callchain.c 10.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2009-2011, Frederic Weisbecker <fweisbec@gmail.com>
3 4 5 6
 *
 * Handle the callchains from the stream in an ad-hoc radix tree and then
 * sort them in an rbtree.
 *
7 8 9
 * Using a radix for code path provides a fast retrieval and factorizes
 * memory use. Also that lets us use the paths in a hierarchical graph view.
 *
10 11 12 13 14 15
 */

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
16
#include <math.h>
17

18
#include "hist.h"
19
#include "util.h"
20 21
#include "callchain.h"

22 23
__thread struct callchain_cursor callchain_cursor;

24
#define chain_for_each_child(child, parent)	\
25
	list_for_each_entry(child, &parent->children, siblings)
26

27
#define chain_for_each_child_safe(child, next, parent)	\
28
	list_for_each_entry_safe(child, next, &parent->children, siblings)
29

30
static void
31 32
rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
		    enum chain_mode mode)
33 34 35 36
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct callchain_node *rnode;
37
	u64 chain_cumul = callchain_cumul_hits(chain);
38 39

	while (*p) {
40 41
		u64 rnode_cumul;

42 43
		parent = *p;
		rnode = rb_entry(parent, struct callchain_node, rb_node);
44
		rnode_cumul = callchain_cumul_hits(rnode);
45

46
		switch (mode) {
47
		case CHAIN_FLAT:
48 49 50 51 52
			if (rnode->hit < chain->hit)
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
			break;
53 54
		case CHAIN_GRAPH_ABS: /* Falldown */
		case CHAIN_GRAPH_REL:
55
			if (rnode_cumul < chain_cumul)
56 57 58 59
				p = &(*p)->rb_left;
			else
				p = &(*p)->rb_right;
			break;
60
		case CHAIN_NONE:
61 62 63
		default:
			break;
		}
64 65 66 67 68 69
	}

	rb_link_node(&chain->rb_node, parent, p);
	rb_insert_color(&chain->rb_node, root);
}

70 71 72 73 74 75 76 77 78 79 80 81 82
static void
__sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
		  u64 min_hit)
{
	struct callchain_node *child;

	chain_for_each_child(child, node)
		__sort_chain_flat(rb_root, child, min_hit);

	if (node->hit && node->hit >= min_hit)
		rb_insert_callchain(rb_root, node, CHAIN_FLAT);
}

83 84 85 86
/*
 * Once we get every callchains from the stream, we can now
 * sort them by hit
 */
87
static void
88
sort_chain_flat(struct rb_root *rb_root, struct callchain_root *root,
89
		u64 min_hit, struct callchain_param *param __maybe_unused)
90
{
91
	__sort_chain_flat(rb_root, &root->node, min_hit);
92 93 94 95
}

static void __sort_chain_graph_abs(struct callchain_node *node,
				   u64 min_hit)
96 97 98
{
	struct callchain_node *child;

99
	node->rb_root = RB_ROOT;
100

101 102
	chain_for_each_child(child, node) {
		__sort_chain_graph_abs(child, min_hit);
103
		if (callchain_cumul_hits(child) >= min_hit)
104 105 106 107 108 109
			rb_insert_callchain(&node->rb_root, child,
					    CHAIN_GRAPH_ABS);
	}
}

static void
110
sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_root *chain_root,
111
		     u64 min_hit, struct callchain_param *param __maybe_unused)
112
{
113 114
	__sort_chain_graph_abs(&chain_root->node, min_hit);
	rb_root->rb_node = chain_root->node.rb_root.rb_node;
115 116
}

117 118
static void __sort_chain_graph_rel(struct callchain_node *node,
				   double min_percent)
119 120
{
	struct callchain_node *child;
121
	u64 min_hit;
122 123

	node->rb_root = RB_ROOT;
124
	min_hit = ceil(node->children_hit * min_percent);
125 126

	chain_for_each_child(child, node) {
127
		__sort_chain_graph_rel(child, min_percent);
128
		if (callchain_cumul_hits(child) >= min_hit)
129 130
			rb_insert_callchain(&node->rb_root, child,
					    CHAIN_GRAPH_REL);
131 132 133
	}
}

134
static void
135
sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_root *chain_root,
136
		     u64 min_hit __maybe_unused, struct callchain_param *param)
137
{
138 139
	__sort_chain_graph_rel(&chain_root->node, param->min_percent / 100.0);
	rb_root->rb_node = chain_root->node.rb_root.rb_node;
140 141
}

142
int callchain_register_param(struct callchain_param *param)
143 144 145 146 147 148 149 150 151 152 153
{
	switch (param->mode) {
	case CHAIN_GRAPH_ABS:
		param->sort = sort_chain_graph_abs;
		break;
	case CHAIN_GRAPH_REL:
		param->sort = sort_chain_graph_rel;
		break;
	case CHAIN_FLAT:
		param->sort = sort_chain_flat;
		break;
154
	case CHAIN_NONE:
155 156 157 158 159 160
	default:
		return -1;
	}
	return 0;
}

161 162 163 164 165 166
/*
 * Create a child for a parent. If inherit_children, then the new child
 * will become the new parent of it's parent children
 */
static struct callchain_node *
create_child(struct callchain_node *parent, bool inherit_children)
167 168 169
{
	struct callchain_node *new;

170
	new = zalloc(sizeof(*new));
171 172 173 174 175 176 177
	if (!new) {
		perror("not enough memory to create child for code path tree");
		return NULL;
	}
	new->parent = parent;
	INIT_LIST_HEAD(&new->children);
	INIT_LIST_HEAD(&new->val);
178 179 180 181 182 183 184

	if (inherit_children) {
		struct callchain_node *next;

		list_splice(&parent->children, &new->children);
		INIT_LIST_HEAD(&parent->children);

185
		chain_for_each_child(next, new)
186 187
			next->parent = new;
	}
188
	list_add_tail(&new->siblings, &parent->children);
189 190 191 192

	return new;
}

193

194 195 196
/*
 * Fill the node with callchain values
 */
197
static void
198
fill_node(struct callchain_node *node, struct callchain_cursor *cursor)
199
{
200 201 202 203 204
	struct callchain_cursor_node *cursor_node;

	node->val_nr = cursor->nr - cursor->pos;
	if (!node->val_nr)
		pr_warning("Warning: empty node in callchain tree\n");
205

206 207 208
	cursor_node = callchain_cursor_current(cursor);

	while (cursor_node) {
209 210
		struct callchain_list *call;

211
		call = zalloc(sizeof(*call));
212 213 214 215
		if (!call) {
			perror("not enough memory for the code path tree");
			return;
		}
216 217 218
		call->ip = cursor_node->ip;
		call->ms.sym = cursor_node->sym;
		call->ms.map = cursor_node->map;
219
		list_add_tail(&call->list, &node->val);
220 221 222

		callchain_cursor_advance(cursor);
		cursor_node = callchain_cursor_current(cursor);
223 224 225
	}
}

226
static void
227 228 229
add_child(struct callchain_node *parent,
	  struct callchain_cursor *cursor,
	  u64 period)
230 231 232
{
	struct callchain_node *new;

233
	new = create_child(parent, false);
234
	fill_node(new, cursor);
235

236
	new->children_hit = 0;
237
	new->hit = period;
238 239
}

240 241 242 243 244
/*
 * Split the parent in two parts (a new child is created) and
 * give a part of its callchain to the created child.
 * Then create another child to host the given callchain of new branch
 */
245
static void
246 247 248 249
split_add_child(struct callchain_node *parent,
		struct callchain_cursor *cursor,
		struct callchain_list *to_split,
		u64 idx_parents, u64 idx_local, u64 period)
250 251
{
	struct callchain_node *new;
252
	struct list_head *old_tail;
253
	unsigned int idx_total = idx_parents + idx_local;
254 255

	/* split */
256 257 258 259 260 261 262 263 264
	new = create_child(parent, true);

	/* split the callchain and move a part to the new child */
	old_tail = parent->val.prev;
	list_del_range(&to_split->list, old_tail);
	new->val.next = &to_split->list;
	new->val.prev = old_tail;
	to_split->list.prev = &new->val;
	old_tail->next = &new->val;
265

266 267
	/* split the hits */
	new->hit = parent->hit;
268
	new->children_hit = parent->children_hit;
269
	parent->children_hit = callchain_cumul_hits(new);
270 271 272 273
	new->val_nr = parent->val_nr - idx_local;
	parent->val_nr = idx_local;

	/* create a new child for the new branch if any */
274
	if (idx_total < cursor->nr) {
275
		parent->hit = 0;
276
		add_child(parent, cursor, period);
277
		parent->children_hit += period;
278
	} else {
279
		parent->hit = period;
280
	}
281 282 283
}

static int
284 285 286
append_chain(struct callchain_node *root,
	     struct callchain_cursor *cursor,
	     u64 period);
287

288
static void
289 290 291
append_chain_children(struct callchain_node *root,
		      struct callchain_cursor *cursor,
		      u64 period)
292 293 294 295
{
	struct callchain_node *rnode;

	/* lookup in childrens */
296
	chain_for_each_child(rnode, root) {
297
		unsigned int ret = append_chain(rnode, cursor, period);
298

299
		if (!ret)
300
			goto inc_children_hit;
301
	}
302
	/* nothing in children, add to the current node */
303
	add_child(root, cursor, period);
304

305
inc_children_hit:
306
	root->children_hit += period;
307 308 309
}

static int
310 311 312
append_chain(struct callchain_node *root,
	     struct callchain_cursor *cursor,
	     u64 period)
313
{
314
	struct callchain_cursor_node *curr_snap = cursor->curr;
315
	struct callchain_list *cnode;
316
	u64 start = cursor->pos;
317
	bool found = false;
318
	u64 matches;
319

320 321 322
	/*
	 * Lookup in the current node
	 * If we have a symbol, then compare the start to match
323 324
	 * anywhere inside a function, unless function
	 * mode is disabled.
325
	 */
326
	list_for_each_entry(cnode, &root->val, list) {
327
		struct callchain_cursor_node *node;
328 329
		struct symbol *sym;

330 331
		node = callchain_cursor_current(cursor);
		if (!node)
332
			break;
333

334
		sym = node->sym;
335

336 337
		if (cnode->ms.sym && sym &&
		    callchain_param.key == CCKEY_FUNCTION) {
338
			if (cnode->ms.sym->start != sym->start)
339
				break;
340
		} else if (cnode->ip != node->ip)
341
			break;
342

343 344
		if (!found)
			found = true;
345 346

		callchain_cursor_advance(cursor);
347 348 349
	}

	/* matches not, relay on the parent */
350 351 352
	if (!found) {
		cursor->curr = curr_snap;
		cursor->pos = start;
353
		return -1;
354 355 356
	}

	matches = cursor->pos - start;
357 358

	/* we match only a part of the node. Split it and add the new chain */
359 360
	if (matches < root->val_nr) {
		split_add_child(root, cursor, cnode, start, matches, period);
361 362 363 364
		return 0;
	}

	/* we match 100% of the path, increment the hit */
365
	if (matches == root->val_nr && cursor->pos == cursor->nr) {
366
		root->hit += period;
367 368 369
		return 0;
	}

370
	/* We match the node and still have a part remaining */
371
	append_chain_children(root, cursor, period);
372 373

	return 0;
374 375
}

376 377 378
int callchain_append(struct callchain_root *root,
		     struct callchain_cursor *cursor,
		     u64 period)
379
{
380
	if (!cursor->nr)
381 382
		return 0;

383
	callchain_cursor_commit(cursor);
384

385
	append_chain_children(&root->node, cursor, period);
386

387 388
	if (cursor->nr > root->max_depth)
		root->max_depth = cursor->nr;
389 390

	return 0;
391
}
392 393

static int
394 395
merge_chain_branch(struct callchain_cursor *cursor,
		   struct callchain_node *dst, struct callchain_node *src)
396
{
397
	struct callchain_cursor_node **old_last = cursor->last;
398 399
	struct callchain_node *child, *next_child;
	struct callchain_list *list, *next_list;
400
	int old_pos = cursor->nr;
401 402 403
	int err = 0;

	list_for_each_entry_safe(list, next_list, &src->val, list) {
404 405
		callchain_cursor_append(cursor, list->ip,
					list->ms.map, list->ms.sym);
406 407 408 409
		list_del(&list->list);
		free(list);
	}

410 411 412 413
	if (src->hit) {
		callchain_cursor_commit(cursor);
		append_chain_children(dst, cursor, src->hit);
	}
414 415

	chain_for_each_child_safe(child, next_child, src) {
416
		err = merge_chain_branch(cursor, dst, child);
417 418 419
		if (err)
			break;

420
		list_del(&child->siblings);
421 422 423
		free(child);
	}

424 425
	cursor->nr = old_pos;
	cursor->last = old_last;
426 427 428 429

	return err;
}

430 431 432 433 434 435 436 437
int callchain_merge(struct callchain_cursor *cursor,
		    struct callchain_root *dst, struct callchain_root *src)
{
	return merge_chain_branch(cursor, &dst->node, &src->node);
}

int callchain_cursor_append(struct callchain_cursor *cursor,
			    u64 ip, struct map *map, struct symbol *sym)
438
{
439
	struct callchain_cursor_node *node = *cursor->last;
440

441
	if (!node) {
442
		node = calloc(1, sizeof(*node));
443 444
		if (!node)
			return -ENOMEM;
445

446 447
		*cursor->last = node;
	}
448

449 450 451
	node->ip = ip;
	node->map = map;
	node->sym = sym;
452

453
	cursor->nr++;
454

455 456 457
	cursor->last = &node->next;

	return 0;
458
}