Commit f6aec889 authored by Cherry Zhang's avatar Cherry Zhang

cmd/compile: add a writebarrier phase in SSA

When the compiler insert write barriers, the frontend makes
conservative decisions at an early stage. This may have false
positives which result in write barriers for stack writes.

A new phase, writebarrier, is added to the SSA backend, to delay
the decision and eliminate false positives. The frontend still
makes conservative decisions. When building SSA, instead of
emitting runtime calls directly, it emits WB ops (StoreWB,
MoveWB, etc.), which will be expanded to branches and runtime
calls in writebarrier phase. Writes to static locations on stack
are detected and write barriers are removed.

All write barriers of stack writes found by the script from
issue #17330 are eliminated (except two false positives).

Fixes #17330.

Change-Id: I9bd66333da9d0ceb64dcaa3c6f33502798d1a0f8
Reviewed-on: https://go-review.googlesource.com/31131Reviewed-by: default avatarAustin Clements <austin@google.com>
Reviewed-by: default avatarDavid Chase <drchase@google.com>
Reviewed-by: default avatarKeith Randall <khr@golang.org>
parent 698bfa17
......@@ -2188,7 +2188,7 @@ func (s *state) append(n *Node, inplace bool) *ssa.Value {
}
capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(array_cap), addr)
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem())
if isStackAddr(addr) {
if ssa.IsStackAddr(addr) {
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, pt.Size(), addr, r[0], s.mem())
} else {
s.insertWBstore(pt, addr, r[0], n.Lineno, 0)
......@@ -2390,7 +2390,7 @@ func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32,
s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, sizeAlignAuxInt(t), addr, s.mem())
return
}
if wb && !isStackAddr(addr) {
if wb && !ssa.IsStackAddr(addr) {
s.insertWBmove(t, addr, right, line, rightIsVolatile)
return
}
......@@ -2398,7 +2398,7 @@ func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32,
return
}
// Treat as a store.
if wb && !isStackAddr(addr) {
if wb && !ssa.IsStackAddr(addr) {
if skip&skipPtr != 0 {
// Special case: if we don't write back the pointers, don't bother
// doing the write barrier check.
......@@ -3289,20 +3289,6 @@ func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Val
return res
}
// isStackAddr returns whether v is known to be an address of a stack slot
func isStackAddr(v *ssa.Value) bool {
for v.Op == ssa.OpOffPtr || v.Op == ssa.OpAddPtr || v.Op == ssa.OpPtrIndex || v.Op == ssa.OpCopy {
v = v.Args[0]
}
switch v.Op {
case ssa.OpSP:
return true
case ssa.OpAddr:
return v.Args[0].Op == ssa.OpSP
}
return false
}
// insertWBmove inserts the assignment *left = *right including a write barrier.
// t is the type being assigned.
func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) {
......@@ -3318,53 +3304,24 @@ func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightI
if s.WBLineno == 0 {
s.WBLineno = left.Line
}
bThen := s.f.NewBlock(ssa.BlockPlain)
bElse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
flagaddr := s.newValue1A(ssa.OpAddr, ptrto(Types[TUINT32]), aux, s.sb)
// Load word, test word, avoiding partial register write from load byte.
flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0))
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Likely = ssa.BranchUnlikely
b.SetControl(flag)
b.AddEdgeTo(bThen)
b.AddEdgeTo(bElse)
s.startBlock(bThen)
if !rightIsVolatile {
// Issue typedmemmove call.
taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
s.rtcall(typedmemmove, true, nil, taddr, left, right)
var op ssa.Op
if rightIsVolatile {
op = ssa.OpMoveWBVolatile
} else {
// Copy to temp location if the source is volatile (will be clobbered by
// a function call). Marshaling the args to typedmemmove might clobber the
// value we're trying to move.
tmp := temp(t)
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
tmpaddr, _ := s.addr(tmp, true)
s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(t), tmpaddr, right, s.mem())
// Issue typedmemmove call.
taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
s.rtcall(typedmemmove, true, nil, taddr, left, tmpaddr)
// Mark temp as dead.
s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
}
s.endBlock().AddEdgeTo(bEnd)
s.startBlock(bElse)
s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(t), left, right, s.mem())
s.endBlock().AddEdgeTo(bEnd)
s.startBlock(bEnd)
if Debug_wb > 0 {
Warnl(line, "write barrier")
op = ssa.OpMoveWB
}
move := s.newValue3I(op, ssa.TypeMem, sizeAlignAuxInt(t), left, right, s.mem())
move.Aux = &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}
s.vars[&memVar] = move
// WB ops will be expanded to branches at writebarrier phase.
// To make it easy, we put WB ops at the end of a block, so
// that it does not need to split a block into two parts when
// expanding WB ops.
b := s.f.NewBlock(ssa.BlockPlain)
s.endBlock().AddEdgeTo(b)
s.startBlock(b)
}
// insertWBstore inserts the assignment *left = right including a write barrier.
......@@ -3384,38 +3341,15 @@ func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip
s.WBLineno = left.Line
}
s.storeTypeScalars(t, left, right, skip)
bThen := s.f.NewBlock(ssa.BlockPlain)
bElse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
flagaddr := s.newValue1A(ssa.OpAddr, ptrto(Types[TUINT32]), aux, s.sb)
// Load word, test word, avoiding partial register write from load byte.
flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0))
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Likely = ssa.BranchUnlikely
b.SetControl(flag)
b.AddEdgeTo(bThen)
b.AddEdgeTo(bElse)
// Issue write barriers for pointer writes.
s.startBlock(bThen)
s.storeTypePtrsWB(t, left, right)
s.endBlock().AddEdgeTo(bEnd)
// Issue regular stores for pointer writes.
s.startBlock(bElse)
s.storeTypePtrs(t, left, right)
s.endBlock().AddEdgeTo(bEnd)
s.startBlock(bEnd)
if Debug_wb > 0 {
Warnl(line, "write barrier")
}
// WB ops will be expanded to branches at writebarrier phase.
// To make it easy, we put WB ops at the end of a block, so
// that it does not need to split a block into two parts when
// expanding WB ops.
b := s.f.NewBlock(ssa.BlockPlain)
s.endBlock().AddEdgeTo(b)
s.startBlock(b)
}
// do *left = right for all scalar (non-pointer) parts of t.
......@@ -3492,21 +3426,22 @@ func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
}
}
// do *left = right with a write barrier for all pointer parts of t.
// do *left = right for all pointer parts of t, with write barriers if necessary.
func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
switch {
case t.IsPtrShaped():
s.rtcall(writebarrierptr, true, nil, left, right)
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
case t.IsString():
ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right)
s.rtcall(writebarrierptr, true, nil, left, ptr)
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
case t.IsSlice():
ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right)
s.rtcall(writebarrierptr, true, nil, left, ptr)
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
case t.IsInterface():
// itab field is treated as a scalar.
idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right)
idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINT8]), s.config.PtrSize, left)
s.rtcall(writebarrierptr, true, nil, idataAddr, idata)
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
case t.IsStruct():
n := t.NumFields()
for i := 0; i < n; i++ {
......@@ -4690,6 +4625,14 @@ func (e *ssaExport) Debug_checknil() bool {
return Debug_checknil != 0
}
func (e *ssaExport) Debug_wb() bool {
return Debug_wb != 0
}
func (e *ssaExport) Syslook(name string) interface{} {
return syslook(name).Sym
}
func (n *Node) Typ() ssa.Type {
return n.Type
}
......@@ -149,7 +149,7 @@ func checkFunc(f *Func) {
canHaveAuxInt = true
case auxString, auxSym:
canHaveAux = true
case auxSymOff, auxSymValAndOff:
case auxSymOff, auxSymValAndOff, auxSymSizeAndAlign:
canHaveAuxInt = true
canHaveAux = true
case auxSymInt32:
......
......@@ -346,6 +346,7 @@ var passes = [...]pass{
{name: "late opt", fn: opt, required: true}, // TODO: split required rules and optimizing rules
{name: "generic deadcode", fn: deadcode},
{name: "check bce", fn: checkbce},
{name: "writebarrier", fn: writebarrier, required: true}, // expand write barrier ops
{name: "fuse", fn: fuse},
{name: "dse", fn: dse},
{name: "tighten", fn: tighten}, // move values closer to their uses
......
......@@ -92,8 +92,9 @@ type Logger interface {
// Warnl writes compiler messages in the form expected by "errorcheck" tests
Warnl(line int32, fmt_ string, args ...interface{})
// Fowards the Debug_checknil flag from gc
// Fowards the Debug flags from gc
Debug_checknil() bool
Debug_wb() bool
}
type Frontend interface {
......@@ -121,6 +122,10 @@ type Frontend interface {
// AllocFrame assigns frame offsets to all live auto variables.
AllocFrame(f *Func)
// Syslook returns a symbol of the runtime function/variable with the
// given name.
Syslook(string) interface{} // returns *gc.Sym
}
// interface used to hold *gc.Node. We'd use *gc.Node directly but
......@@ -314,6 +319,7 @@ func (c *Config) Log() bool { return c.
func (c *Config) Fatalf(line int32, msg string, args ...interface{}) { c.fe.Fatalf(line, msg, args...) }
func (c *Config) Warnl(line int32, msg string, args ...interface{}) { c.fe.Warnl(line, msg, args...) }
func (c *Config) Debug_checknil() bool { return c.fe.Debug_checknil() }
func (c *Config) Debug_wb() bool { return c.fe.Debug_wb() }
func (c *Config) logDebugHashMatch(evname, name string) {
file := c.logfiles[evname]
......
......@@ -63,6 +63,9 @@ func (DummyFrontend) Line(line int32) string {
}
func (DummyFrontend) AllocFrame(f *Func) {
}
func (DummyFrontend) Syslook(s string) interface{} {
return nil
}
func (d DummyFrontend) Logf(msg string, args ...interface{}) { d.t.Logf(msg, args...) }
func (d DummyFrontend) Log() bool { return true }
......@@ -70,6 +73,7 @@ func (d DummyFrontend) Log() bool { return true }
func (d DummyFrontend) Fatalf(line int32, msg string, args ...interface{}) { d.t.Fatalf(msg, args...) }
func (d DummyFrontend) Warnl(line int32, msg string, args ...interface{}) { d.t.Logf(msg, args...) }
func (d DummyFrontend) Debug_checknil() bool { return false }
func (d DummyFrontend) Debug_wb() bool { return false }
func (d DummyFrontend) TypeBool() Type { return TypeBool }
func (d DummyFrontend) TypeInt8() Type { return TypeInt8 }
......
......@@ -315,6 +315,13 @@ var genericOps = []opData{
{name: "Move", argLength: 3, typ: "Mem", aux: "SizeAndAlign"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size+alignment. Returns memory.
{name: "Zero", argLength: 2, typ: "Mem", aux: "SizeAndAlign"}, // arg0=destptr, arg1=mem, auxint=size+alignment. Returns memory.
// Memory operations with write barriers.
// Expand to runtime calls. Write barrier will be removed if write on stack.
{name: "StoreWB", argLength: 3, typ: "Mem", aux: "Int64"}, // Store arg1 to arg0. arg2=memory, auxint=size. Returns memory.
{name: "MoveWB", argLength: 3, typ: "Mem", aux: "SymSizeAndAlign"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size+alignment, aux=symbol-of-type (for typedmemmove). Returns memory.
{name: "MoveWBVolatile", argLength: 3, typ: "Mem", aux: "SymSizeAndAlign"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size+alignment, aux=symbol-of-type (for typedmemmove). Returns memory. Src is volatile, i.e. needs to move to a temp space before calling typedmemmove.
// maybe we'll need a ZeroWB for the new barrier
// Function calls. Arguments to the call have already been written to the stack.
// Return values appear on the stack. The method receiver, if any, is treated
// as a phantom first argument.
......
......@@ -55,20 +55,21 @@ type regInfo struct {
type auxType int8
const (
auxNone auxType = iota
auxBool // auxInt is 0/1 for false/true
auxInt8 // auxInt is an 8-bit integer
auxInt16 // auxInt is a 16-bit integer
auxInt32 // auxInt is a 32-bit integer
auxInt64 // auxInt is a 64-bit integer
auxInt128 // auxInt represents a 128-bit integer. Always 0.
auxFloat32 // auxInt is a float32 (encoded with math.Float64bits)
auxFloat64 // auxInt is a float64 (encoded with math.Float64bits)
auxSizeAndAlign // auxInt is a SizeAndAlign
auxString // aux is a string
auxSym // aux is a symbol
auxSymOff // aux is a symbol, auxInt is an offset
auxSymValAndOff // aux is a symbol, auxInt is a ValAndOff
auxNone auxType = iota
auxBool // auxInt is 0/1 for false/true
auxInt8 // auxInt is an 8-bit integer
auxInt16 // auxInt is a 16-bit integer
auxInt32 // auxInt is a 32-bit integer
auxInt64 // auxInt is a 64-bit integer
auxInt128 // auxInt represents a 128-bit integer. Always 0.
auxFloat32 // auxInt is a float32 (encoded with math.Float64bits)
auxFloat64 // auxInt is a float64 (encoded with math.Float64bits)
auxSizeAndAlign // auxInt is a SizeAndAlign
auxString // aux is a string
auxSym // aux is a symbol
auxSymOff // aux is a symbol, auxInt is an offset
auxSymValAndOff // aux is a symbol, auxInt is a ValAndOff
auxSymSizeAndAlign // aux is a symbol, auxInt is a SizeAndAlign
auxSymInt32 // aux is a symbol, auxInt is a 32-bit integer
)
......
......@@ -1655,6 +1655,9 @@ const (
OpStore
OpMove
OpZero
OpStoreWB
OpMoveWB
OpMoveWBVolatile
OpClosureCall
OpStaticCall
OpDeferCall
......@@ -19382,6 +19385,24 @@ var opcodeTable = [...]opInfo{
argLen: 2,
generic: true,
},
{
name: "StoreWB",
auxType: auxInt64,
argLen: 3,
generic: true,
},
{
name: "MoveWB",
auxType: auxSymSizeAndAlign,
argLen: 3,
generic: true,
},
{
name: "MoveWBVolatile",
auxType: auxSymSizeAndAlign,
argLen: 3,
generic: true,
},
{
name: "ClosureCall",
auxType: auxInt64,
......
......@@ -151,6 +151,12 @@ func (v *Value) auxString() string {
s = fmt.Sprintf(" {%v}", v.Aux)
}
return s + fmt.Sprintf(" [%s]", v.AuxValAndOff())
case auxSymSizeAndAlign:
s := ""
if v.Aux != nil {
s = fmt.Sprintf(" {%v}", v.Aux)
}
return s + fmt.Sprintf(" [%s]", SizeAndAlign(v.AuxInt))
}
return ""
}
......
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "fmt"
// writebarrier expands write barrier ops (StoreWB, MoveWB, etc.) into
// branches and runtime calls, like
//
// if writeBarrier.enabled {
// writebarrierptr(ptr, val)
// } else {
// *ptr = val
// }
//
// If ptr is an address of a stack slot, write barrier will be removed
// and a normal store will be used.
// A sequence of WB stores for many pointer fields of a single type will
// be emitted together, with a single branch.
//
// Expanding WB ops introduces new control flows, and we would need to
// split a block into two if there were values after WB ops, which would
// require scheduling the values. To avoid this complexity, when building
// SSA, we make sure that WB ops are always at the end of a block. We do
// this before fuse as it may merge blocks. It also helps to reduce
// number of blocks as fuse merges blocks introduced in this phase.
func writebarrier(f *Func) {
var sb, sp, wbaddr *Value
var writebarrierptr, typedmemmove interface{} // *gc.Sym
var storeWBs, others []*Value
var wbs *sparseSet
for _, b := range f.Blocks { // range loop is safe since the blocks we added contain no WB stores
valueLoop:
for i, v := range b.Values {
switch v.Op {
case OpStoreWB, OpMoveWB, OpMoveWBVolatile:
if IsStackAddr(v.Args[0]) {
switch v.Op {
case OpStoreWB:
v.Op = OpStore
case OpMoveWB, OpMoveWBVolatile:
v.Op = OpMove
v.Aux = nil
}
continue
}
if wbaddr == nil {
// initalize global values for write barrier test and calls
// find SB and SP values in entry block
initln := f.Entry.Line
for _, v := range f.Entry.Values {
if v.Op == OpSB {
sb = v
}
if v.Op == OpSP {
sp = v
}
}
if sb == nil {
sb = f.Entry.NewValue0(initln, OpSB, f.Config.fe.TypeUintptr())
}
if sp == nil {
sp = f.Entry.NewValue0(initln, OpSP, f.Config.fe.TypeUintptr())
}
wbsym := &ExternSymbol{Typ: f.Config.fe.TypeBool(), Sym: f.Config.fe.Syslook("writeBarrier").(fmt.Stringer)}
wbaddr = f.Entry.NewValue1A(initln, OpAddr, f.Config.fe.TypeUInt32().PtrTo(), wbsym, sb)
writebarrierptr = f.Config.fe.Syslook("writebarrierptr")
typedmemmove = f.Config.fe.Syslook("typedmemmove")
wbs = f.newSparseSet(f.NumValues())
defer f.retSparseSet(wbs)
}
mem := v.Args[2]
line := v.Line
// there may be a sequence of WB stores in the current block. find them.
storeWBs = storeWBs[:0]
others = others[:0]
wbs.clear()
for _, w := range b.Values[i:] {
if w.Op == OpStoreWB || w.Op == OpMoveWB || w.Op == OpMoveWBVolatile {
storeWBs = append(storeWBs, w)
wbs.add(w.ID)
} else {
others = append(others, w)
}
}
// make sure that no value in this block depends on WB stores
for _, w := range b.Values {
if w.Op == OpStoreWB || w.Op == OpMoveWB || w.Op == OpMoveWBVolatile {
continue
}
for _, a := range w.Args {
if wbs.contains(a.ID) {
f.Fatalf("value %v depends on WB store %v in the same block %v", w, a, b)
}
}
}
b.Values = append(b.Values[:i], others...) // move WB ops out of this block
bThen := f.NewBlock(BlockPlain)
bElse := f.NewBlock(BlockPlain)
bEnd := f.NewBlock(b.Kind)
bThen.Line = line
bElse.Line = line
bEnd.Line = line
// set up control flow for end block
bEnd.SetControl(b.Control)
bEnd.Likely = b.Likely
for _, e := range b.Succs {
bEnd.Succs = append(bEnd.Succs, e)
e.b.Preds[e.i].b = bEnd
}
// set up control flow for write barrier test
// load word, test word, avoiding partial register write from load byte.
flag := b.NewValue2(line, OpLoad, f.Config.fe.TypeUInt32(), wbaddr, mem)
const0 := f.ConstInt32(line, f.Config.fe.TypeUInt32(), 0)
flag = b.NewValue2(line, OpNeq32, f.Config.fe.TypeBool(), flag, const0)
b.Kind = BlockIf
b.SetControl(flag)
b.Likely = BranchUnlikely
b.Succs = b.Succs[:0]
b.AddEdgeTo(bThen)
b.AddEdgeTo(bElse)
bThen.AddEdgeTo(bEnd)
bElse.AddEdgeTo(bEnd)
memThen := mem
memElse := mem
for _, w := range storeWBs {
ptr := w.Args[0]
val := w.Args[1]
siz := w.AuxInt
typ := w.Aux // only non-nil for MoveWB, MoveWBVolatile
var op Op
var fn interface{} // *gc.Sym
switch w.Op {
case OpStoreWB:
op = OpStore
fn = writebarrierptr
case OpMoveWB, OpMoveWBVolatile:
op = OpMove
fn = typedmemmove
}
// then block: emit write barrier call
memThen = wbcall(line, bThen, fn, typ, ptr, val, memThen, sp, sb, w.Op == OpMoveWBVolatile)
// else block: normal store
memElse = bElse.NewValue3I(line, op, TypeMem, siz, ptr, val, memElse)
}
// merge memory
// Splice memory Phi into the last memory of the original sequence,
// which may be used in subsequent blocks. Other memories in the
// sequence must be dead after this block since there can be only
// one memory live.
v = storeWBs[len(storeWBs)-1]
bEnd.Values = append(bEnd.Values, v)
v.Block = bEnd
v.reset(OpPhi)
v.Type = TypeMem
v.AddArg(memThen)
v.AddArg(memElse)
for _, w := range storeWBs[:len(storeWBs)-1] {
for _, a := range w.Args {
a.Uses--
}
}
for _, w := range storeWBs[:len(storeWBs)-1] {
f.freeValue(w)
}
if f.Config.fe.Debug_wb() {
f.Config.Warnl(line, "write barrier")
}
break valueLoop
}
}
}
}
// wbcall emits write barrier runtime call in b, returns memory.
// if valIsVolatile, it moves val into temp space before making the call.
func wbcall(line int32, b *Block, fn interface{}, typ interface{}, ptr, val, mem, sp, sb *Value, valIsVolatile bool) *Value {
config := b.Func.Config
var tmp GCNode
if valIsVolatile {
// Copy to temp location if the source is volatile (will be clobbered by
// a function call). Marshaling the args to typedmemmove might clobber the
// value we're trying to move.
t := val.Type.ElemType()
tmp = config.fe.Auto(t)
aux := &AutoSymbol{Typ: t, Node: tmp}
mem = b.NewValue1A(line, OpVarDef, TypeMem, tmp, mem)
tmpaddr := b.NewValue1A(line, OpAddr, t.PtrTo(), aux, sp)
siz := MakeSizeAndAlign(t.Size(), t.Alignment()).Int64()
mem = b.NewValue3I(line, OpMove, TypeMem, siz, tmpaddr, val, mem)
val = tmpaddr
}
// put arguments on stack
off := config.ctxt.FixedFrameSize()
if typ != nil { // for typedmemmove
taddr := b.NewValue1A(line, OpAddr, config.fe.TypeUintptr(), typ, sb)
off = round(off, taddr.Type.Alignment())
arg := b.NewValue1I(line, OpOffPtr, taddr.Type.PtrTo(), off, sp)
mem = b.NewValue3I(line, OpStore, TypeMem, ptr.Type.Size(), arg, taddr, mem)
off += taddr.Type.Size()
}
off = round(off, ptr.Type.Alignment())
arg := b.NewValue1I(line, OpOffPtr, ptr.Type.PtrTo(), off, sp)
mem = b.NewValue3I(line, OpStore, TypeMem, ptr.Type.Size(), arg, ptr, mem)
off += ptr.Type.Size()
off = round(off, val.Type.Alignment())
arg = b.NewValue1I(line, OpOffPtr, val.Type.PtrTo(), off, sp)
mem = b.NewValue3I(line, OpStore, TypeMem, val.Type.Size(), arg, val, mem)
off += val.Type.Size()
off = round(off, config.PtrSize)
// issue call
mem = b.NewValue1A(line, OpStaticCall, TypeMem, fn, mem)
mem.AuxInt = off - config.ctxt.FixedFrameSize()
if valIsVolatile {
mem = b.NewValue1A(line, OpVarKill, TypeMem, tmp, mem) // mark temp dead
}
return mem
}
// round to a multiple of r, r is a power of 2
func round(o int64, r int64) int64 {
return (o + r - 1) &^ (r - 1)
}
// IsStackAddr returns whether v is known to be an address of a stack slot
func IsStackAddr(v *Value) bool {
for v.Op == OpOffPtr || v.Op == OpAddPtr || v.Op == OpPtrIndex || v.Op == OpCopy {
v = v.Args[0]
}
switch v.Op {
case OpSP:
return true
case OpAddr:
return v.Args[0].Op == OpSP
}
return false
}
......@@ -211,3 +211,11 @@ func f21(x *int) {
y21.x = &z21 // no barrier
y21 = struct{ x *int }{x} // ERROR "write barrier"
}
func f22(x *int) (y *int) {
// pointer write on stack should have no write barrier.
// this is a case that the frontend failed to eliminate.
p := &y
*p = x // no barrier
return
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment