pwm-tegra.c 9.87 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6
/*
 * drivers/pwm/pwm-tegra.c
 *
 * Tegra pulse-width-modulation controller driver
 *
7
 * Copyright (c) 2010-2020, NVIDIA Corporation.
8
 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 * Overview of Tegra Pulse Width Modulator Register:
 * 1. 13-bit: Frequency division (SCALE)
 * 2. 8-bit : Pulse division (DUTY)
 * 3. 1-bit : Enable bit
 *
 * The PWM clock frequency is divided by 256 before subdividing it based
 * on the programmable frequency division value to generate the required
 * frequency for PWM output. The maximum output frequency that can be
 * achieved is (max rate of source clock) / 256.
 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
 * 408 MHz/256 = 1.6 MHz.
 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
 *
 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
 * To achieve 100% duty cycle, program Bit [24] of this register to
 * 1’b1. In which case the other bits [23:16] are set to don't care.
 *
 * Limitations:
 * -	When PWM is disabled, the output is driven to inactive.
 * -	It does not allow the current PWM period to complete and
 *	stops abruptly.
 *
 * -	If the register is reconfigured while PWM is running,
 *	it does not complete the currently running period.
 *
 * -	If the user input duty is beyond acceptible limits,
 *	-EINVAL is returned.
37 38 39 40 41 42 43
 */

#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
44
#include <linux/of_device.h>
45 46
#include <linux/pwm.h>
#include <linux/platform_device.h>
47
#include <linux/pinctrl/consumer.h>
48
#include <linux/slab.h>
49
#include <linux/reset.h>
50 51 52 53 54 55 56

#define PWM_ENABLE	(1 << 31)
#define PWM_DUTY_WIDTH	8
#define PWM_DUTY_SHIFT	16
#define PWM_SCALE_WIDTH	13
#define PWM_SCALE_SHIFT	0

57 58
struct tegra_pwm_soc {
	unsigned int num_channels;
59 60 61

	/* Maximum IP frequency for given SoCs */
	unsigned long max_frequency;
62 63
};

64
struct tegra_pwm_chip {
65 66
	struct pwm_chip chip;
	struct device *dev;
67

68
	struct clk *clk;
69
	struct reset_control*rst;
70

71
	unsigned long clk_rate;
72
	unsigned long min_period_ns;
73

74
	void __iomem *regs;
75 76

	const struct tegra_pwm_soc *soc;
77 78 79 80 81 82 83 84 85
};

static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
{
	return container_of(chip, struct tegra_pwm_chip, chip);
}

static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
{
86
	return readl(chip->regs + (num << 4));
87 88 89 90 91
}

static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
			     unsigned long val)
{
92
	writel(val, chip->regs + (num << 4));
93 94 95 96 97 98
}

static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
			    int duty_ns, int period_ns)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
99
	unsigned long long c = duty_ns, hz;
100
	unsigned long rate, required_clk_rate;
101 102 103 104 105 106 107 108
	u32 val = 0;
	int err;

	/*
	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
	 * nearest integer during division.
	 */
109
	c *= (1 << PWM_DUTY_WIDTH);
110
	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
111 112 113

	val = (u32)c << PWM_DUTY_SHIFT;

114 115 116 117 118 119
	/*
	 *  min period = max clock limit >> PWM_DUTY_WIDTH
	 */
	if (period_ns < pc->min_period_ns)
		return -EINVAL;

120 121 122
	/*
	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
	 * cycles at the PWM clock rate will take period_ns nanoseconds.
123 124 125 126 127 128 129 130 131
	 *
	 * num_channels: If single instance of PWM controller has multiple
	 * channels (e.g. Tegra210 or older) then it is not possible to
	 * configure separate clock rates to each of the channels, in such
	 * case the value stored during probe will be referred.
	 *
	 * If every PWM controller instance has one channel respectively, i.e.
	 * nums_channels == 1 then only the clock rate can be modified
	 * dynamically (e.g. Tegra186 or Tegra194).
132
	 */
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	if (pc->soc->num_channels == 1) {
		/*
		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
		 * with the maximum possible rate that the controller can
		 * provide. Any further lower value can be derived by setting
		 * PFM bits[0:12].
		 *
		 * required_clk_rate is a reference rate for source clock and
		 * it is derived based on user requested period. By setting the
		 * source clock rate as required_clk_rate, PWM controller will
		 * be able to configure the requested period.
		 */
		required_clk_rate =
			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;

		err = clk_set_rate(pc->clk, required_clk_rate);
		if (err < 0)
			return -EINVAL;

		/* Store the new rate for further references */
		pc->clk_rate = clk_get_rate(pc->clk);
	}

156
	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
157

158
	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
159 160
	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
161 162 163

	/*
	 * Since the actual PWM divider is the register's frequency divider
164
	 * field plus 1, we need to decrement to get the correct value to
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
	 * write to the register.
	 */
	if (rate > 0)
		rate--;

	/*
	 * Make sure that the rate will fit in the register's frequency
	 * divider field.
	 */
	if (rate >> PWM_SCALE_WIDTH)
		return -EINVAL;

	val |= rate << PWM_SCALE_SHIFT;

	/*
	 * If the PWM channel is disabled, make sure to turn on the clock
	 * before writing the register. Otherwise, keep it enabled.
	 */
183
	if (!pwm_is_enabled(pwm)) {
184 185 186 187 188 189 190 191 192 193 194
		err = clk_prepare_enable(pc->clk);
		if (err < 0)
			return err;
	} else
		val |= PWM_ENABLE;

	pwm_writel(pc, pwm->hwpwm, val);

	/*
	 * If the PWM is not enabled, turn the clock off again to save power.
	 */
195
	if (!pwm_is_enabled(pwm))
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
		clk_disable_unprepare(pc->clk);

	return 0;
}

static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	int rc = 0;
	u32 val;

	rc = clk_prepare_enable(pc->clk);
	if (rc < 0)
		return rc;

	val = pwm_readl(pc, pwm->hwpwm);
	val |= PWM_ENABLE;
	pwm_writel(pc, pwm->hwpwm, val);

	return 0;
}

static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	u32 val;

	val = pwm_readl(pc, pwm->hwpwm);
	val &= ~PWM_ENABLE;
	pwm_writel(pc, pwm->hwpwm, val);

	clk_disable_unprepare(pc->clk);
}

static const struct pwm_ops tegra_pwm_ops = {
	.config = tegra_pwm_config,
	.enable = tegra_pwm_enable,
	.disable = tegra_pwm_disable,
	.owner = THIS_MODULE,
};

static int tegra_pwm_probe(struct platform_device *pdev)
{
	struct tegra_pwm_chip *pwm;
	struct resource *r;
	int ret;

	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
244
	if (!pwm)
245 246
		return -ENOMEM;

247
	pwm->soc = of_device_get_match_data(&pdev->dev);
248 249 250
	pwm->dev = &pdev->dev;

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
251 252 253
	pwm->regs = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(pwm->regs))
		return PTR_ERR(pwm->regs);
254 255 256

	platform_set_drvdata(pdev, pwm);

257
	pwm->clk = devm_clk_get(&pdev->dev, NULL);
258 259 260
	if (IS_ERR(pwm->clk))
		return PTR_ERR(pwm->clk);

261 262 263 264 265 266 267 268 269 270 271 272
	/* Set maximum frequency of the IP */
	ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
		return ret;
	}

	/*
	 * The requested and configured frequency may differ due to
	 * clock register resolutions. Get the configured frequency
	 * so that PWM period can be calculated more accurately.
	 */
273 274
	pwm->clk_rate = clk_get_rate(pwm->clk);

275 276 277 278
	/* Set minimum limit of PWM period for the IP */
	pwm->min_period_ns =
	    (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;

279
	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
280 281 282 283 284 285 286 287
	if (IS_ERR(pwm->rst)) {
		ret = PTR_ERR(pwm->rst);
		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
		return ret;
	}

	reset_control_deassert(pwm->rst);

288 289 290
	pwm->chip.dev = &pdev->dev;
	pwm->chip.ops = &tegra_pwm_ops;
	pwm->chip.base = -1;
291
	pwm->chip.npwm = pwm->soc->num_channels;
292 293 294 295

	ret = pwmchip_add(&pwm->chip);
	if (ret < 0) {
		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
296
		reset_control_assert(pwm->rst);
297 298 299 300 301 302
		return ret;
	}

	return 0;
}

303
static int tegra_pwm_remove(struct platform_device *pdev)
304 305
{
	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
306
	unsigned int i;
307
	int err;
308 309 310 311

	if (WARN_ON(!pc))
		return -ENODEV;

312 313 314 315
	err = clk_prepare_enable(pc->clk);
	if (err < 0)
		return err;

316
	for (i = 0; i < pc->chip.npwm; i++) {
317 318
		struct pwm_device *pwm = &pc->chip.pwms[i];

319
		if (!pwm_is_enabled(pwm))
320 321 322 323 324 325 326 327
			if (clk_prepare_enable(pc->clk) < 0)
				continue;

		pwm_writel(pc, i, 0);

		clk_disable_unprepare(pc->clk);
	}

328 329 330
	reset_control_assert(pc->rst);
	clk_disable_unprepare(pc->clk);

331
	return pwmchip_remove(&pc->chip);
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345
#ifdef CONFIG_PM_SLEEP
static int tegra_pwm_suspend(struct device *dev)
{
	return pinctrl_pm_select_sleep_state(dev);
}

static int tegra_pwm_resume(struct device *dev)
{
	return pinctrl_pm_select_default_state(dev);
}
#endif

346 347
static const struct tegra_pwm_soc tegra20_pwm_soc = {
	.num_channels = 4,
348
	.max_frequency = 48000000UL,
349 350 351 352
};

static const struct tegra_pwm_soc tegra186_pwm_soc = {
	.num_channels = 1,
353
	.max_frequency = 102000000UL,
354 355
};

356 357 358 359 360
static const struct tegra_pwm_soc tegra194_pwm_soc = {
	.num_channels = 1,
	.max_frequency = 408000000UL,
};

361
static const struct of_device_id tegra_pwm_of_match[] = {
362 363
	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
364
	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
365 366 367 368
	{ }
};
MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);

369 370 371 372
static const struct dev_pm_ops tegra_pwm_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
};

373 374 375
static struct platform_driver tegra_pwm_driver = {
	.driver = {
		.name = "tegra-pwm",
376
		.of_match_table = tegra_pwm_of_match,
377
		.pm = &tegra_pwm_pm_ops,
378 379
	},
	.probe = tegra_pwm_probe,
380
	.remove = tegra_pwm_remove,
381 382 383 384 385
};

module_platform_driver(tegra_pwm_driver);

MODULE_LICENSE("GPL");
386 387
MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
MODULE_DESCRIPTION("Tegra PWM controller driver");
388
MODULE_ALIAS("platform:tegra-pwm");