xilinx_dma.c 72.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * DMA driver for Xilinx Video DMA Engine
 *
 * Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved.
 *
 * Based on the Freescale DMA driver.
 *
 * Description:
 * The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP
 * core that provides high-bandwidth direct memory access between memory
 * and AXI4-Stream type video target peripherals. The core provides efficient
 * two dimensional DMA operations with independent asynchronous read (S2MM)
 * and write (MM2S) channel operation. It can be configured to have either
 * one channel or two channels. If configured as two channels, one is to
 * transmit to the video device (MM2S) and another is to receive from the
 * video device (S2MM). Initialization, status, interrupt and management
 * registers are accessed through an AXI4-Lite slave interface.
 *
19 20 21 22 23
 * The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that
 * provides high-bandwidth one dimensional direct memory access between memory
 * and AXI4-Stream target peripherals. It supports one receive and one
 * transmit channel, both of them optional at synthesis time.
 *
24 25 26 27
 * The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory
 * Access (DMA) between a memory-mapped source address and a memory-mapped
 * destination address.
 *
28 29 30 31 32 33 34 35
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/bitops.h>
#include <linux/dmapool.h>
36
#include <linux/dma/xilinx_dma.h>
37 38 39
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
40
#include <linux/iopoll.h>
41 42 43 44 45 46
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_dma.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
47
#include <linux/clk.h>
48
#include <linux/io-64-nonatomic-lo-hi.h>
49 50 51 52

#include "../dmaengine.h"

/* Register/Descriptor Offsets */
53 54
#define XILINX_DMA_MM2S_CTRL_OFFSET		0x0000
#define XILINX_DMA_S2MM_CTRL_OFFSET		0x0030
55 56 57 58
#define XILINX_VDMA_MM2S_DESC_OFFSET		0x0050
#define XILINX_VDMA_S2MM_DESC_OFFSET		0x00a0

/* Control Registers */
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
#define XILINX_DMA_REG_DMACR			0x0000
#define XILINX_DMA_DMACR_DELAY_MAX		0xff
#define XILINX_DMA_DMACR_DELAY_SHIFT		24
#define XILINX_DMA_DMACR_FRAME_COUNT_MAX	0xff
#define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT	16
#define XILINX_DMA_DMACR_ERR_IRQ		BIT(14)
#define XILINX_DMA_DMACR_DLY_CNT_IRQ		BIT(13)
#define XILINX_DMA_DMACR_FRM_CNT_IRQ		BIT(12)
#define XILINX_DMA_DMACR_MASTER_SHIFT		8
#define XILINX_DMA_DMACR_FSYNCSRC_SHIFT	5
#define XILINX_DMA_DMACR_FRAMECNT_EN		BIT(4)
#define XILINX_DMA_DMACR_GENLOCK_EN		BIT(3)
#define XILINX_DMA_DMACR_RESET			BIT(2)
#define XILINX_DMA_DMACR_CIRC_EN		BIT(1)
#define XILINX_DMA_DMACR_RUNSTOP		BIT(0)
#define XILINX_DMA_DMACR_FSYNCSRC_MASK		GENMASK(6, 5)

#define XILINX_DMA_REG_DMASR			0x0004
#define XILINX_DMA_DMASR_EOL_LATE_ERR		BIT(15)
#define XILINX_DMA_DMASR_ERR_IRQ		BIT(14)
#define XILINX_DMA_DMASR_DLY_CNT_IRQ		BIT(13)
#define XILINX_DMA_DMASR_FRM_CNT_IRQ		BIT(12)
#define XILINX_DMA_DMASR_SOF_LATE_ERR		BIT(11)
#define XILINX_DMA_DMASR_SG_DEC_ERR		BIT(10)
#define XILINX_DMA_DMASR_SG_SLV_ERR		BIT(9)
#define XILINX_DMA_DMASR_EOF_EARLY_ERR		BIT(8)
#define XILINX_DMA_DMASR_SOF_EARLY_ERR		BIT(7)
#define XILINX_DMA_DMASR_DMA_DEC_ERR		BIT(6)
#define XILINX_DMA_DMASR_DMA_SLAVE_ERR		BIT(5)
#define XILINX_DMA_DMASR_DMA_INT_ERR		BIT(4)
#define XILINX_DMA_DMASR_IDLE			BIT(1)
#define XILINX_DMA_DMASR_HALTED		BIT(0)
#define XILINX_DMA_DMASR_DELAY_MASK		GENMASK(31, 24)
#define XILINX_DMA_DMASR_FRAME_COUNT_MASK	GENMASK(23, 16)

#define XILINX_DMA_REG_CURDESC			0x0008
#define XILINX_DMA_REG_TAILDESC		0x0010
#define XILINX_DMA_REG_REG_INDEX		0x0014
#define XILINX_DMA_REG_FRMSTORE		0x0018
#define XILINX_DMA_REG_THRESHOLD		0x001c
#define XILINX_DMA_REG_FRMPTR_STS		0x0024
#define XILINX_DMA_REG_PARK_PTR		0x0028
#define XILINX_DMA_PARK_PTR_WR_REF_SHIFT	8
#define XILINX_DMA_PARK_PTR_RD_REF_SHIFT	0
#define XILINX_DMA_REG_VDMA_VERSION		0x002c
104 105

/* Register Direct Mode Registers */
106 107
#define XILINX_DMA_REG_VSIZE			0x0000
#define XILINX_DMA_REG_HSIZE			0x0004
108

109 110 111
#define XILINX_DMA_REG_FRMDLY_STRIDE		0x0008
#define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT	24
#define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT	0
112 113

#define XILINX_VDMA_REG_START_ADDRESS(n)	(0x000c + 4 * (n))
114
#define XILINX_VDMA_REG_START_ADDRESS_64(n)	(0x000c + 8 * (n))
115 116

/* HW specific definitions */
117
#define XILINX_DMA_MAX_CHANS_PER_DEVICE	0x20
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

#define XILINX_DMA_DMAXR_ALL_IRQ_MASK	\
		(XILINX_DMA_DMASR_FRM_CNT_IRQ | \
		 XILINX_DMA_DMASR_DLY_CNT_IRQ | \
		 XILINX_DMA_DMASR_ERR_IRQ)

#define XILINX_DMA_DMASR_ALL_ERR_MASK	\
		(XILINX_DMA_DMASR_EOL_LATE_ERR | \
		 XILINX_DMA_DMASR_SOF_LATE_ERR | \
		 XILINX_DMA_DMASR_SG_DEC_ERR | \
		 XILINX_DMA_DMASR_SG_SLV_ERR | \
		 XILINX_DMA_DMASR_EOF_EARLY_ERR | \
		 XILINX_DMA_DMASR_SOF_EARLY_ERR | \
		 XILINX_DMA_DMASR_DMA_DEC_ERR | \
		 XILINX_DMA_DMASR_DMA_SLAVE_ERR | \
		 XILINX_DMA_DMASR_DMA_INT_ERR)
134 135 136 137 138 139

/*
 * Recoverable errors are DMA Internal error, SOF Early, EOF Early
 * and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC
 * is enabled in the h/w system.
 */
140 141 142 143 144
#define XILINX_DMA_DMASR_ERR_RECOVER_MASK	\
		(XILINX_DMA_DMASR_SOF_LATE_ERR | \
		 XILINX_DMA_DMASR_EOF_EARLY_ERR | \
		 XILINX_DMA_DMASR_SOF_EARLY_ERR | \
		 XILINX_DMA_DMASR_DMA_INT_ERR)
145 146

/* Axi VDMA Flush on Fsync bits */
147 148 149
#define XILINX_DMA_FLUSH_S2MM		3
#define XILINX_DMA_FLUSH_MM2S		2
#define XILINX_DMA_FLUSH_BOTH		1
150 151

/* Delay loop counter to prevent hardware failure */
152
#define XILINX_DMA_LOOP_COUNT		1000000
153

154 155 156 157 158 159 160
/* AXI DMA Specific Registers/Offsets */
#define XILINX_DMA_REG_SRCDSTADDR	0x18
#define XILINX_DMA_REG_BTT		0x28

/* AXI DMA Specific Masks/Bit fields */
#define XILINX_DMA_MAX_TRANS_LEN	GENMASK(22, 0)
#define XILINX_DMA_CR_COALESCE_MAX	GENMASK(23, 16)
161
#define XILINX_DMA_CR_CYCLIC_BD_EN_MASK	BIT(4)
162 163 164 165 166 167
#define XILINX_DMA_CR_COALESCE_SHIFT	16
#define XILINX_DMA_BD_SOP		BIT(27)
#define XILINX_DMA_BD_EOP		BIT(26)
#define XILINX_DMA_COALESCE_MAX		255
#define XILINX_DMA_NUM_APP_WORDS	5

168 169 170 171 172 173 174 175 176 177 178 179
/* Multi-Channel DMA Descriptor offsets*/
#define XILINX_DMA_MCRX_CDESC(x)	(0x40 + (x-1) * 0x20)
#define XILINX_DMA_MCRX_TDESC(x)	(0x48 + (x-1) * 0x20)

/* Multi-Channel DMA Masks/Shifts */
#define XILINX_DMA_BD_HSIZE_MASK	GENMASK(15, 0)
#define XILINX_DMA_BD_STRIDE_MASK	GENMASK(15, 0)
#define XILINX_DMA_BD_VSIZE_MASK	GENMASK(31, 19)
#define XILINX_DMA_BD_TDEST_MASK	GENMASK(4, 0)
#define XILINX_DMA_BD_STRIDE_SHIFT	0
#define XILINX_DMA_BD_VSIZE_SHIFT	19

180 181 182 183 184 185
/* AXI CDMA Specific Registers/Offsets */
#define XILINX_CDMA_REG_SRCADDR		0x18
#define XILINX_CDMA_REG_DSTADDR		0x20

/* AXI CDMA Specific Masks */
#define XILINX_CDMA_CR_SGMODE          BIT(3)
186 187 188 189 190 191

/**
 * struct xilinx_vdma_desc_hw - Hardware Descriptor
 * @next_desc: Next Descriptor Pointer @0x00
 * @pad1: Reserved @0x04
 * @buf_addr: Buffer address @0x08
192
 * @buf_addr_msb: MSB of Buffer address @0x0C
193 194 195 196 197 198 199 200 201
 * @vsize: Vertical Size @0x10
 * @hsize: Horizontal Size @0x14
 * @stride: Number of bytes between the first
 *	    pixels of each horizontal line @0x18
 */
struct xilinx_vdma_desc_hw {
	u32 next_desc;
	u32 pad1;
	u32 buf_addr;
202
	u32 buf_addr_msb;
203 204 205 206 207
	u32 vsize;
	u32 hsize;
	u32 stride;
} __aligned(64);

208 209 210
/**
 * struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA
 * @next_desc: Next Descriptor Pointer @0x00
211
 * @next_desc_msb: MSB of Next Descriptor Pointer @0x04
212
 * @buf_addr: Buffer address @0x08
213 214 215
 * @buf_addr_msb: MSB of Buffer address @0x0C
 * @pad1: Reserved @0x10
 * @pad2: Reserved @0x14
216 217 218 219 220 221
 * @control: Control field @0x18
 * @status: Status field @0x1C
 * @app: APP Fields @0x20 - 0x30
 */
struct xilinx_axidma_desc_hw {
	u32 next_desc;
222
	u32 next_desc_msb;
223
	u32 buf_addr;
224
	u32 buf_addr_msb;
225 226
	u32 mcdma_control;
	u32 vsize_stride;
227 228 229 230 231
	u32 control;
	u32 status;
	u32 app[XILINX_DMA_NUM_APP_WORDS];
} __aligned(64);

232 233 234
/**
 * struct xilinx_cdma_desc_hw - Hardware Descriptor
 * @next_desc: Next Descriptor Pointer @0x00
235
 * @next_descmsb: Next Descriptor Pointer MSB @0x04
236
 * @src_addr: Source address @0x08
237
 * @src_addrmsb: Source address MSB @0x0C
238
 * @dest_addr: Destination address @0x10
239
 * @dest_addrmsb: Destination address MSB @0x14
240 241 242 243 244
 * @control: Control field @0x18
 * @status: Status field @0x1C
 */
struct xilinx_cdma_desc_hw {
	u32 next_desc;
245
	u32 next_desc_msb;
246
	u32 src_addr;
247
	u32 src_addr_msb;
248
	u32 dest_addr;
249
	u32 dest_addr_msb;
250 251 252 253
	u32 control;
	u32 status;
} __aligned(64);

254 255 256 257 258 259 260 261 262 263 264 265 266
/**
 * struct xilinx_vdma_tx_segment - Descriptor segment
 * @hw: Hardware descriptor
 * @node: Node in the descriptor segments list
 * @phys: Physical address of segment
 */
struct xilinx_vdma_tx_segment {
	struct xilinx_vdma_desc_hw hw;
	struct list_head node;
	dma_addr_t phys;
} __aligned(64);

/**
267 268 269 270 271 272 273 274 275 276 277
 * struct xilinx_axidma_tx_segment - Descriptor segment
 * @hw: Hardware descriptor
 * @node: Node in the descriptor segments list
 * @phys: Physical address of segment
 */
struct xilinx_axidma_tx_segment {
	struct xilinx_axidma_desc_hw hw;
	struct list_head node;
	dma_addr_t phys;
} __aligned(64);

278 279 280 281 282 283 284 285 286 287 288 289
/**
 * struct xilinx_cdma_tx_segment - Descriptor segment
 * @hw: Hardware descriptor
 * @node: Node in the descriptor segments list
 * @phys: Physical address of segment
 */
struct xilinx_cdma_tx_segment {
	struct xilinx_cdma_desc_hw hw;
	struct list_head node;
	dma_addr_t phys;
} __aligned(64);

290
/**
291
 * struct xilinx_dma_tx_descriptor - Per Transaction structure
292 293 294
 * @async_tx: Async transaction descriptor
 * @segments: TX segments list
 * @node: Node in the channel descriptors list
295
 * @cyclic: Check for cyclic transfers.
296
 */
297
struct xilinx_dma_tx_descriptor {
298 299 300
	struct dma_async_tx_descriptor async_tx;
	struct list_head segments;
	struct list_head node;
301
	bool cyclic;
302 303 304
};

/**
305
 * struct xilinx_dma_chan - Driver specific DMA channel structure
306 307 308 309 310
 * @xdev: Driver specific device structure
 * @ctrl_offset: Control registers offset
 * @desc_offset: TX descriptor registers offset
 * @lock: Descriptor operation lock
 * @pending_list: Descriptors waiting
311
 * @active_list: Descriptors ready to submit
312 313 314 315 316 317 318 319 320
 * @done_list: Complete descriptors
 * @common: DMA common channel
 * @desc_pool: Descriptors pool
 * @dev: The dma device
 * @irq: Channel IRQ
 * @id: Channel ID
 * @direction: Transfer direction
 * @num_frms: Number of frames
 * @has_sg: Support scatter transfers
321
 * @cyclic: Check for cyclic transfers.
322 323
 * @genlock: Support genlock mode
 * @err: Channel has errors
324
 * @idle: Check for channel idle
325 326 327
 * @tasklet: Cleanup work after irq
 * @config: Device configuration info
 * @flush_on_fsync: Flush on Frame sync
328
 * @desc_pendingcount: Descriptor pending count
329
 * @ext_addr: Indicates 64 bit addressing is supported by dma channel
330
 * @desc_submitcount: Descriptor h/w submitted count
331 332
 * @residue: Residue for AXI DMA
 * @seg_v: Statically allocated segments base
333
 * @cyclic_seg_v: Statically allocated segment base for cyclic transfers
334
 * @start_transfer: Differentiate b/w DMA IP's transfer
335
 * @stop_transfer: Differentiate b/w DMA IP's quiesce
336
 */
337 338
struct xilinx_dma_chan {
	struct xilinx_dma_device *xdev;
339 340 341 342
	u32 ctrl_offset;
	u32 desc_offset;
	spinlock_t lock;
	struct list_head pending_list;
343
	struct list_head active_list;
344 345 346 347 348 349 350 351 352
	struct list_head done_list;
	struct dma_chan common;
	struct dma_pool *desc_pool;
	struct device *dev;
	int irq;
	int id;
	enum dma_transfer_direction direction;
	int num_frms;
	bool has_sg;
353
	bool cyclic;
354 355
	bool genlock;
	bool err;
356
	bool idle;
357 358 359
	struct tasklet_struct tasklet;
	struct xilinx_vdma_config config;
	bool flush_on_fsync;
360
	u32 desc_pendingcount;
361
	bool ext_addr;
362
	u32 desc_submitcount;
363 364
	u32 residue;
	struct xilinx_axidma_tx_segment *seg_v;
365
	struct xilinx_axidma_tx_segment *cyclic_seg_v;
366
	void (*start_transfer)(struct xilinx_dma_chan *chan);
367
	int (*stop_transfer)(struct xilinx_dma_chan *chan);
368
	u16 tdest;
369 370
};

371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * enum xdma_ip_type: DMA IP type.
 *
 * XDMA_TYPE_AXIDMA: Axi dma ip.
 * XDMA_TYPE_CDMA: Axi cdma ip.
 * XDMA_TYPE_VDMA: Axi vdma ip.
 *
 */
enum xdma_ip_type {
	XDMA_TYPE_AXIDMA = 0,
	XDMA_TYPE_CDMA,
	XDMA_TYPE_VDMA,
};

385 386
struct xilinx_dma_config {
	enum xdma_ip_type dmatype;
387 388 389
	int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk,
			struct clk **tx_clk, struct clk **txs_clk,
			struct clk **rx_clk, struct clk **rxs_clk);
390 391 392
};

/**
393
 * struct xilinx_dma_device - DMA device structure
394 395 396
 * @regs: I/O mapped base address
 * @dev: Device Structure
 * @common: DMA device structure
397
 * @chan: Driver specific DMA channel
398
 * @has_sg: Specifies whether Scatter-Gather is present or not
399
 * @mcdma: Specifies whether Multi-Channel is present or not
400
 * @flush_on_fsync: Flush on frame sync
401
 * @ext_addr: Indicates 64 bit addressing is supported by dma device
402
 * @pdev: Platform device structure pointer
403
 * @dma_config: DMA config structure
404 405 406 407 408
 * @axi_clk: DMA Axi4-lite interace clock
 * @tx_clk: DMA mm2s clock
 * @txs_clk: DMA mm2s stream clock
 * @rx_clk: DMA s2mm clock
 * @rxs_clk: DMA s2mm stream clock
409 410
 * @nr_channels: Number of channels DMA device supports
 * @chan_id: DMA channel identifier
411
 */
412
struct xilinx_dma_device {
413 414 415
	void __iomem *regs;
	struct device *dev;
	struct dma_device common;
416
	struct xilinx_dma_chan *chan[XILINX_DMA_MAX_CHANS_PER_DEVICE];
417
	bool has_sg;
418
	bool mcdma;
419
	u32 flush_on_fsync;
420
	bool ext_addr;
421
	struct platform_device  *pdev;
422
	const struct xilinx_dma_config *dma_config;
423 424 425 426 427
	struct clk *axi_clk;
	struct clk *tx_clk;
	struct clk *txs_clk;
	struct clk *rx_clk;
	struct clk *rxs_clk;
428 429
	u32 nr_channels;
	u32 chan_id;
430 431 432 433
};

/* Macros */
#define to_xilinx_chan(chan) \
434 435 436 437
	container_of(chan, struct xilinx_dma_chan, common)
#define to_dma_tx_descriptor(tx) \
	container_of(tx, struct xilinx_dma_tx_descriptor, async_tx)
#define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \
438 439
	readl_poll_timeout(chan->xdev->regs + chan->ctrl_offset + reg, val, \
			   cond, delay_us, timeout_us)
440 441

/* IO accessors */
442
static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg)
443 444 445 446
{
	return ioread32(chan->xdev->regs + reg);
}

447
static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value)
448 449 450 451
{
	iowrite32(value, chan->xdev->regs + reg);
}

452
static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg,
453 454
				   u32 value)
{
455
	dma_write(chan, chan->desc_offset + reg, value);
456 457
}

458
static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg)
459
{
460
	return dma_read(chan, chan->ctrl_offset + reg);
461 462
}

463
static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg,
464 465
				   u32 value)
{
466
	dma_write(chan, chan->ctrl_offset + reg, value);
467 468
}

469
static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg,
470 471
				 u32 clr)
{
472
	dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr);
473 474
}

475
static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg,
476 477
				 u32 set)
{
478
	dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set);
479 480
}

481 482 483 484 485 486 487 488 489 490 491
/**
 * vdma_desc_write_64 - 64-bit descriptor write
 * @chan: Driver specific VDMA channel
 * @reg: Register to write
 * @value_lsb: lower address of the descriptor.
 * @value_msb: upper address of the descriptor.
 *
 * Since vdma driver is trying to write to a register offset which is not a
 * multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits
 * instead of a single 64 bit register write.
 */
492
static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg,
493 494 495 496 497 498 499
				      u32 value_lsb, u32 value_msb)
{
	/* Write the lsb 32 bits*/
	writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg);

	/* Write the msb 32 bits */
	writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4);
500 501
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value)
{
	lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg);
}

static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg,
				dma_addr_t addr)
{
	if (chan->ext_addr)
		dma_writeq(chan, reg, addr);
	else
		dma_ctrl_write(chan, reg, addr);
}

static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan,
				     struct xilinx_axidma_desc_hw *hw,
				     dma_addr_t buf_addr, size_t sg_used,
				     size_t period_len)
{
	if (chan->ext_addr) {
		hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len);
		hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used +
						 period_len);
	} else {
		hw->buf_addr = buf_addr + sg_used + period_len;
	}
}

530 531 532 533 534 535
/* -----------------------------------------------------------------------------
 * Descriptors and segments alloc and free
 */

/**
 * xilinx_vdma_alloc_tx_segment - Allocate transaction segment
536
 * @chan: Driver specific DMA channel
537 538 539 540
 *
 * Return: The allocated segment on success and NULL on failure.
 */
static struct xilinx_vdma_tx_segment *
541
xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
542 543 544 545
{
	struct xilinx_vdma_tx_segment *segment;
	dma_addr_t phys;

546
	segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
547 548 549 550 551 552 553 554
	if (!segment)
		return NULL;

	segment->phys = phys;

	return segment;
}

555 556 557 558 559 560 561 562 563 564 565 566
/**
 * xilinx_cdma_alloc_tx_segment - Allocate transaction segment
 * @chan: Driver specific DMA channel
 *
 * Return: The allocated segment on success and NULL on failure.
 */
static struct xilinx_cdma_tx_segment *
xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
{
	struct xilinx_cdma_tx_segment *segment;
	dma_addr_t phys;

567
	segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
568 569 570 571 572 573 574 575
	if (!segment)
		return NULL;

	segment->phys = phys;

	return segment;
}

576 577 578 579 580 581 582 583 584 585 586 587
/**
 * xilinx_axidma_alloc_tx_segment - Allocate transaction segment
 * @chan: Driver specific DMA channel
 *
 * Return: The allocated segment on success and NULL on failure.
 */
static struct xilinx_axidma_tx_segment *
xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan)
{
	struct xilinx_axidma_tx_segment *segment;
	dma_addr_t phys;

588
	segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
589 590 591 592 593 594 595 596
	if (!segment)
		return NULL;

	segment->phys = phys;

	return segment;
}

597 598 599 600 601 602 603 604 605 606 607
/**
 * xilinx_dma_free_tx_segment - Free transaction segment
 * @chan: Driver specific DMA channel
 * @segment: DMA transaction segment
 */
static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan,
				struct xilinx_axidma_tx_segment *segment)
{
	dma_pool_free(chan->desc_pool, segment, segment->phys);
}

608 609 610 611 612 613 614 615 616 617 618
/**
 * xilinx_cdma_free_tx_segment - Free transaction segment
 * @chan: Driver specific DMA channel
 * @segment: DMA transaction segment
 */
static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan,
				struct xilinx_cdma_tx_segment *segment)
{
	dma_pool_free(chan->desc_pool, segment, segment->phys);
}

619 620
/**
 * xilinx_vdma_free_tx_segment - Free transaction segment
621 622
 * @chan: Driver specific DMA channel
 * @segment: DMA transaction segment
623
 */
624
static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan,
625 626 627 628 629 630
					struct xilinx_vdma_tx_segment *segment)
{
	dma_pool_free(chan->desc_pool, segment, segment->phys);
}

/**
631 632
 * xilinx_dma_tx_descriptor - Allocate transaction descriptor
 * @chan: Driver specific DMA channel
633 634 635
 *
 * Return: The allocated descriptor on success and NULL on failure.
 */
636 637
static struct xilinx_dma_tx_descriptor *
xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan)
638
{
639
	struct xilinx_dma_tx_descriptor *desc;
640 641 642 643 644 645 646 647 648 649 650

	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
	if (!desc)
		return NULL;

	INIT_LIST_HEAD(&desc->segments);

	return desc;
}

/**
651 652 653
 * xilinx_dma_free_tx_descriptor - Free transaction descriptor
 * @chan: Driver specific DMA channel
 * @desc: DMA transaction descriptor
654 655
 */
static void
656 657
xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan,
			       struct xilinx_dma_tx_descriptor *desc)
658 659
{
	struct xilinx_vdma_tx_segment *segment, *next;
660
	struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next;
661
	struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next;
662 663 664 665

	if (!desc)
		return;

666
	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
667 668 669 670
		list_for_each_entry_safe(segment, next, &desc->segments, node) {
			list_del(&segment->node);
			xilinx_vdma_free_tx_segment(chan, segment);
		}
671
	} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
672 673 674 675 676
		list_for_each_entry_safe(cdma_segment, cdma_next,
					 &desc->segments, node) {
			list_del(&cdma_segment->node);
			xilinx_cdma_free_tx_segment(chan, cdma_segment);
		}
677 678 679 680 681 682
	} else {
		list_for_each_entry_safe(axidma_segment, axidma_next,
					 &desc->segments, node) {
			list_del(&axidma_segment->node);
			xilinx_dma_free_tx_segment(chan, axidma_segment);
		}
683 684 685 686 687 688 689 690
	}

	kfree(desc);
}

/* Required functions */

/**
691 692
 * xilinx_dma_free_desc_list - Free descriptors list
 * @chan: Driver specific DMA channel
693 694
 * @list: List to parse and delete the descriptor
 */
695
static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan,
696 697
					struct list_head *list)
{
698
	struct xilinx_dma_tx_descriptor *desc, *next;
699 700 701

	list_for_each_entry_safe(desc, next, list, node) {
		list_del(&desc->node);
702
		xilinx_dma_free_tx_descriptor(chan, desc);
703 704 705 706
	}
}

/**
707 708
 * xilinx_dma_free_descriptors - Free channel descriptors
 * @chan: Driver specific DMA channel
709
 */
710
static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan)
711 712 713 714 715
{
	unsigned long flags;

	spin_lock_irqsave(&chan->lock, flags);

716 717 718
	xilinx_dma_free_desc_list(chan, &chan->pending_list);
	xilinx_dma_free_desc_list(chan, &chan->done_list);
	xilinx_dma_free_desc_list(chan, &chan->active_list);
719 720 721 722 723

	spin_unlock_irqrestore(&chan->lock, flags);
}

/**
724
 * xilinx_dma_free_chan_resources - Free channel resources
725 726
 * @dchan: DMA channel
 */
727
static void xilinx_dma_free_chan_resources(struct dma_chan *dchan)
728
{
729
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
730 731 732

	dev_dbg(chan->dev, "Free all channel resources.\n");

733
	xilinx_dma_free_descriptors(chan);
734 735
	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
		xilinx_dma_free_tx_segment(chan, chan->cyclic_seg_v);
736
		xilinx_dma_free_tx_segment(chan, chan->seg_v);
737
	}
738 739 740 741
	dma_pool_destroy(chan->desc_pool);
	chan->desc_pool = NULL;
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * xilinx_dma_chan_handle_cyclic - Cyclic dma callback
 * @chan: Driver specific dma channel
 * @desc: dma transaction descriptor
 * @flags: flags for spin lock
 */
static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan,
					  struct xilinx_dma_tx_descriptor *desc,
					  unsigned long *flags)
{
	dma_async_tx_callback callback;
	void *callback_param;

	callback = desc->async_tx.callback;
	callback_param = desc->async_tx.callback_param;
	if (callback) {
		spin_unlock_irqrestore(&chan->lock, *flags);
		callback(callback_param);
		spin_lock_irqsave(&chan->lock, *flags);
	}
}

764
/**
765 766
 * xilinx_dma_chan_desc_cleanup - Clean channel descriptors
 * @chan: Driver specific DMA channel
767
 */
768
static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan)
769
{
770
	struct xilinx_dma_tx_descriptor *desc, *next;
771 772 773 774 775
	unsigned long flags;

	spin_lock_irqsave(&chan->lock, flags);

	list_for_each_entry_safe(desc, next, &chan->done_list, node) {
776
		struct dmaengine_desc_callback cb;
777

778 779 780 781 782
		if (desc->cyclic) {
			xilinx_dma_chan_handle_cyclic(chan, desc, &flags);
			break;
		}

783 784 785 786
		/* Remove from the list of running transactions */
		list_del(&desc->node);

		/* Run the link descriptor callback function */
787 788
		dmaengine_desc_get_callback(&desc->async_tx, &cb);
		if (dmaengine_desc_callback_valid(&cb)) {
789
			spin_unlock_irqrestore(&chan->lock, flags);
790
			dmaengine_desc_callback_invoke(&cb, NULL);
791 792 793 794 795
			spin_lock_irqsave(&chan->lock, flags);
		}

		/* Run any dependencies, then free the descriptor */
		dma_run_dependencies(&desc->async_tx);
796
		xilinx_dma_free_tx_descriptor(chan, desc);
797 798 799 800 801 802
	}

	spin_unlock_irqrestore(&chan->lock, flags);
}

/**
803 804
 * xilinx_dma_do_tasklet - Schedule completion tasklet
 * @data: Pointer to the Xilinx DMA channel structure
805
 */
806
static void xilinx_dma_do_tasklet(unsigned long data)
807
{
808
	struct xilinx_dma_chan *chan = (struct xilinx_dma_chan *)data;
809

810
	xilinx_dma_chan_desc_cleanup(chan);
811 812 813
}

/**
814
 * xilinx_dma_alloc_chan_resources - Allocate channel resources
815 816 817 818
 * @dchan: DMA channel
 *
 * Return: '0' on success and failure value on error
 */
819
static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan)
820
{
821
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
822 823 824 825 826 827 828 829 830

	/* Has this channel already been allocated? */
	if (chan->desc_pool)
		return 0;

	/*
	 * We need the descriptor to be aligned to 64bytes
	 * for meeting Xilinx VDMA specification requirement.
	 */
831
	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
832 833 834 835 836
		chan->desc_pool = dma_pool_create("xilinx_dma_desc_pool",
				   chan->dev,
				   sizeof(struct xilinx_axidma_tx_segment),
				   __alignof__(struct xilinx_axidma_tx_segment),
				   0);
837
	} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
838 839 840 841 842
		chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool",
				   chan->dev,
				   sizeof(struct xilinx_cdma_tx_segment),
				   __alignof__(struct xilinx_cdma_tx_segment),
				   0);
843 844 845 846 847 848 849 850
	} else {
		chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool",
				     chan->dev,
				     sizeof(struct xilinx_vdma_tx_segment),
				     __alignof__(struct xilinx_vdma_tx_segment),
				     0);
	}

851 852 853 854 855 856 857
	if (!chan->desc_pool) {
		dev_err(chan->dev,
			"unable to allocate channel %d descriptor pool\n",
			chan->id);
		return -ENOMEM;
	}

858
	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
859 860 861 862 863 864 865 866 867 868
		/*
		 * For AXI DMA case after submitting a pending_list, keep
		 * an extra segment allocated so that the "next descriptor"
		 * pointer on the tail descriptor always points to a
		 * valid descriptor, even when paused after reaching taildesc.
		 * This way, it is possible to issue additional
		 * transfers without halting and restarting the channel.
		 */
		chan->seg_v = xilinx_axidma_alloc_tx_segment(chan);

869 870 871 872 873 874 875 876 877
		/*
		 * For cyclic DMA mode we need to program the tail Descriptor
		 * register with a value which is not a part of the BD chain
		 * so allocating a desc segment during channel allocation for
		 * programming tail descriptor.
		 */
		chan->cyclic_seg_v = xilinx_axidma_alloc_tx_segment(chan);
	}

878
	dma_cookie_init(dchan);
879

880
	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
881 882 883 884 885 886 887
		/* For AXI DMA resetting once channel will reset the
		 * other channel as well so enable the interrupts here.
		 */
		dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
			      XILINX_DMA_DMAXR_ALL_IRQ_MASK);
	}

888
	if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
889 890 891
		dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
			     XILINX_CDMA_CR_SGMODE);

892 893 894 895
	return 0;
}

/**
896
 * xilinx_dma_tx_status - Get DMA transaction status
897 898 899 900 901 902
 * @dchan: DMA channel
 * @cookie: Transaction identifier
 * @txstate: Transaction state
 *
 * Return: DMA transaction status
 */
903
static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan,
904 905 906
					dma_cookie_t cookie,
					struct dma_tx_state *txstate)
{
907 908 909 910 911 912 913 914 915 916 917 918
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
	struct xilinx_dma_tx_descriptor *desc;
	struct xilinx_axidma_tx_segment *segment;
	struct xilinx_axidma_desc_hw *hw;
	enum dma_status ret;
	unsigned long flags;
	u32 residue = 0;

	ret = dma_cookie_status(dchan, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

919
	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		spin_lock_irqsave(&chan->lock, flags);

		desc = list_last_entry(&chan->active_list,
				       struct xilinx_dma_tx_descriptor, node);
		if (chan->has_sg) {
			list_for_each_entry(segment, &desc->segments, node) {
				hw = &segment->hw;
				residue += (hw->control - hw->status) &
					   XILINX_DMA_MAX_TRANS_LEN;
			}
		}
		spin_unlock_irqrestore(&chan->lock, flags);

		chan->residue = residue;
		dma_set_residue(txstate, chan->residue);
	}

	return ret;
938 939 940
}

/**
941
 * xilinx_dma_stop_transfer - Halt DMA channel
942
 * @chan: Driver specific DMA channel
943
 */
944
static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan)
945
{
946
	u32 val;
947

948
	dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
949 950

	/* Wait for the hardware to halt */
951 952 953 954
	return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
				       val & XILINX_DMA_DMASR_HALTED, 0,
				       XILINX_DMA_LOOP_COUNT);
}
955

956 957 958 959 960 961 962 963 964 965 966
/**
 * xilinx_cdma_stop_transfer - Wait for the current transfer to complete
 * @chan: Driver specific DMA channel
 */
static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan)
{
	u32 val;

	return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
				       val & XILINX_DMA_DMASR_IDLE, 0,
				       XILINX_DMA_LOOP_COUNT);
967 968 969
}

/**
970 971
 * xilinx_dma_start - Start DMA channel
 * @chan: Driver specific DMA channel
972
 */
973
static void xilinx_dma_start(struct xilinx_dma_chan *chan)
974
{
975
	int err;
976
	u32 val;
977

978
	dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
979 980

	/* Wait for the hardware to start */
981 982 983
	err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
				      !(val & XILINX_DMA_DMASR_HALTED), 0,
				      XILINX_DMA_LOOP_COUNT);
984

985
	if (err) {
986
		dev_err(chan->dev, "Cannot start channel %p: %x\n",
987
			chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
988 989 990 991 992 993 994 995 996

		chan->err = true;
	}
}

/**
 * xilinx_vdma_start_transfer - Starts VDMA transfer
 * @chan: Driver specific channel struct pointer
 */
997
static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
998 999
{
	struct xilinx_vdma_config *config = &chan->config;
1000
	struct xilinx_dma_tx_descriptor *desc, *tail_desc;
1001
	u32 reg;
1002
	struct xilinx_vdma_tx_segment *tail_segment;
1003

1004
	/* This function was invoked with lock held */
1005 1006 1007
	if (chan->err)
		return;

1008 1009 1010
	if (!chan->idle)
		return;

1011
	if (list_empty(&chan->pending_list))
1012
		return;
1013 1014

	desc = list_first_entry(&chan->pending_list,
1015
				struct xilinx_dma_tx_descriptor, node);
1016
	tail_desc = list_last_entry(&chan->pending_list,
1017
				    struct xilinx_dma_tx_descriptor, node);
1018 1019 1020

	tail_segment = list_last_entry(&tail_desc->segments,
				       struct xilinx_vdma_tx_segment, node);
1021 1022 1023 1024 1025

	/*
	 * If hardware is idle, then all descriptors on the running lists are
	 * done, start new transfers
	 */
1026
	if (chan->has_sg)
1027
		dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
1028
				desc->async_tx.phys);
1029 1030

	/* Configure the hardware using info in the config structure */
1031
	reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
1032 1033

	if (config->frm_cnt_en)
1034
		reg |= XILINX_DMA_DMACR_FRAMECNT_EN;
1035
	else
1036
		reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN;
1037

1038
	/* Configure channel to allow number frame buffers */
1039
	dma_ctrl_write(chan, XILINX_DMA_REG_FRMSTORE,
1040 1041
			chan->desc_pendingcount);

1042 1043 1044 1045 1046
	/*
	 * With SG, start with circular mode, so that BDs can be fetched.
	 * In direct register mode, if not parking, enable circular mode
	 */
	if (chan->has_sg || !config->park)
1047
		reg |= XILINX_DMA_DMACR_CIRC_EN;
1048 1049

	if (config->park)
1050
		reg &= ~XILINX_DMA_DMACR_CIRC_EN;
1051

1052
	dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
1053 1054 1055 1056

	if (config->park && (config->park_frm >= 0) &&
			(config->park_frm < chan->num_frms)) {
		if (chan->direction == DMA_MEM_TO_DEV)
1057
			dma_write(chan, XILINX_DMA_REG_PARK_PTR,
1058
				config->park_frm <<
1059
					XILINX_DMA_PARK_PTR_RD_REF_SHIFT);
1060
		else
1061
			dma_write(chan, XILINX_DMA_REG_PARK_PTR,
1062
				config->park_frm <<
1063
					XILINX_DMA_PARK_PTR_WR_REF_SHIFT);
1064 1065 1066
	}

	/* Start the hardware */
1067
	xilinx_dma_start(chan);
1068 1069

	if (chan->err)
1070
		return;
1071 1072 1073

	/* Start the transfer */
	if (chan->has_sg) {
1074
		dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
1075
				tail_segment->phys);
1076 1077 1078 1079
	} else {
		struct xilinx_vdma_tx_segment *segment, *last = NULL;
		int i = 0;

1080 1081 1082 1083
		if (chan->desc_submitcount < chan->num_frms)
			i = chan->desc_submitcount;

		list_for_each_entry(segment, &desc->segments, node) {
1084 1085 1086 1087 1088 1089 1090
			if (chan->ext_addr)
				vdma_desc_write_64(chan,
					XILINX_VDMA_REG_START_ADDRESS_64(i++),
					segment->hw.buf_addr,
					segment->hw.buf_addr_msb);
			else
				vdma_desc_write(chan,
1091 1092
					XILINX_VDMA_REG_START_ADDRESS(i++),
					segment->hw.buf_addr);
1093

1094 1095 1096 1097
			last = segment;
		}

		if (!last)
1098
			return;
1099 1100

		/* HW expects these parameters to be same for one transaction */
1101 1102
		vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize);
		vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE,
1103
				last->hw.stride);
1104
		vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize);
1105 1106
	}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	if (!chan->has_sg) {
		list_del(&desc->node);
		list_add_tail(&desc->node, &chan->active_list);
		chan->desc_submitcount++;
		chan->desc_pendingcount--;
		if (chan->desc_submitcount == chan->num_frms)
			chan->desc_submitcount = 0;
	} else {
		list_splice_tail_init(&chan->pending_list, &chan->active_list);
		chan->desc_pendingcount = 0;
	}
1118 1119

	chan->idle = false;
1120 1121
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/**
 * xilinx_cdma_start_transfer - Starts cdma transfer
 * @chan: Driver specific channel struct pointer
 */
static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan)
{
	struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
	struct xilinx_cdma_tx_segment *tail_segment;
	u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR);

	if (chan->err)
		return;

1135 1136 1137
	if (!chan->idle)
		return;

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	if (list_empty(&chan->pending_list))
		return;

	head_desc = list_first_entry(&chan->pending_list,
				     struct xilinx_dma_tx_descriptor, node);
	tail_desc = list_last_entry(&chan->pending_list,
				    struct xilinx_dma_tx_descriptor, node);
	tail_segment = list_last_entry(&tail_desc->segments,
				       struct xilinx_cdma_tx_segment, node);

	if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
		ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX;
		ctrl_reg |= chan->desc_pendingcount <<
				XILINX_DMA_CR_COALESCE_SHIFT;
		dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg);
	}

	if (chan->has_sg) {
1156 1157
		xilinx_write(chan, XILINX_DMA_REG_CURDESC,
			     head_desc->async_tx.phys);
1158 1159

		/* Update tail ptr register which will start the transfer */
1160 1161
		xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
			     tail_segment->phys);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	} else {
		/* In simple mode */
		struct xilinx_cdma_tx_segment *segment;
		struct xilinx_cdma_desc_hw *hw;

		segment = list_first_entry(&head_desc->segments,
					   struct xilinx_cdma_tx_segment,
					   node);

		hw = &segment->hw;

1173 1174
		xilinx_write(chan, XILINX_CDMA_REG_SRCADDR, hw->src_addr);
		xilinx_write(chan, XILINX_CDMA_REG_DSTADDR, hw->dest_addr);
1175 1176 1177 1178 1179 1180 1181 1182

		/* Start the transfer */
		dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
				hw->control & XILINX_DMA_MAX_TRANS_LEN);
	}

	list_splice_tail_init(&chan->pending_list, &chan->active_list);
	chan->desc_pendingcount = 0;
1183
	chan->idle = false;
1184 1185
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/**
 * xilinx_dma_start_transfer - Starts DMA transfer
 * @chan: Driver specific channel struct pointer
 */
static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan)
{
	struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
	struct xilinx_axidma_tx_segment *tail_segment, *old_head, *new_head;
	u32 reg;

	if (chan->err)
		return;

	if (list_empty(&chan->pending_list))
		return;

1202
	if (!chan->idle)
1203 1204 1205 1206 1207 1208 1209 1210 1211
		return;

	head_desc = list_first_entry(&chan->pending_list,
				     struct xilinx_dma_tx_descriptor, node);
	tail_desc = list_last_entry(&chan->pending_list,
				    struct xilinx_dma_tx_descriptor, node);
	tail_segment = list_last_entry(&tail_desc->segments,
				       struct xilinx_axidma_tx_segment, node);

1212 1213 1214 1215 1216 1217
	if (chan->has_sg && !chan->xdev->mcdma) {
		old_head = list_first_entry(&head_desc->segments,
					struct xilinx_axidma_tx_segment, node);
		new_head = chan->seg_v;
		/* Copy Buffer Descriptor fields. */
		new_head->hw = old_head->hw;
1218

1219 1220 1221
		/* Swap and save new reserve */
		list_replace_init(&old_head->node, &new_head->node);
		chan->seg_v = old_head;
1222

1223 1224 1225
		tail_segment->hw.next_desc = chan->seg_v->phys;
		head_desc->async_tx.phys = new_head->phys;
	}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

	reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);

	if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
		reg &= ~XILINX_DMA_CR_COALESCE_MAX;
		reg |= chan->desc_pendingcount <<
				  XILINX_DMA_CR_COALESCE_SHIFT;
		dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
	}

1236
	if (chan->has_sg && !chan->xdev->mcdma)
1237 1238
		xilinx_write(chan, XILINX_DMA_REG_CURDESC,
			     head_desc->async_tx.phys);
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	if (chan->has_sg && chan->xdev->mcdma) {
		if (chan->direction == DMA_MEM_TO_DEV) {
			dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
				       head_desc->async_tx.phys);
		} else {
			if (!chan->tdest) {
				dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
				       head_desc->async_tx.phys);
			} else {
				dma_ctrl_write(chan,
					XILINX_DMA_MCRX_CDESC(chan->tdest),
				       head_desc->async_tx.phys);
			}
		}
	}

1256 1257 1258 1259 1260 1261
	xilinx_dma_start(chan);

	if (chan->err)
		return;

	/* Start the transfer */
1262
	if (chan->has_sg && !chan->xdev->mcdma) {
1263
		if (chan->cyclic)
1264 1265
			xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
				     chan->cyclic_seg_v->phys);
1266
		else
1267 1268
			xilinx_write(chan, XILINX_DMA_REG_TAILDESC,
				     tail_segment->phys);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	} else if (chan->has_sg && chan->xdev->mcdma) {
		if (chan->direction == DMA_MEM_TO_DEV) {
			dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
			       tail_segment->phys);
		} else {
			if (!chan->tdest) {
				dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
					       tail_segment->phys);
			} else {
				dma_ctrl_write(chan,
					XILINX_DMA_MCRX_TDESC(chan->tdest),
					tail_segment->phys);
			}
		}
1283 1284 1285 1286 1287 1288 1289 1290 1291
	} else {
		struct xilinx_axidma_tx_segment *segment;
		struct xilinx_axidma_desc_hw *hw;

		segment = list_first_entry(&head_desc->segments,
					   struct xilinx_axidma_tx_segment,
					   node);
		hw = &segment->hw;

1292
		xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR, hw->buf_addr);
1293 1294 1295 1296

		/* Start the transfer */
		dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
			       hw->control & XILINX_DMA_MAX_TRANS_LEN);
1297 1298
	}

1299 1300
	list_splice_tail_init(&chan->pending_list, &chan->active_list);
	chan->desc_pendingcount = 0;
1301
	chan->idle = false;
1302 1303 1304
}

/**
1305
 * xilinx_dma_issue_pending - Issue pending transactions
1306 1307
 * @dchan: DMA channel
 */
1308
static void xilinx_dma_issue_pending(struct dma_chan *dchan)
1309
{
1310
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
1311
	unsigned long flags;
1312

1313
	spin_lock_irqsave(&chan->lock, flags);
1314
	chan->start_transfer(chan);
1315
	spin_unlock_irqrestore(&chan->lock, flags);
1316 1317 1318
}

/**
1319
 * xilinx_dma_complete_descriptor - Mark the active descriptor as complete
1320 1321 1322 1323
 * @chan : xilinx DMA channel
 *
 * CONTEXT: hardirq
 */
1324
static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan)
1325
{
1326
	struct xilinx_dma_tx_descriptor *desc, *next;
1327

1328
	/* This function was invoked with lock held */
1329
	if (list_empty(&chan->active_list))
1330
		return;
1331

1332 1333
	list_for_each_entry_safe(desc, next, &chan->active_list, node) {
		list_del(&desc->node);
1334 1335
		if (!desc->cyclic)
			dma_cookie_complete(&desc->async_tx);
1336 1337
		list_add_tail(&desc->node, &chan->done_list);
	}
1338 1339 1340
}

/**
1341 1342
 * xilinx_dma_reset - Reset DMA channel
 * @chan: Driver specific DMA channel
1343 1344 1345
 *
 * Return: '0' on success and failure value on error
 */
1346
static int xilinx_dma_reset(struct xilinx_dma_chan *chan)
1347
{
1348
	int err;
1349 1350
	u32 tmp;

1351
	dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET);
1352 1353

	/* Wait for the hardware to finish reset */
1354 1355 1356
	err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp,
				      !(tmp & XILINX_DMA_DMACR_RESET), 0,
				      XILINX_DMA_LOOP_COUNT);
1357

1358
	if (err) {
1359
		dev_err(chan->dev, "reset timeout, cr %x, sr %x\n",
1360 1361
			dma_ctrl_read(chan, XILINX_DMA_REG_DMACR),
			dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
1362 1363 1364 1365
		return -ETIMEDOUT;
	}

	chan->err = false;
1366
	chan->idle = true;
1367

1368
	return err;
1369 1370 1371
}

/**
1372 1373
 * xilinx_dma_chan_reset - Reset DMA channel and enable interrupts
 * @chan: Driver specific DMA channel
1374 1375 1376
 *
 * Return: '0' on success and failure value on error
 */
1377
static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan)
1378 1379 1380 1381
{
	int err;

	/* Reset VDMA */
1382
	err = xilinx_dma_reset(chan);
1383 1384 1385 1386
	if (err)
		return err;

	/* Enable interrupts */
1387 1388
	dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
		      XILINX_DMA_DMAXR_ALL_IRQ_MASK);
1389 1390 1391 1392 1393

	return 0;
}

/**
1394
 * xilinx_dma_irq_handler - DMA Interrupt handler
1395
 * @irq: IRQ number
1396
 * @data: Pointer to the Xilinx DMA channel structure
1397 1398 1399
 *
 * Return: IRQ_HANDLED/IRQ_NONE
 */
1400
static irqreturn_t xilinx_dma_irq_handler(int irq, void *data)
1401
{
1402
	struct xilinx_dma_chan *chan = data;
1403 1404 1405
	u32 status;

	/* Read the status and ack the interrupts. */
1406 1407
	status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR);
	if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK))
1408 1409
		return IRQ_NONE;

1410 1411
	dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
			status & XILINX_DMA_DMAXR_ALL_IRQ_MASK);
1412

1413
	if (status & XILINX_DMA_DMASR_ERR_IRQ) {
1414 1415 1416 1417 1418 1419 1420
		/*
		 * An error occurred. If C_FLUSH_ON_FSYNC is enabled and the
		 * error is recoverable, ignore it. Otherwise flag the error.
		 *
		 * Only recoverable errors can be cleared in the DMASR register,
		 * make sure not to write to other error bits to 1.
		 */
1421
		u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK;
1422

1423 1424
		dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
				errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK);
1425 1426

		if (!chan->flush_on_fsync ||
1427
		    (errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) {
1428 1429 1430
			dev_err(chan->dev,
				"Channel %p has errors %x, cdr %x tdr %x\n",
				chan, errors,
1431 1432
				dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC),
				dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC));
1433 1434 1435 1436
			chan->err = true;
		}
	}

1437
	if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) {
1438 1439 1440 1441 1442 1443 1444
		/*
		 * Device takes too long to do the transfer when user requires
		 * responsiveness.
		 */
		dev_dbg(chan->dev, "Inter-packet latency too long\n");
	}

1445
	if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) {
1446
		spin_lock(&chan->lock);
1447
		xilinx_dma_complete_descriptor(chan);
1448
		chan->idle = true;
1449
		chan->start_transfer(chan);
1450
		spin_unlock(&chan->lock);
1451 1452 1453 1454 1455 1456
	}

	tasklet_schedule(&chan->tasklet);
	return IRQ_HANDLED;
}

1457 1458 1459 1460 1461
/**
 * append_desc_queue - Queuing descriptor
 * @chan: Driver specific dma channel
 * @desc: dma transaction descriptor
 */
1462 1463
static void append_desc_queue(struct xilinx_dma_chan *chan,
			      struct xilinx_dma_tx_descriptor *desc)
1464 1465
{
	struct xilinx_vdma_tx_segment *tail_segment;
1466
	struct xilinx_dma_tx_descriptor *tail_desc;
1467
	struct xilinx_axidma_tx_segment *axidma_tail_segment;
1468
	struct xilinx_cdma_tx_segment *cdma_tail_segment;
1469 1470 1471 1472 1473 1474 1475 1476 1477

	if (list_empty(&chan->pending_list))
		goto append;

	/*
	 * Add the hardware descriptor to the chain of hardware descriptors
	 * that already exists in memory.
	 */
	tail_desc = list_last_entry(&chan->pending_list,
1478
				    struct xilinx_dma_tx_descriptor, node);
1479
	if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
1480 1481 1482 1483
		tail_segment = list_last_entry(&tail_desc->segments,
					       struct xilinx_vdma_tx_segment,
					       node);
		tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
1484
	} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
1485 1486 1487 1488
		cdma_tail_segment = list_last_entry(&tail_desc->segments,
						struct xilinx_cdma_tx_segment,
						node);
		cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
1489 1490 1491 1492 1493 1494
	} else {
		axidma_tail_segment = list_last_entry(&tail_desc->segments,
					       struct xilinx_axidma_tx_segment,
					       node);
		axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
	}
1495 1496 1497 1498 1499 1500 1501 1502 1503

	/*
	 * Add the software descriptor and all children to the list
	 * of pending transactions
	 */
append:
	list_add_tail(&desc->node, &chan->pending_list);
	chan->desc_pendingcount++;

1504 1505
	if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA)
	    && unlikely(chan->desc_pendingcount > chan->num_frms)) {
1506 1507 1508 1509 1510
		dev_dbg(chan->dev, "desc pendingcount is too high\n");
		chan->desc_pendingcount = chan->num_frms;
	}
}

1511
/**
1512
 * xilinx_dma_tx_submit - Submit DMA transaction
1513 1514 1515 1516
 * @tx: Async transaction descriptor
 *
 * Return: cookie value on success and failure value on error
 */
1517
static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
1518
{
1519 1520
	struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx);
	struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan);
1521 1522 1523 1524
	dma_cookie_t cookie;
	unsigned long flags;
	int err;

1525 1526 1527 1528 1529
	if (chan->cyclic) {
		xilinx_dma_free_tx_descriptor(chan, desc);
		return -EBUSY;
	}

1530 1531 1532 1533 1534
	if (chan->err) {
		/*
		 * If reset fails, need to hard reset the system.
		 * Channel is no longer functional
		 */
1535
		err = xilinx_dma_chan_reset(chan);
1536 1537 1538 1539 1540 1541 1542 1543
		if (err < 0)
			return err;
	}

	spin_lock_irqsave(&chan->lock, flags);

	cookie = dma_cookie_assign(tx);

1544 1545
	/* Put this transaction onto the tail of the pending queue */
	append_desc_queue(chan, desc);
1546

1547 1548 1549
	if (desc->cyclic)
		chan->cyclic = true;

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	spin_unlock_irqrestore(&chan->lock, flags);

	return cookie;
}

/**
 * xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a
 *	DMA_SLAVE transaction
 * @dchan: DMA channel
 * @xt: Interleaved template pointer
 * @flags: transfer ack flags
 *
 * Return: Async transaction descriptor on success and NULL on failure
 */
static struct dma_async_tx_descriptor *
xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
				 struct dma_interleaved_template *xt,
				 unsigned long flags)
{
1569 1570
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
	struct xilinx_dma_tx_descriptor *desc;
1571 1572 1573 1574 1575 1576 1577 1578 1579
	struct xilinx_vdma_tx_segment *segment, *prev = NULL;
	struct xilinx_vdma_desc_hw *hw;

	if (!is_slave_direction(xt->dir))
		return NULL;

	if (!xt->numf || !xt->sgl[0].size)
		return NULL;

1580 1581 1582
	if (xt->frame_size != 1)
		return NULL;

1583
	/* Allocate a transaction descriptor. */
1584
	desc = xilinx_dma_alloc_tx_descriptor(chan);
1585 1586 1587 1588
	if (!desc)
		return NULL;

	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
1589
	desc->async_tx.tx_submit = xilinx_dma_tx_submit;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	async_tx_ack(&desc->async_tx);

	/* Allocate the link descriptor from DMA pool */
	segment = xilinx_vdma_alloc_tx_segment(chan);
	if (!segment)
		goto error;

	/* Fill in the hardware descriptor */
	hw = &segment->hw;
	hw->vsize = xt->numf;
	hw->hsize = xt->sgl[0].size;
1601
	hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) <<
1602
			XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT;
1603
	hw->stride |= chan->config.frm_dly <<
1604
			XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT;
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	if (xt->dir != DMA_MEM_TO_DEV) {
		if (chan->ext_addr) {
			hw->buf_addr = lower_32_bits(xt->dst_start);
			hw->buf_addr_msb = upper_32_bits(xt->dst_start);
		} else {
			hw->buf_addr = xt->dst_start;
		}
	} else {
		if (chan->ext_addr) {
			hw->buf_addr = lower_32_bits(xt->src_start);
			hw->buf_addr_msb = upper_32_bits(xt->src_start);
		} else {
			hw->buf_addr = xt->src_start;
		}
	}
1621 1622 1623 1624 1625 1626 1627 1628 1629

	/* Insert the segment into the descriptor segments list. */
	list_add_tail(&segment->node, &desc->segments);

	prev = segment;

	/* Link the last hardware descriptor with the first. */
	segment = list_first_entry(&desc->segments,
				   struct xilinx_vdma_tx_segment, node);
1630
	desc->async_tx.phys = segment->phys;
1631 1632 1633 1634

	return &desc->async_tx;

error:
1635
	xilinx_dma_free_tx_descriptor(chan, desc);
1636 1637 1638
	return NULL;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/**
 * xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction
 * @dchan: DMA channel
 * @dma_dst: destination address
 * @dma_src: source address
 * @len: transfer length
 * @flags: transfer ack flags
 *
 * Return: Async transaction descriptor on success and NULL on failure
 */
static struct dma_async_tx_descriptor *
xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst,
			dma_addr_t dma_src, size_t len, unsigned long flags)
{
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
	struct xilinx_dma_tx_descriptor *desc;
1655
	struct xilinx_cdma_tx_segment *segment;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	struct xilinx_cdma_desc_hw *hw;

	if (!len || len > XILINX_DMA_MAX_TRANS_LEN)
		return NULL;

	desc = xilinx_dma_alloc_tx_descriptor(chan);
	if (!desc)
		return NULL;

	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
	desc->async_tx.tx_submit = xilinx_dma_tx_submit;

	/* Allocate the link descriptor from DMA pool */
	segment = xilinx_cdma_alloc_tx_segment(chan);
	if (!segment)
		goto error;

	hw = &segment->hw;
	hw->control = len;
	hw->src_addr = dma_src;
	hw->dest_addr = dma_dst;
1677 1678 1679 1680
	if (chan->ext_addr) {
		hw->src_addr_msb = upper_32_bits(dma_src);
		hw->dest_addr_msb = upper_32_bits(dma_dst);
	}
1681 1682 1683 1684 1685

	/* Insert the segment into the descriptor segments list. */
	list_add_tail(&segment->node, &desc->segments);

	desc->async_tx.phys = segment->phys;
1686
	hw->next_desc = segment->phys;
1687 1688 1689 1690 1691 1692 1693 1694

	return &desc->async_tx;

error:
	xilinx_dma_free_tx_descriptor(chan, desc);
	return NULL;
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/**
 * xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
 * @dchan: DMA channel
 * @sgl: scatterlist to transfer to/from
 * @sg_len: number of entries in @scatterlist
 * @direction: DMA direction
 * @flags: transfer ack flags
 * @context: APP words of the descriptor
 *
 * Return: Async transaction descriptor on success and NULL on failure
 */
static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg(
	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
	enum dma_transfer_direction direction, unsigned long flags,
	void *context)
{
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
	struct xilinx_dma_tx_descriptor *desc;
	struct xilinx_axidma_tx_segment *segment = NULL, *prev = NULL;
	u32 *app_w = (u32 *)context;
	struct scatterlist *sg;
	size_t copy;
	size_t sg_used;
	unsigned int i;

	if (!is_slave_direction(direction))
		return NULL;

	/* Allocate a transaction descriptor. */
	desc = xilinx_dma_alloc_tx_descriptor(chan);
	if (!desc)
		return NULL;

	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
	desc->async_tx.tx_submit = xilinx_dma_tx_submit;

	/* Build transactions using information in the scatter gather list */
	for_each_sg(sgl, sg, sg_len, i) {
		sg_used = 0;

		/* Loop until the entire scatterlist entry is used */
		while (sg_used < sg_dma_len(sg)) {
			struct xilinx_axidma_desc_hw *hw;

			/* Get a free segment */
			segment = xilinx_axidma_alloc_tx_segment(chan);
			if (!segment)
				goto error;

			/*
			 * Calculate the maximum number of bytes to transfer,
			 * making sure it is less than the hw limit
			 */
			copy = min_t(size_t, sg_dma_len(sg) - sg_used,
				     XILINX_DMA_MAX_TRANS_LEN);
			hw = &segment->hw;

			/* Fill in the descriptor */
1753 1754
			xilinx_axidma_buf(chan, hw, sg_dma_address(sg),
					  sg_used, 0);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

			hw->control = copy;

			if (chan->direction == DMA_MEM_TO_DEV) {
				if (app_w)
					memcpy(hw->app, app_w, sizeof(u32) *
					       XILINX_DMA_NUM_APP_WORDS);
			}

			if (prev)
				prev->hw.next_desc = segment->phys;

			prev = segment;
			sg_used += copy;

			/*
			 * Insert the segment into the descriptor segments
			 * list.
			 */
			list_add_tail(&segment->node, &desc->segments);
		}
	}

	segment = list_first_entry(&desc->segments,
				   struct xilinx_axidma_tx_segment, node);
	desc->async_tx.phys = segment->phys;
	prev->hw.next_desc = segment->phys;

	/* For the last DMA_MEM_TO_DEV transfer, set EOP */
	if (chan->direction == DMA_MEM_TO_DEV) {
		segment->hw.control |= XILINX_DMA_BD_SOP;
		segment = list_last_entry(&desc->segments,
					  struct xilinx_axidma_tx_segment,
					  node);
		segment->hw.control |= XILINX_DMA_BD_EOP;
	}

	return &desc->async_tx;

error:
	xilinx_dma_free_tx_descriptor(chan, desc);
1796 1797 1798
	return NULL;
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
/**
 * xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction
 * @chan: DMA channel
 * @sgl: scatterlist to transfer to/from
 * @sg_len: number of entries in @scatterlist
 * @direction: DMA direction
 * @flags: transfer ack flags
 */
static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic(
	struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
	unsigned long flags)
{
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
	struct xilinx_dma_tx_descriptor *desc;
	struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL;
	size_t copy, sg_used;
	unsigned int num_periods;
	int i;
	u32 reg;

1820 1821 1822
	if (!period_len)
		return NULL;

1823 1824
	num_periods = buf_len / period_len;

1825 1826 1827
	if (!num_periods)
		return NULL;

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	if (!is_slave_direction(direction))
		return NULL;

	/* Allocate a transaction descriptor. */
	desc = xilinx_dma_alloc_tx_descriptor(chan);
	if (!desc)
		return NULL;

	chan->direction = direction;
	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
	desc->async_tx.tx_submit = xilinx_dma_tx_submit;

	for (i = 0; i < num_periods; ++i) {
		sg_used = 0;

		while (sg_used < period_len) {
			struct xilinx_axidma_desc_hw *hw;

			/* Get a free segment */
			segment = xilinx_axidma_alloc_tx_segment(chan);
			if (!segment)
				goto error;

			/*
			 * Calculate the maximum number of bytes to transfer,
			 * making sure it is less than the hw limit
			 */
			copy = min_t(size_t, period_len - sg_used,
				     XILINX_DMA_MAX_TRANS_LEN);
			hw = &segment->hw;
1858 1859
			xilinx_axidma_buf(chan, hw, buf_addr, sg_used,
					  period_len * i);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
			hw->control = copy;

			if (prev)
				prev->hw.next_desc = segment->phys;

			prev = segment;
			sg_used += copy;

			/*
			 * Insert the segment into the descriptor segments
			 * list.
			 */
			list_add_tail(&segment->node, &desc->segments);
		}
	}

	head_segment = list_first_entry(&desc->segments,
				   struct xilinx_axidma_tx_segment, node);
	desc->async_tx.phys = head_segment->phys;

	desc->cyclic = true;
	reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
	reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
	dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);

1885 1886 1887 1888 1889
	segment = list_last_entry(&desc->segments,
				  struct xilinx_axidma_tx_segment,
				  node);
	segment->hw.next_desc = (u32) head_segment->phys;

1890 1891
	/* For the last DMA_MEM_TO_DEV transfer, set EOP */
	if (direction == DMA_MEM_TO_DEV) {
1892
		head_segment->hw.control |= XILINX_DMA_BD_SOP;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		segment->hw.control |= XILINX_DMA_BD_EOP;
	}

	return &desc->async_tx;

error:
	xilinx_dma_free_tx_descriptor(chan, desc);
	return NULL;
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
/**
 * xilinx_dma_prep_interleaved - prepare a descriptor for a
 *	DMA_SLAVE transaction
 * @dchan: DMA channel
 * @xt: Interleaved template pointer
 * @flags: transfer ack flags
 *
 * Return: Async transaction descriptor on success and NULL on failure
 */
static struct dma_async_tx_descriptor *
xilinx_dma_prep_interleaved(struct dma_chan *dchan,
				 struct dma_interleaved_template *xt,
				 unsigned long flags)
{
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
	struct xilinx_dma_tx_descriptor *desc;
	struct xilinx_axidma_tx_segment *segment;
	struct xilinx_axidma_desc_hw *hw;

	if (!is_slave_direction(xt->dir))
		return NULL;

	if (!xt->numf || !xt->sgl[0].size)
		return NULL;

	if (xt->frame_size != 1)
		return NULL;

	/* Allocate a transaction descriptor. */
	desc = xilinx_dma_alloc_tx_descriptor(chan);
	if (!desc)
		return NULL;

	chan->direction = xt->dir;
	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
	desc->async_tx.tx_submit = xilinx_dma_tx_submit;

	/* Get a free segment */
	segment = xilinx_axidma_alloc_tx_segment(chan);
	if (!segment)
		goto error;

	hw = &segment->hw;

	/* Fill in the descriptor */
	if (xt->dir != DMA_MEM_TO_DEV)
		hw->buf_addr = xt->dst_start;
	else
		hw->buf_addr = xt->src_start;

	hw->mcdma_control = chan->tdest & XILINX_DMA_BD_TDEST_MASK;
	hw->vsize_stride = (xt->numf << XILINX_DMA_BD_VSIZE_SHIFT) &
			    XILINX_DMA_BD_VSIZE_MASK;
	hw->vsize_stride |= (xt->sgl[0].icg + xt->sgl[0].size) &
			    XILINX_DMA_BD_STRIDE_MASK;
	hw->control = xt->sgl[0].size & XILINX_DMA_BD_HSIZE_MASK;

	/*
	 * Insert the segment into the descriptor segments
	 * list.
	 */
	list_add_tail(&segment->node, &desc->segments);


	segment = list_first_entry(&desc->segments,
				   struct xilinx_axidma_tx_segment, node);
	desc->async_tx.phys = segment->phys;

	/* For the last DMA_MEM_TO_DEV transfer, set EOP */
	if (xt->dir == DMA_MEM_TO_DEV) {
		segment->hw.control |= XILINX_DMA_BD_SOP;
		segment = list_last_entry(&desc->segments,
					  struct xilinx_axidma_tx_segment,
					  node);
		segment->hw.control |= XILINX_DMA_BD_EOP;
	}

	return &desc->async_tx;

error:
	xilinx_dma_free_tx_descriptor(chan, desc);
	return NULL;
}

1987
/**
1988 1989
 * xilinx_dma_terminate_all - Halt the channel and free descriptors
 * @chan: Driver specific DMA Channel pointer
1990
 */
1991
static int xilinx_dma_terminate_all(struct dma_chan *dchan)
1992
{
1993
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
1994
	u32 reg;
1995
	int err;
1996 1997 1998

	if (chan->cyclic)
		xilinx_dma_chan_reset(chan);
1999

2000 2001 2002 2003 2004 2005
	err = chan->stop_transfer(chan);
	if (err) {
		dev_err(chan->dev, "Cannot stop channel %p: %x\n",
			chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
		chan->err = true;
	}
2006 2007

	/* Remove and free all of the descriptors in the lists */
2008
	xilinx_dma_free_descriptors(chan);
2009
	chan->idle = true;
2010

2011 2012 2013 2014 2015 2016 2017
	if (chan->cyclic) {
		reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
		reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK;
		dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
		chan->cyclic = false;
	}

2018
	return 0;
2019 2020 2021
}

/**
2022
 * xilinx_dma_channel_set_config - Configure VDMA channel
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
 * Run-time configuration for Axi VDMA, supports:
 * . halt the channel
 * . configure interrupt coalescing and inter-packet delay threshold
 * . start/stop parking
 * . enable genlock
 *
 * @dchan: DMA channel
 * @cfg: VDMA device configuration pointer
 *
 * Return: '0' on success and failure value on error
 */
int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
					struct xilinx_vdma_config *cfg)
{
2037
	struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
2038 2039 2040
	u32 dmacr;

	if (cfg->reset)
2041
		return xilinx_dma_chan_reset(chan);
2042

2043
	dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
2044 2045 2046 2047 2048 2049 2050 2051 2052

	chan->config.frm_dly = cfg->frm_dly;
	chan->config.park = cfg->park;

	/* genlock settings */
	chan->config.gen_lock = cfg->gen_lock;
	chan->config.master = cfg->master;

	if (cfg->gen_lock && chan->genlock) {
2053 2054
		dmacr |= XILINX_DMA_DMACR_GENLOCK_EN;
		dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	}

	chan->config.frm_cnt_en = cfg->frm_cnt_en;
	if (cfg->park)
		chan->config.park_frm = cfg->park_frm;
	else
		chan->config.park_frm = -1;

	chan->config.coalesc = cfg->coalesc;
	chan->config.delay = cfg->delay;

2066 2067
	if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) {
		dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT;
2068 2069 2070
		chan->config.coalesc = cfg->coalesc;
	}

2071 2072
	if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) {
		dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT;
2073 2074 2075 2076
		chan->config.delay = cfg->delay;
	}

	/* FSync Source selection */
2077 2078
	dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK;
	dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT;
2079

2080
	dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

	return 0;
}
EXPORT_SYMBOL(xilinx_vdma_channel_set_config);

/* -----------------------------------------------------------------------------
 * Probe and remove
 */

/**
2091 2092
 * xilinx_dma_chan_remove - Per Channel remove function
 * @chan: Driver specific DMA channel
2093
 */
2094
static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan)
2095 2096
{
	/* Disable all interrupts */
2097 2098
	dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
		      XILINX_DMA_DMAXR_ALL_IRQ_MASK);
2099 2100 2101 2102 2103 2104 2105 2106 2107

	if (chan->irq > 0)
		free_irq(chan->irq, chan);

	tasklet_kill(&chan->tasklet);

	list_del(&chan->common.device_node);
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
			    struct clk **tx_clk, struct clk **rx_clk,
			    struct clk **sg_clk, struct clk **tmp_clk)
{
	int err;

	*tmp_clk = NULL;

	*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
	if (IS_ERR(*axi_clk)) {
		err = PTR_ERR(*axi_clk);
2119
		dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		return err;
	}

	*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
	if (IS_ERR(*tx_clk))
		*tx_clk = NULL;

	*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
	if (IS_ERR(*rx_clk))
		*rx_clk = NULL;

	*sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk");
	if (IS_ERR(*sg_clk))
		*sg_clk = NULL;

	err = clk_prepare_enable(*axi_clk);
	if (err) {
2137
		dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
2138 2139 2140 2141 2142
		return err;
	}

	err = clk_prepare_enable(*tx_clk);
	if (err) {
2143
		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
2144 2145 2146 2147 2148
		goto err_disable_axiclk;
	}

	err = clk_prepare_enable(*rx_clk);
	if (err) {
2149
		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
2150 2151 2152 2153 2154
		goto err_disable_txclk;
	}

	err = clk_prepare_enable(*sg_clk);
	if (err) {
2155
		dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
		goto err_disable_rxclk;
	}

	return 0;

err_disable_rxclk:
	clk_disable_unprepare(*rx_clk);
err_disable_txclk:
	clk_disable_unprepare(*tx_clk);
err_disable_axiclk:
	clk_disable_unprepare(*axi_clk);

	return err;
}

static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
			    struct clk **dev_clk, struct clk **tmp_clk,
			    struct clk **tmp1_clk, struct clk **tmp2_clk)
{
	int err;

	*tmp_clk = NULL;
	*tmp1_clk = NULL;
	*tmp2_clk = NULL;

	*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
	if (IS_ERR(*axi_clk)) {
		err = PTR_ERR(*axi_clk);
2184
		dev_err(&pdev->dev, "failed to get axi_clk (%d)\n", err);
2185 2186 2187 2188 2189 2190
		return err;
	}

	*dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk");
	if (IS_ERR(*dev_clk)) {
		err = PTR_ERR(*dev_clk);
2191
		dev_err(&pdev->dev, "failed to get dev_clk (%d)\n", err);
2192 2193 2194 2195 2196
		return err;
	}

	err = clk_prepare_enable(*axi_clk);
	if (err) {
2197
		dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
2198 2199 2200 2201 2202
		return err;
	}

	err = clk_prepare_enable(*dev_clk);
	if (err) {
2203
		dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
		goto err_disable_axiclk;
	}

	return 0;

err_disable_axiclk:
	clk_disable_unprepare(*axi_clk);

	return err;
}

static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
			    struct clk **tx_clk, struct clk **txs_clk,
			    struct clk **rx_clk, struct clk **rxs_clk)
{
	int err;

	*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
	if (IS_ERR(*axi_clk)) {
		err = PTR_ERR(*axi_clk);
2224
		dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		return err;
	}

	*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
	if (IS_ERR(*tx_clk))
		*tx_clk = NULL;

	*txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk");
	if (IS_ERR(*txs_clk))
		*txs_clk = NULL;

	*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
	if (IS_ERR(*rx_clk))
		*rx_clk = NULL;

	*rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk");
	if (IS_ERR(*rxs_clk))
		*rxs_clk = NULL;

	err = clk_prepare_enable(*axi_clk);
	if (err) {
2246
		dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err);
2247 2248 2249 2250 2251
		return err;
	}

	err = clk_prepare_enable(*tx_clk);
	if (err) {
2252
		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
2253 2254 2255 2256 2257
		goto err_disable_axiclk;
	}

	err = clk_prepare_enable(*txs_clk);
	if (err) {
2258
		dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err);
2259 2260 2261 2262 2263
		goto err_disable_txclk;
	}

	err = clk_prepare_enable(*rx_clk);
	if (err) {
2264
		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
2265 2266 2267 2268 2269
		goto err_disable_txsclk;
	}

	err = clk_prepare_enable(*rxs_clk);
	if (err) {
2270
		dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
		goto err_disable_rxclk;
	}

	return 0;

err_disable_rxclk:
	clk_disable_unprepare(*rx_clk);
err_disable_txsclk:
	clk_disable_unprepare(*txs_clk);
err_disable_txclk:
	clk_disable_unprepare(*tx_clk);
err_disable_axiclk:
	clk_disable_unprepare(*axi_clk);

	return err;
}

static void xdma_disable_allclks(struct xilinx_dma_device *xdev)
{
	clk_disable_unprepare(xdev->rxs_clk);
	clk_disable_unprepare(xdev->rx_clk);
	clk_disable_unprepare(xdev->txs_clk);
	clk_disable_unprepare(xdev->tx_clk);
	clk_disable_unprepare(xdev->axi_clk);
}

2297
/**
2298
 * xilinx_dma_chan_probe - Per Channel Probing
2299 2300 2301 2302 2303 2304 2305 2306
 * It get channel features from the device tree entry and
 * initialize special channel handling routines
 *
 * @xdev: Driver specific device structure
 * @node: Device node
 *
 * Return: '0' on success and failure value on error
 */
2307
static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
2308
				  struct device_node *node, int chan_id)
2309
{
2310
	struct xilinx_dma_chan *chan;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	bool has_dre = false;
	u32 value, width;
	int err;

	/* Allocate and initialize the channel structure */
	chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL);
	if (!chan)
		return -ENOMEM;

	chan->dev = xdev->dev;
	chan->xdev = xdev;
	chan->has_sg = xdev->has_sg;
2323
	chan->desc_pendingcount = 0x0;
2324
	chan->ext_addr = xdev->ext_addr;
2325 2326 2327 2328 2329 2330
	/* This variable enusres that descripotrs are not
	 * Submited when dma engine is in progress. This variable is
	 * Added to avoid pollling for a bit in the status register to
	 * Know dma state in the driver hot path.
	 */
	chan->idle = true;
2331 2332 2333 2334

	spin_lock_init(&chan->lock);
	INIT_LIST_HEAD(&chan->pending_list);
	INIT_LIST_HEAD(&chan->done_list);
2335
	INIT_LIST_HEAD(&chan->active_list);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

	/* Retrieve the channel properties from the device tree */
	has_dre = of_property_read_bool(node, "xlnx,include-dre");

	chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode");

	err = of_property_read_u32(node, "xlnx,datawidth", &value);
	if (err) {
		dev_err(xdev->dev, "missing xlnx,datawidth property\n");
		return err;
	}
	width = value >> 3; /* Convert bits to bytes */

	/* If data width is greater than 8 bytes, DRE is not in hw */
	if (width > 8)
		has_dre = false;

	if (!has_dre)
		xdev->common.copy_align = fls(width - 1);

2356 2357 2358
	if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") ||
	    of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") ||
	    of_device_is_compatible(node, "xlnx,axi-cdma-channel")) {
2359
		chan->direction = DMA_MEM_TO_DEV;
2360 2361
		chan->id = chan_id;
		chan->tdest = chan_id;
2362

2363
		chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET;
2364
		if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
2365
			chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET;
2366

2367 2368 2369 2370
			if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
			    xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S)
				chan->flush_on_fsync = true;
		}
2371
	} else if (of_device_is_compatible(node,
2372 2373 2374
					   "xlnx,axi-vdma-s2mm-channel") ||
		   of_device_is_compatible(node,
					   "xlnx,axi-dma-s2mm-channel")) {
2375
		chan->direction = DMA_DEV_TO_MEM;
2376 2377
		chan->id = chan_id;
		chan->tdest = chan_id - xdev->nr_channels;
2378

2379
		chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET;
2380
		if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
2381
			chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET;
2382

2383 2384 2385 2386
			if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
			    xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM)
				chan->flush_on_fsync = true;
		}
2387 2388 2389 2390 2391 2392 2393
	} else {
		dev_err(xdev->dev, "Invalid channel compatible node\n");
		return -EINVAL;
	}

	/* Request the interrupt */
	chan->irq = irq_of_parse_and_map(node, 0);
2394 2395
	err = request_irq(chan->irq, xilinx_dma_irq_handler, IRQF_SHARED,
			  "xilinx-dma-controller", chan);
2396 2397 2398 2399 2400
	if (err) {
		dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq);
		return err;
	}

2401
	if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
2402
		chan->start_transfer = xilinx_dma_start_transfer;
2403 2404
		chan->stop_transfer = xilinx_dma_stop_transfer;
	} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
2405
		chan->start_transfer = xilinx_cdma_start_transfer;
2406 2407
		chan->stop_transfer = xilinx_cdma_stop_transfer;
	} else {
2408
		chan->start_transfer = xilinx_vdma_start_transfer;
2409 2410
		chan->stop_transfer = xilinx_dma_stop_transfer;
	}
2411

2412
	/* Initialize the tasklet */
2413
	tasklet_init(&chan->tasklet, xilinx_dma_do_tasklet,
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
			(unsigned long)chan);

	/*
	 * Initialize the DMA channel and add it to the DMA engine channels
	 * list.
	 */
	chan->common.device = &xdev->common;

	list_add_tail(&chan->common.device_node, &xdev->common.channels);
	xdev->chan[chan->id] = chan;

	/* Reset the channel */
2426
	err = xilinx_dma_chan_reset(chan);
2427 2428 2429 2430 2431 2432 2433 2434
	if (err < 0) {
		dev_err(xdev->dev, "Reset channel failed\n");
		return err;
	}

	return 0;
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
/**
 * xilinx_dma_child_probe - Per child node probe
 * It get number of dma-channels per child node from
 * device-tree and initializes all the channels.
 *
 * @xdev: Driver specific device structure
 * @node: Device node
 *
 * Return: 0 always.
 */
static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev,
				    struct device_node *node) {
	int ret, i, nr_channels = 1;

	ret = of_property_read_u32(node, "dma-channels", &nr_channels);
	if ((ret < 0) && xdev->mcdma)
		dev_warn(xdev->dev, "missing dma-channels property\n");

	for (i = 0; i < nr_channels; i++)
		xilinx_dma_chan_probe(xdev, node, xdev->chan_id++);

	xdev->nr_channels += nr_channels;

	return 0;
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/**
 * of_dma_xilinx_xlate - Translation function
 * @dma_spec: Pointer to DMA specifier as found in the device tree
 * @ofdma: Pointer to DMA controller data
 *
 * Return: DMA channel pointer on success and NULL on error
 */
static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec,
						struct of_dma *ofdma)
{
2471
	struct xilinx_dma_device *xdev = ofdma->of_dma_data;
2472 2473
	int chan_id = dma_spec->args[0];

2474
	if (chan_id >= xdev->nr_channels || !xdev->chan[chan_id])
2475 2476 2477 2478 2479
		return NULL;

	return dma_get_slave_channel(&xdev->chan[chan_id]->common);
}

2480 2481
static const struct xilinx_dma_config axidma_config = {
	.dmatype = XDMA_TYPE_AXIDMA,
2482
	.clk_init = axidma_clk_init,
2483 2484 2485 2486
};

static const struct xilinx_dma_config axicdma_config = {
	.dmatype = XDMA_TYPE_CDMA,
2487
	.clk_init = axicdma_clk_init,
2488 2489 2490 2491
};

static const struct xilinx_dma_config axivdma_config = {
	.dmatype = XDMA_TYPE_VDMA,
2492
	.clk_init = axivdma_clk_init,
2493 2494
};

2495
static const struct of_device_id xilinx_dma_of_ids[] = {
2496 2497 2498
	{ .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config },
	{ .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config },
	{ .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config },
2499 2500 2501 2502
	{}
};
MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids);

2503
/**
2504
 * xilinx_dma_probe - Driver probe function
2505 2506 2507 2508
 * @pdev: Pointer to the platform_device structure
 *
 * Return: '0' on success and failure value on error
 */
2509
static int xilinx_dma_probe(struct platform_device *pdev)
2510
{
2511 2512 2513
	int (*clk_init)(struct platform_device *, struct clk **, struct clk **,
			struct clk **, struct clk **, struct clk **)
					= axivdma_clk_init;
2514
	struct device_node *node = pdev->dev.of_node;
2515
	struct xilinx_dma_device *xdev;
2516
	struct device_node *child, *np = pdev->dev.of_node;
2517
	struct resource *io;
2518
	u32 num_frames, addr_width;
2519 2520 2521 2522 2523 2524 2525 2526
	int i, err;

	/* Allocate and initialize the DMA engine structure */
	xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
	if (!xdev)
		return -ENOMEM;

	xdev->dev = &pdev->dev;
2527 2528 2529 2530
	if (np) {
		const struct of_device_id *match;

		match = of_match_node(xilinx_dma_of_ids, np);
2531
		if (match && match->data) {
2532
			xdev->dma_config = match->data;
2533 2534
			clk_init = xdev->dma_config->clk_init;
		}
2535
	}
2536

2537 2538 2539 2540
	err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk,
		       &xdev->rx_clk, &xdev->rxs_clk);
	if (err)
		return err;
2541 2542 2543 2544 2545 2546 2547 2548 2549

	/* Request and map I/O memory */
	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	xdev->regs = devm_ioremap_resource(&pdev->dev, io);
	if (IS_ERR(xdev->regs))
		return PTR_ERR(xdev->regs);

	/* Retrieve the DMA engine properties from the device tree */
	xdev->has_sg = of_property_read_bool(node, "xlnx,include-sg");
2550 2551
	if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
		xdev->mcdma = of_property_read_bool(node, "xlnx,mcdma");
2552

2553
	if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
2554 2555 2556 2557 2558 2559 2560
		err = of_property_read_u32(node, "xlnx,num-fstores",
					   &num_frames);
		if (err < 0) {
			dev_err(xdev->dev,
				"missing xlnx,num-fstores property\n");
			return err;
		}
2561

2562 2563 2564 2565 2566
		err = of_property_read_u32(node, "xlnx,flush-fsync",
					   &xdev->flush_on_fsync);
		if (err < 0)
			dev_warn(xdev->dev,
				 "missing xlnx,flush-fsync property\n");
2567 2568
	}

2569
	err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width);
2570
	if (err < 0)
2571 2572 2573 2574 2575 2576 2577 2578 2579
		dev_warn(xdev->dev, "missing xlnx,addrwidth property\n");

	if (addr_width > 32)
		xdev->ext_addr = true;
	else
		xdev->ext_addr = false;

	/* Set the dma mask bits */
	dma_set_mask(xdev->dev, DMA_BIT_MASK(addr_width));
2580 2581 2582 2583 2584

	/* Initialize the DMA engine */
	xdev->common.dev = &pdev->dev;

	INIT_LIST_HEAD(&xdev->common.channels);
2585
	if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) {
2586 2587 2588
		dma_cap_set(DMA_SLAVE, xdev->common.cap_mask);
		dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask);
	}
2589 2590

	xdev->common.device_alloc_chan_resources =
2591
				xilinx_dma_alloc_chan_resources;
2592
	xdev->common.device_free_chan_resources =
2593 2594 2595 2596
				xilinx_dma_free_chan_resources;
	xdev->common.device_terminate_all = xilinx_dma_terminate_all;
	xdev->common.device_tx_status = xilinx_dma_tx_status;
	xdev->common.device_issue_pending = xilinx_dma_issue_pending;
2597
	if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
2598
		dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask);
2599
		xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg;
2600 2601
		xdev->common.device_prep_dma_cyclic =
					  xilinx_dma_prep_dma_cyclic;
2602 2603
		xdev->common.device_prep_interleaved_dma =
					xilinx_dma_prep_interleaved;
2604 2605 2606
		/* Residue calculation is supported by only AXI DMA */
		xdev->common.residue_granularity =
					  DMA_RESIDUE_GRANULARITY_SEGMENT;
2607
	} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
2608 2609
		dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask);
		xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy;
2610 2611
	} else {
		xdev->common.device_prep_interleaved_dma =
2612
				xilinx_vdma_dma_prep_interleaved;
2613
	}
2614 2615 2616 2617 2618

	platform_set_drvdata(pdev, xdev);

	/* Initialize the channels */
	for_each_child_of_node(node, child) {
2619
		err = xilinx_dma_child_probe(xdev, child);
2620
		if (err < 0)
2621
			goto disable_clks;
2622 2623
	}

2624
	if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
2625
		for (i = 0; i < xdev->nr_channels; i++)
2626 2627 2628
			if (xdev->chan[i])
				xdev->chan[i]->num_frms = num_frames;
	}
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

	/* Register the DMA engine with the core */
	dma_async_device_register(&xdev->common);

	err = of_dma_controller_register(node, of_dma_xilinx_xlate,
					 xdev);
	if (err < 0) {
		dev_err(&pdev->dev, "Unable to register DMA to DT\n");
		dma_async_device_unregister(&xdev->common);
		goto error;
	}

	dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n");

	return 0;

2645 2646
disable_clks:
	xdma_disable_allclks(xdev);
2647
error:
2648
	for (i = 0; i < xdev->nr_channels; i++)
2649
		if (xdev->chan[i])
2650
			xilinx_dma_chan_remove(xdev->chan[i]);
2651 2652 2653 2654 2655

	return err;
}

/**
2656
 * xilinx_dma_remove - Driver remove function
2657 2658 2659 2660
 * @pdev: Pointer to the platform_device structure
 *
 * Return: Always '0'
 */
2661
static int xilinx_dma_remove(struct platform_device *pdev)
2662
{
2663
	struct xilinx_dma_device *xdev = platform_get_drvdata(pdev);
2664 2665 2666 2667 2668 2669
	int i;

	of_dma_controller_free(pdev->dev.of_node);

	dma_async_device_unregister(&xdev->common);

2670
	for (i = 0; i < xdev->nr_channels; i++)
2671
		if (xdev->chan[i])
2672
			xilinx_dma_chan_remove(xdev->chan[i]);
2673

2674
	xdma_disable_allclks(xdev);
2675 2676 2677 2678 2679 2680 2681

	return 0;
}

static struct platform_driver xilinx_vdma_driver = {
	.driver = {
		.name = "xilinx-vdma",
2682
		.of_match_table = xilinx_dma_of_ids,
2683
	},
2684 2685
	.probe = xilinx_dma_probe,
	.remove = xilinx_dma_remove,
2686 2687 2688 2689 2690 2691 2692
};

module_platform_driver(xilinx_vdma_driver);

MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("Xilinx VDMA driver");
MODULE_LICENSE("GPL v2");