Kconfig 56.2 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

Linus Torvalds's avatar
Linus Torvalds committed
8
#
9
# async_tx api: hardware offloaded memory transfer/transform support
Linus Torvalds's avatar
Linus Torvalds committed
10
#
11
source "crypto/async_tx/Kconfig"
Linus Torvalds's avatar
Linus Torvalds committed
12

13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
Linus Torvalds's avatar
Linus Torvalds committed
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
32
	  certification.  You should say no unless you know what
33
	  this is.
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55
config CRYPTO_SKCIPHER
56
	tristate
57
	select CRYPTO_SKCIPHER2
58
	select CRYPTO_ALGAPI
59

60
config CRYPTO_SKCIPHER2
61 62 63
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106 107
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
108
	select SGL_ALLOC
109 110 111 112 113 114

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

Herbert Xu's avatar
Herbert Xu committed
115 116
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
117
	select CRYPTO_MANAGER2
Herbert Xu's avatar
Herbert Xu committed
118 119 120 121
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

122 123 124 125
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
126
	select CRYPTO_SKCIPHER2
127
	select CRYPTO_AKCIPHER2
128
	select CRYPTO_KPP2
129
	select CRYPTO_ACOMP2
130

131 132
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
133
	depends on NET
134 135
	select CRYPTO_MANAGER
	help
136
	  Userspace configuration for cryptographic instantiations such as
137 138
	  cbc(aes).

139 140
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
141
	default y
142
	help
143 144
	  Disable run-time self tests that normally take place at
	  algorithm registration.
145

146 147
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
148
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
149 150 151 152 153 154 155
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

156
config CRYPTO_GF128MUL
157
	tristate
158

Linus Torvalds's avatar
Linus Torvalds committed
159 160
config CRYPTO_NULL
	tristate "Null algorithms"
161
	select CRYPTO_NULL2
Linus Torvalds's avatar
Linus Torvalds committed
162 163 164
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

165
config CRYPTO_NULL2
166
	tristate
167
	select CRYPTO_ALGAPI2
168
	select CRYPTO_SKCIPHER2
169 170
	select CRYPTO_HASH2

171
config CRYPTO_PCRYPT
172 173
	tristate "Parallel crypto engine"
	depends on SMP
174 175 176 177 178 179 180
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

181 182
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
183
	select CRYPTO_SKCIPHER
184
	select CRYPTO_HASH
185
	select CRYPTO_MANAGER
Linus Torvalds's avatar
Linus Torvalds committed
186
	help
187 188 189
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
Linus Torvalds's avatar
Linus Torvalds committed
190

191 192 193
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
194
	select CRYPTO_SKCIPHER
195 196
	select CRYPTO_MANAGER
	select CRYPTO_HASH
197
	select CRYPTO_NULL
Linus Torvalds's avatar
Linus Torvalds committed
198
	help
199 200
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
Linus Torvalds's avatar
Linus Torvalds committed
201

202 203
config CRYPTO_TEST
	tristate "Testing module"
204
	depends on m || EXPERT
205
	select CRYPTO_MANAGER
Linus Torvalds's avatar
Linus Torvalds committed
206
	help
207
	  Quick & dirty crypto test module.
Linus Torvalds's avatar
Linus Torvalds committed
208

209 210
config CRYPTO_SIMD
	tristate
211 212
	select CRYPTO_CRYPTD

213 214 215
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
216
	select CRYPTO_SKCIPHER
217

218 219 220
config CRYPTO_ENGINE
	tristate

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

239 240 241
config CRYPTO_ECC
	tristate

242 243
config CRYPTO_ECDH
	tristate "ECDH algorithm"
244
	select CRYPTO_ECC
245 246 247 248 249
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

250 251 252 253 254
config CRYPTO_ECRDSA
	tristate "EC-RDSA (GOST 34.10) algorithm"
	select CRYPTO_ECC
	select CRYPTO_AKCIPHER
	select CRYPTO_STREEBOG
255 256
	select OID_REGISTRY
	select ASN1
257 258 259 260 261 262
	help
	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
	  standard algorithms (called GOST algorithms). Only signature verification
	  is implemented.

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
config CRYPTO_SM2
	tristate "SM2 algorithm"
	select CRYPTO_SM3
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the SM2 public key algorithm. It was
	  published by State Encryption Management Bureau, China.
	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.

	  References:
	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
	  http://www.gmbz.org.cn/main/bzlb.html

280 281 282 283 284
config CRYPTO_CURVE25519
	tristate "Curve25519 algorithm"
	select CRYPTO_KPP
	select CRYPTO_LIB_CURVE25519_GENERIC

285 286 287 288 289 290
config CRYPTO_CURVE25519_X86
	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
	depends on X86 && 64BIT
	select CRYPTO_LIB_CURVE25519_GENERIC
	select CRYPTO_ARCH_HAVE_LIB_CURVE25519

291
comment "Authenticated Encryption with Associated Data"
292

293 294 295
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
296
	select CRYPTO_HASH
297
	select CRYPTO_AEAD
298
	select CRYPTO_MANAGER
Linus Torvalds's avatar
Linus Torvalds committed
299
	help
300
	  Support for Counter with CBC MAC. Required for IPsec.
Linus Torvalds's avatar
Linus Torvalds committed
301

302 303 304 305
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
306
	select CRYPTO_GHASH
307
	select CRYPTO_NULL
308
	select CRYPTO_MANAGER
Linus Torvalds's avatar
Linus Torvalds committed
309
	help
310 311
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
Linus Torvalds's avatar
Linus Torvalds committed
312

313 314 315 316 317
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
318
	select CRYPTO_MANAGER
319 320 321 322 323 324 325
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

326 327 328 329 330 331 332
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

333 334 335 336 337
config CRYPTO_AEGIS128_SIMD
	bool "Support SIMD acceleration for AEGIS-128"
	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
	default y

338 339 340 341
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
342
	select CRYPTO_SIMD
343
	help
344
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
345

346 347 348
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
349
	select CRYPTO_SKCIPHER
350
	select CRYPTO_NULL
351
	select CRYPTO_RNG_DEFAULT
352
	select CRYPTO_MANAGER
Linus Torvalds's avatar
Linus Torvalds committed
353
	help
354 355
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
Linus Torvalds's avatar
Linus Torvalds committed
356

357 358 359 360
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
361
	select CRYPTO_RNG_DEFAULT
362
	select CRYPTO_MANAGER
363 364 365 366 367
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

368
comment "Block modes"
369

370 371
config CRYPTO_CBC
	tristate "CBC support"
372
	select CRYPTO_SKCIPHER
373
	select CRYPTO_MANAGER
374
	help
375 376
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
377

378 379
config CRYPTO_CFB
	tristate "CFB support"
380
	select CRYPTO_SKCIPHER
381 382 383 384 385
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

386 387
config CRYPTO_CTR
	tristate "CTR support"
388
	select CRYPTO_SKCIPHER
389
	select CRYPTO_MANAGER
390
	help
391
	  CTR: Counter mode
392 393
	  This block cipher algorithm is required for IPSec.

394 395
config CRYPTO_CTS
	tristate "CTS support"
396
	select CRYPTO_SKCIPHER
397
	select CRYPTO_MANAGER
398 399 400
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
401 402 403
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
404 405 406
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

407 408
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

409 410
config CRYPTO_ECB
	tristate "ECB support"
411
	select CRYPTO_SKCIPHER
412 413
	select CRYPTO_MANAGER
	help
414 415 416
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
417

418
config CRYPTO_LRW
419
	tristate "LRW support"
420
	select CRYPTO_SKCIPHER
421 422 423 424 425 426 427 428 429
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

430 431
config CRYPTO_OFB
	tristate "OFB support"
432
	select CRYPTO_SKCIPHER
433 434 435 436 437 438 439 440 441
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

442 443
config CRYPTO_PCBC
	tristate "PCBC support"
444
	select CRYPTO_SKCIPHER
445 446 447 448 449
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

450
config CRYPTO_XTS
451
	tristate "XTS support"
452
	select CRYPTO_SKCIPHER
453
	select CRYPTO_MANAGER
454
	select CRYPTO_ECB
455 456 457 458 459
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

460 461
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
462
	select CRYPTO_SKCIPHER
463
	select CRYPTO_MANAGER
464 465 466 467
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

468 469 470
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
471
	select CRYPTO_LIB_POLY1305_GENERIC
472

473 474 475 476 477 478 479 480
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

481 482 483 484 485 486 487 488
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

489 490 491
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
492
	select CRYPTO_LIB_POLY1305_GENERIC
493
	select CRYPTO_NHPOLY1305
494
	select CRYPTO_MANAGER
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

513 514 515 516 517 518 519 520 521 522 523 524
config CRYPTO_ESSIV
	tristate "ESSIV support for block encryption"
	select CRYPTO_AUTHENC
	help
	  Encrypted salt-sector initialization vector (ESSIV) is an IV
	  generation method that is used in some cases by fscrypt and/or
	  dm-crypt. It uses the hash of the block encryption key as the
	  symmetric key for a block encryption pass applied to the input
	  IV, making low entropy IV sources more suitable for block
	  encryption.

	  This driver implements a crypto API template that can be
525
	  instantiated either as an skcipher or as an AEAD (depending on the
526 527
	  type of the first template argument), and which defers encryption
	  and decryption requests to the encapsulated cipher after applying
528
	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
529 530 531 532 533 534 535 536 537 538 539 540
	  that the keys are presented in the same format used by the authenc
	  template, and that the IV appears at the end of the authenticated
	  associated data (AAD) region (which is how dm-crypt uses it.)

	  Note that the use of ESSIV is not recommended for new deployments,
	  and so this only needs to be enabled when interoperability with
	  existing encrypted volumes of filesystems is required, or when
	  building for a particular system that requires it (e.g., when
	  the SoC in question has accelerated CBC but not XTS, making CBC
	  combined with ESSIV the only feasible mode for h/w accelerated
	  block encryption)

541 542
comment "Hash modes"

543 544 545 546 547 548 549 550 551 552 553
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

554 555 556
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
557 558
	select CRYPTO_MANAGER
	help
559 560
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
561

562 563 564 565
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
566
	help
567
	  XCBC: Keyed-Hashing with encryption algorithm
568
		https://www.ietf.org/rfc/rfc3566.txt
569 570
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
571

572 573 574 575 576 577 578 579 580
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
581
	  <https://fastcrypto.org/vmac>
582

583
comment "Digest"
Mikko Herranen's avatar
Mikko Herranen committed
584

585 586
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
587
	select CRYPTO_HASH
588
	select CRC32
Joy Latten's avatar
Joy Latten committed
589
	help
590 591
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
592
	  See Castagnoli93.  Module will be crc32c.
Joy Latten's avatar
Joy Latten committed
593

594 595 596 597 598 599 600 601 602 603 604 605
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

606
config CRYPTO_CRC32C_VPMSUM
607
	tristate "CRC32c CRC algorithm (powerpc64)"
608
	depends on PPC64 && ALTIVEC
609 610 611 612 613 614 615 616
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


617 618 619 620 621 622 623 624 625
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
643
	  instruction. This option will create 'crc32-pclmul' module,
644 645 646
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

647 648 649 650 651 652 653 654 655
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


656 657 658 659 660 661 662 663
config CRYPTO_XXHASH
	tristate "xxHash hash algorithm"
	select CRYPTO_HASH
	select XXHASH
	help
	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
	  speeds close to RAM limits.

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
config CRYPTO_BLAKE2B
	tristate "BLAKE2b digest algorithm"
	select CRYPTO_HASH
	help
	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
	  optimized for 64bit platforms and can produce digests of any size
	  between 1 to 64.  The keyed hash is also implemented.

	  This module provides the following algorithms:

	  - blake2b-160
	  - blake2b-256
	  - blake2b-384
	  - blake2b-512

	  See https://blake2.net for further information.

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
config CRYPTO_BLAKE2S
	tristate "BLAKE2s digest algorithm"
	select CRYPTO_LIB_BLAKE2S_GENERIC
	select CRYPTO_HASH
	help
	  Implementation of cryptographic hash function BLAKE2s
	  optimized for 8-32bit platforms and can produce digests of any size
	  between 1 to 32.  The keyed hash is also implemented.

	  This module provides the following algorithms:

	  - blake2s-128
	  - blake2s-160
	  - blake2s-224
	  - blake2s-256

	  See https://blake2.net for further information.

699 700 701 702 703 704
config CRYPTO_BLAKE2S_X86
	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
	depends on X86 && 64BIT
	select CRYPTO_LIB_BLAKE2S_GENERIC
	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
721
	  'crct10dif-pclmul' module, which is faster when computing the
722 723
	  crct10dif checksum as compared with the generic table implementation.

724 725 726 727 728 729 730 731 732
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

733 734 735 736 737 738 739 740
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

741
config CRYPTO_GHASH
742
	tristate "GHASH hash function"
743
	select CRYPTO_GF128MUL
744
	select CRYPTO_HASH
745
	help
746 747
	  GHASH is the hash function used in GCM (Galois/Counter Mode).
	  It is not a general-purpose cryptographic hash function.
748

749 750
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
751
	select CRYPTO_HASH
752
	select CRYPTO_LIB_POLY1305_GENERIC
753 754 755 756 757 758 759
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

760
config CRYPTO_POLY1305_X86_64
761
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
762
	depends on X86 && 64BIT
763
	select CRYPTO_LIB_POLY1305_GENERIC
764
	select CRYPTO_ARCH_HAVE_LIB_POLY1305
765 766 767 768 769 770 771 772
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

773 774 775 776 777
config CRYPTO_POLY1305_MIPS
	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
	depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
	select CRYPTO_ARCH_HAVE_LIB_POLY1305

778 779
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
780
	select CRYPTO_HASH
781
	help
782
	  MD4 message digest algorithm (RFC1320).
783

784 785
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
786
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
787
	help
788
	  MD5 message digest algorithm (RFC1321).
Linus Torvalds's avatar
Linus Torvalds committed
789

790 791 792 793 794 795 796 797 798
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

799 800 801 802 803 804 805 806
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

807 808 809 810 811 812 813 814 815
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

816 817
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
818
	select CRYPTO_HASH
819
	help
820 821 822 823
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
824

825
config CRYPTO_RMD128
826
	tristate "RIPEMD-128 digest algorithm"
827
	select CRYPTO_HASH
828 829
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
830

831
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
832
	  be used as a secure replacement for RIPEMD. For other use cases,
833
	  RIPEMD-160 should be used.
834

835
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
836
	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
837 838

config CRYPTO_RMD160
839
	tristate "RIPEMD-160 digest algorithm"
840
	select CRYPTO_HASH
841 842
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
843

844 845 846 847
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
848

849 850
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
851

852
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
853
	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
854 855

config CRYPTO_RMD256
856
	tristate "RIPEMD-256 digest algorithm"
857
	select CRYPTO_HASH
858 859 860 861 862
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
863

864
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
865
	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
866 867

config CRYPTO_RMD320
868
	tristate "RIPEMD-320 digest algorithm"
869
	select CRYPTO_HASH
870 871 872 873 874
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
875

876
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
877
	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
878

879 880
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
881
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
882
	help
883
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
Linus Torvalds's avatar
Linus Torvalds committed
884

885
config CRYPTO_SHA1_SSSE3
886
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
887 888 889 890 891 892
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
893 894
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
895

896
config CRYPTO_SHA256_SSSE3
897
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
898 899 900 901 902 903 904
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
905 906
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
907 908 909 910 911 912 913 914 915 916

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
917 918
	  version 2 (AVX2) instructions, when available.

919 920 921 922 923 924 925 926 927
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

928 929 930 931 932 933 934 935 936
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

937 938 939 940 941 942 943
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

944 945 946 947 948 949 950
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

951 952
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
953
	select CRYPTO_HASH
954
	select CRYPTO_LIB_SHA256
Linus Torvalds's avatar
Linus Torvalds committed
955
	help
956
	  SHA256 secure hash standard (DFIPS 180-2).
Linus Torvalds's avatar
Linus Torvalds committed
957

958 959
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
960

961 962
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
963

964 965 966 967 968 969 970 971 972
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

973 974 975 976 977 978 979 980 981
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

982 983 984 985 986 987 988 989 990
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

991 992
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
993
	select CRYPTO_HASH
994
	help
995
	  SHA512 secure hash standard (DFIPS 180-2).
996

997 998
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
999

1000 1001
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

1012 1013 1014 1015 1016 1017 1018 1019 1020
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

1054 1055
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
1056
	select CRYPTO_HASH
1057
	help
1058
	  Tiger hash algorithm 192, 160 and 128-bit hashes
1059

1060 1061 1062
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
1063 1064

	  See also:
1065
	  <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1066

1067 1068
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1069
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
1070
	help
1071
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
Linus Torvalds's avatar
Linus Torvalds committed
1072

1073 1074
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
Linus Torvalds's avatar
Linus Torvalds committed
1075 1076

	  See also:
1077
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1078

1079
config CRYPTO_GHASH_CLMUL_NI_INTEL
1080
	tristate "GHASH hash function (CLMUL-NI accelerated)"
Richard Weinberger's avatar
Richard Weinberger committed
1081
	depends on X86 && 64BIT
1082 1083
	select CRYPTO_CRYPTD
	help
1084 1085
	  This is the x86_64 CLMUL-NI accelerated implementation of
	  GHASH, the hash function used in GCM (Galois/Counter mode).
1086

1087
comment "Ciphers"
Linus Torvalds's avatar
Linus Torvalds committed
1088 1089 1090

config CRYPTO_AES
	tristate "AES cipher algorithms"
1091
	select CRYPTO_ALGAPI
1092
	select CRYPTO_LIB_AES
Linus Torvalds's avatar
Linus Torvalds committed
1093
	help
1094
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
Linus Torvalds's avatar
Linus Torvalds committed
1095 1096 1097
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1098 1099 1100 1101 1102 1103 1104
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
Linus Torvalds's avatar
Linus Torvalds committed
1105

1106
	  The AES specifies three key sizes: 128, 192 and 256 bits
Linus Torvalds's avatar
Linus Torvalds committed
1107 1108 1109

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1110 1111 1112
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
1113
	select CRYPTO_LIB_AES
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1126 1127
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1128

1129 1130
config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
Richard Weinberger's avatar
Richard Weinberger committed
1131
	depends on X86
1132
	select CRYPTO_AEAD
1133
	select CRYPTO_LIB_AES
1134
	select CRYPTO_ALGAPI
1135
	select CRYPTO_SKCIPHER
1136
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1137
	select CRYPTO_SIMD
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1148 1149 1150 1151
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
1152

1153
	  The AES specifies three key sizes: 128, 192 and 256 bits
Linus Torvalds's avatar
Linus Torvalds committed
1154 1155 1156

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1157 1158
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1159
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1160
	  acceleration for CTR.
1161

1162 1163 1164
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
1165
	select CRYPTO_SKCIPHER
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1189 1190 1191
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
1192
	select CRYPTO_SKCIPHER
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1203 1204
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
1205
	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1206 1207 1208 1209 1210 1211 1212 1213 1214
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1215 1216
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1217 1218 1219

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1220
	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1221
	select CRYPTO_SKCIPHER
1222
	select CRYPTO_LIB_ARC4
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1234
	select CRYPTO_BLOWFISH_COMMON
1235 1236 1237 1238 1239 1240 1241 1242
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
1243
	  <https://www.schneier.com/blowfish.html>
1244

1245 1246 1247 1248 1249 1250 1251
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
1252
	  <https://www.schneier.com/blowfish.html>
1253

1254 1255
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1256
	depends on X86 && 64BIT
1257
	select CRYPTO_SKCIPHER
1258 1259 1260 1261 1262 1263 1264 1265 1266
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
1267
	  <https://www.schneier.com/blowfish.html>
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1284 1285
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1286
	depends on X86 && 64BIT
1287
	depends on CRYPTO
1288
	select CRYPTO_SKCIPHER
1289
	select CRYPTO_GLUE_HELPER_X86
1290 1291 1292 1293 1294 1295 1296 1297 1298
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1299 1300 1301 1302 1303 1304
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1305
	select CRYPTO_SKCIPHER
1306
	select CRYPTO_CAMELLIA_X86_64
1307 1308
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1319 1320
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1337 1338 1339 1340 1341
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
1342
	select CRYPTO_SKCIPHER
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1354 1355 1356 1357 1358 1359
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

Linus Torvalds's avatar
Linus Torvalds committed
1360 1361
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1362
	select CRYPTO_ALGAPI
1363
	select CRYPTO_CAST_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
1364 1365 1366 1367
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1368 1369 1370
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1371
	select CRYPTO_SKCIPHER
1372
	select CRYPTO_CAST5
1373 1374
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1375 1376 1377 1378 1379 1380 1381
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

Linus Torvalds's avatar
Linus Torvalds committed
1382 1383
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1384
	select CRYPTO_ALGAPI
1385
	select CRYPTO_CAST_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
1386 1387 1388 1389
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1390 1391 1392
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1393
	select CRYPTO_SKCIPHER
1394
	select CRYPTO_CAST6
1395 1396 1397
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1398 1399 1400 1401 1402 1403 1404 1405
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1406 1407
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1408
	select CRYPTO_ALGAPI
1409
	select CRYPTO_LIB_DES
Linus Torvalds's avatar
Linus Torvalds committed
1410
	help
1411
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1412

1413 1414
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1415
	depends on SPARC64
1416
	select CRYPTO_ALGAPI
1417
	select CRYPTO_LIB_DES
1418
	select CRYPTO_SKCIPHER
1419 1420 1421 1422
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1423 1424 1425
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1426
	select CRYPTO_SKCIPHER
1427
	select CRYPTO_LIB_DES
1428 1429 1430 1431 1432 1433 1434 1435
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1436 1437
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1438
	select CRYPTO_ALGAPI
1439
	select CRYPTO_SKCIPHER
Linus Torvalds's avatar
Linus Torvalds committed
1440
	help
1441
	  FCrypt algorithm used by RxRPC.
Linus Torvalds's avatar
Linus Torvalds committed
1442 1443 1444

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1445
	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1446
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1447 1448 1449 1450 1451 1452 1453 1454
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1455
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
Linus Torvalds's avatar
Linus Torvalds committed
1456

1457
config CRYPTO_SALSA20
1458
	tristate "Salsa20 stream cipher algorithm"
1459
	select CRYPTO_SKCIPHER
1460 1461 1462 1463
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1464
	  Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
1465 1466

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1467
	  Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
1468

1469
config CRYPTO_CHACHA20
1470
	tristate "ChaCha stream cipher algorithms"
1471
	select CRYPTO_LIB_CHACHA_GENERIC
1472
	select CRYPTO_SKCIPHER
1473
	help
1474
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1475 1476 1477

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1478
	  This is the portable C implementation of ChaCha20.  See also:
1479
	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1480

1481 1482 1483 1484 1485 1486
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1487 1488 1489 1490
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1491
config CRYPTO_CHACHA20_X86_64
1492
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1493
	depends on X86 && 64BIT
1494
	select CRYPTO_SKCIPHER
1495
	select CRYPTO_LIB_CHACHA_GENERIC
1496
	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1497
	help
1498 1499
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1500

1501 1502 1503
config CRYPTO_CHACHA_MIPS
	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
	depends on CPU_MIPS32_R2
1504
	select CRYPTO_SKCIPHER
1505 1506
	select CRYPTO_ARCH_HAVE_LIB_CHACHA

1507 1508
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1509
	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1510
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1511
	help
1512
	  SEED cipher algorithm (RFC4269).
Linus Torvalds's avatar
Linus Torvalds committed
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1524
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1525
	help
1526
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Linus Torvalds's avatar
Linus Torvalds committed
1527

1528 1529 1530 1531 1532
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
1533
	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1534

1535 1536 1537
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1538
	select CRYPTO_SKCIPHER
1539
	select CRYPTO_GLUE_HELPER_X86
1540
	select CRYPTO_SERPENT
1541
	select CRYPTO_SIMD
1542 1543 1544 1545 1546 1547
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1548
	  This module provides Serpent cipher algorithm that processes eight
1549 1550 1551
	  blocks parallel using SSE2 instruction set.

	  See also:
1552
	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1553

1554 1555 1556
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1557
	select CRYPTO_SKCIPHER
1558
	select CRYPTO_GLUE_HELPER_X86
1559
	select CRYPTO_SERPENT
1560
	select CRYPTO_SIMD
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
1571
	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1572 1573 1574 1575

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1576
	select CRYPTO_SKCIPHER
1577
	select CRYPTO_GLUE_HELPER_X86
1578
	select CRYPTO_SERPENT
1579
	select CRYPTO_SIMD
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
1591
	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
1607
	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1634 1635
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1636
	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1637
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1638
	help
1639
	  TEA cipher algorithm.
Linus Torvalds's avatar
Linus Torvalds committed
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1654
	select CRYPTO_ALGAPI
1655
	select CRYPTO_TWOFISH_COMMON
1656
	help
1657
	  Twofish cipher algorithm.
1658

1659 1660 1661 1662
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1663

1664
	  See also:
1665
	  <https://www.schneier.com/twofish.html>
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1685 1686

	  See also:
1687
	  <https://www.schneier.com/twofish.html>
1688

1689 1690 1691
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1692
	select CRYPTO_ALGAPI
1693
	select CRYPTO_TWOFISH_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
1694
	help
1695
	  Twofish cipher algorithm (x86_64).
Linus Torvalds's avatar
Linus Torvalds committed
1696

1697 1698 1699 1700 1701 1702
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
1703
	  <https://www.schneier.com/twofish.html>
1704

1705 1706
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1707
	depends on X86 && 64BIT
1708
	select CRYPTO_SKCIPHER
1709 1710
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1711
	select CRYPTO_GLUE_HELPER_X86
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
1724
	  <https://www.schneier.com/twofish.html>
1725

1726 1727 1728
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1729
	select CRYPTO_SKCIPHER
1730
	select CRYPTO_GLUE_HELPER_X86
1731
	select CRYPTO_SIMD
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
1747
	  <https://www.schneier.com/twofish.html>
1748

1749 1750 1751 1752 1753
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1754
	select CRYPTO_ACOMP2
1755 1756
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
Herbert Xu's avatar
Herbert Xu committed
1757
	help
1758 1759 1760 1761
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
Herbert Xu's avatar
Herbert Xu committed
1762

1763 1764 1765
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1766
	select CRYPTO_ACOMP2
1767 1768 1769 1770 1771
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1772 1773
config CRYPTO_842
	tristate "842 compression algorithm"
1774
	select CRYPTO_ALGAPI
1775
	select CRYPTO_ACOMP2
1776 1777
	select 842_COMPRESS
	select 842_DECOMPRESS
1778 1779
	help
	  This is the 842 algorithm.
1780 1781 1782 1783

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1784
	select CRYPTO_ACOMP2
1785 1786 1787 1788 1789 1790 1791 1792
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1793
	select CRYPTO_ACOMP2
1794 1795 1796 1797
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1808 1809 1810 1811 1812 1813 1814 1815 1816
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1817 1818
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1819

1820
menuconfig CRYPTO_DRBG_MENU
1821 1822 1823 1824 1825
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1826
if CRYPTO_DRBG_MENU
1827 1828

config CRYPTO_DRBG_HMAC
1829
	bool
1830 1831
	default y
	select CRYPTO_HMAC
1832
	select CRYPTO_SHA256
1833 1834 1835

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
1836
	select CRYPTO_SHA256
1837 1838 1839 1840 1841 1842
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1843
	select CRYPTO_CTR
1844 1845 1846
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1847 1848
config CRYPTO_DRBG
	tristate
1849
	default CRYPTO_DRBG_MENU
1850
	select CRYPTO_RNG
1851
	select CRYPTO_JITTERENTROPY
1852 1853

endif	# if CRYPTO_DRBG_MENU
1854

1855 1856
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1857
	select CRYPTO_RNG
1858 1859 1860 1861 1862 1863 1864
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1865 1866 1867
config CRYPTO_USER_API
	tristate

1868 1869
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1870
	depends on NET
1871 1872 1873 1874 1875 1876
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1877 1878
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1879
	depends on NET
1880
	select CRYPTO_SKCIPHER
1881 1882 1883 1884 1885
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1886 1887 1888 1889 1890 1891 1892 1893 1894
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1895 1896 1897 1898 1899 1900 1901 1902 1903
config CRYPTO_USER_API_RNG_CAVP
	bool "Enable CAVP testing of DRBG"
	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
	help
	  This option enables extra API for CAVP testing via the user-space
	  interface: resetting of DRBG entropy, and providing Additional Data.
	  This should only be enabled for CAVP testing. You should say
	  no unless you know what this is.

1904 1905 1906 1907
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1908
	select CRYPTO_SKCIPHER
1909
	select CRYPTO_NULL
1910 1911 1912 1913 1914
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1915 1916 1917 1918 1919 1920 1921 1922 1923
config CRYPTO_USER_API_ENABLE_OBSOLETE
	bool "Enable obsolete cryptographic algorithms for userspace"
	depends on CRYPTO_USER_API
	default y
	help
	  Allow obsolete cryptographic algorithms to be selected that have
	  already been phased out from internal use by the kernel, and are
	  only useful for userspace clients that still rely on them.

1924 1925
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1926
	depends on CRYPTO_USER
1927 1928 1929 1930 1931 1932 1933 1934 1935
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1936 1937 1938
config CRYPTO_HASH_INFO
	bool

1939
source "lib/crypto/Kconfig"
Linus Torvalds's avatar
Linus Torvalds committed
1940
source "drivers/crypto/Kconfig"
1941 1942
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
Linus Torvalds's avatar
Linus Torvalds committed
1943

1944
endif	# if CRYPTO