) = -Inf
// Floor(NaN) = NaN
func Floor(x float64) float64 {
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
if x != x || x > MaxFloat64 || x < -MaxFloat64 { // IsNaN(x) || IsInf(x, 0)
return x
}
......@@ -33,3 +35,19 @@ func Floor(x float64) float64 {
// Ceil(-Inf) = -Inf
// Ceil(NaN) = NaN
func Ceil(x float64) float64 { return -Floor(-x) }
// Trunc returns the integer value of x.
//
// Special cases are:
// Trunc(+Inf) = +Inf
// Trunc(-Inf) = -Inf
// Trunc(NaN) = NaN
func Trunc(x float64) float64 {
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
if x != x || x > MaxFloat64 || x < -MaxFloat64 { // IsNaN(x) || IsInf(x, 0)
return x
}
d, _ := Modf(x)
return d
}
......@@ -8,7 +8,7 @@ TEXT ·Ceil(SB),7,$0
FSTCW -2(SP) // save old Control Word
MOVW -2(SP), AX
ANDW $0xf3ff, AX
ORW $0x0800, AX // Rounding Control set to +Inf
ORW $0x0800, AX // Rounding Control set to +Inf
MOVW AX, -4(SP) // store new Control Word
FLDCW -4(SP) // load new Control Word
FRNDINT // F0=Ceil(x)
......@@ -22,10 +22,23 @@ TEXT ·Floor(SB),7,$0
FSTCW -2(SP) // save old Control Word
MOVW -2(SP), AX
ANDW $0xf3ff, AX
ORW $0x0400, AX // Rounding Control set to -Inf
ORW $0x0400, AX // Rounding Control set to -Inf
MOVW AX, -4(SP) // store new Control Word
FLDCW -4(SP) // load new Control Word
FRNDINT // F0=floor(x)
FRNDINT // F0=Floor(x)
FLDCW -2(SP) // load old Control Word
FMOVDP F0, r+8(FP)
RET
// func Trunc(x float64) float64
TEXT ·Trunc(SB),7,$0
FMOVD x+0(FP), F0 // F0=x
FSTCW -2(SP) // save old Control Word
MOVW -2(SP), AX
ORW $0x0c00, AX // Rounding Control set to truncate
MOVW AX, -4(SP) // store new Control Word
FLDCW -4(SP) // load new Control Word
FRNDINT // F0=Trunc(x)
FLDCW -2(SP) // load old Control Word
FMOVDP F0, r+8(FP)
RET
......@@ -6,3 +6,4 @@ package math
func Ceil(x float64) float64
func Floor(x float64) float64
func Trunc(x float64) float64
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// func Fmod(x, y float64) float64
TEXT ·Fmod(SB),7,$0
FMOVD y+8(FP), F0 // F0=y
FMOVD x+0(FP), F0 // F0=x, F1=y
FPREM // F0=reduced_x, F1=y
FSTSW AX // AX=status word
ANDW $0x0400, AX
JNE -3(PC) // jump if reduction incomplete
FMOVDP F0, F1 // F0=x-q*y
FMOVDP F0, r+16(FP)
RET
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
func Fmod(x, y float64) float64
......@@ -23,7 +23,7 @@ TEXT ·Hypot(SB),7,$0
FTST // compare F0 to 0
FSTSW AX
ANDW $0x4000, AX
JNE 10(PC) // jump if F0 = 0
JNE 10(PC) // jump if F0 = 0
FXCHD F0, F1 // F0=y (smaller), F1=x (larger)
FDIVD F1, F0 // F0=y(=y/x), F1=x
FMULD F0, F0 // F0=y*y, F1=x
......
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// double log1p(double x)
//
// Method :
// 1. Argument Reduction: find k and f such that
// 1+x = 2^k * (1+f),
// where sqrt(2)/2 < 1+f < sqrt(2) .
//
// Note. If k=0, then f=x is exact. However, if k!=0, then f
// may not be representable exactly. In that case, a correction
// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
// and add back the correction term c/u.
// (Note: when x > 2**53, one can simply return log(x))
//
// 2. Approximation of log1p(f).
// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
// = 2s + s*R
// We use a special Reme algorithm on [0,0.1716] to generate
// a polynomial of degree 14 to approximate R The maximum error
// of this polynomial approximation is bounded by 2**-58.45. In
// other words,
// 2 4 6 8 10 12 14
// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
// (the values of Lp1 to Lp7 are listed in the program)
// a-0.2929nd
// | 2 14 | -58.45
// | Lp1*s +...+Lp7*s - R(z) | <= 2
// | |
// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
// In order to guarantee error in log below 1ulp, we compute log
// by
// log1p(f) = f - (hfsq - s*(hfsq+R)).
//
// 3. Finally, log1p(x) = k*ln2 + log1p(f).
// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
// Here ln2 is split into two floating point number:
// ln2_hi + ln2_lo,
// where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
// log1p(x) is NaN with signal if x < -1 (including -INF) ;
// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
// log1p(NaN) is that NaN with no signal.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Note: Assuming log() return accurate answer, the following
// algorithm can be used to compute log1p(x) to within a few ULP:
//
// u = 1+x;
// if(u==1.0) return x ; else
// return log(u)*(x/(u-1.0));
//
// See HP-15C Advanced Functions Handbook, p.193.
// Log1p returns the natural logarithm of 1 plus its argument x.
// It is more accurate than Log(1 + x) when x is near zero.
//
// Special cases are:
// Log1p(+Inf) = +Inf
// Log1p(-1) = -Inf
// Log1p(x < -1) = NaN
// Log1p(NaN) = NaN
func Log1p(x float64) float64 {
const (
Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
Small = 1.0 / (1 << 29) // 2^-29 = 0x3e20000000000000
Tiny = 1.0 / (1 << 54) // 2^-54
Two53 = 1 << 53 // 2^53
Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000
Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76
Lp1 = 6.666666666666735130e-01 // 3FE5555555555593
Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04
Lp3 = 2.857142874366239149e-01 // 3FD2492494229359
Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AF
Lp5 = 1.818357216161805012e-01 // 3FC7466496CB03DE
Lp6 = 1.531383769920937332e-01 // 3FC39A09D078C69F
Lp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244
)
// special cases
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
switch {
case x < -1 || x != x: // x < -1 || IsNaN(x): // includes -Inf
return NaN()
case x == -1:
return Inf(-1)
case x > MaxFloat64: // IsInf(x, 1):
return Inf(1)
}
absx := x
if absx < 0 {
absx = -absx
}
var f float64
var iu uint64
k := 1
if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
if absx < Small { // |x| < 2^-29
if absx < Tiny { // |x| < 2^-54
return x
}
return x - x*x*0.5
}
if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
k = 0
f = x
iu = 1
}
}
var c float64
if k != 0 {
var u float64
if absx < Two53 { // 1<<53
u = 1.0 + x
iu = Float64bits(u)
k = int((iu >> 52) - 1023)
if k > 0 {
c = 1.0 - (u - x)
} else {
c = x - (u - 1.0) // correction term
c /= u
}
} else {
u = x
iu = Float64bits(u)
k = int((iu >> 52) - 1023)
c = 0
}
iu &= 0x000fffffffffffff
if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
} else {
k += 1
u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
iu = (0x0010000000000000 - iu) >> 2
}
f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
}
hfsq := 0.5 * f * f
var s, R, z float64
if iu == 0 { // |f| < 2^-20
if f == 0 {
if k == 0 {
return 0
} else {
c += float64(k) * Ln2Lo
return float64(k)*Ln2Hi + c
}
}
R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
if k == 0 {
return f - R
}
return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
}
s = f / (2.0 + f)
z = s * s
R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
if k == 0 {
return f - (hfsq - s*(hfsq+R))
}
return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment