efi.h 5.05 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
#ifndef _ASM_EFI_H
#define _ASM_EFI_H

5
#include <asm/boot.h>
6
#include <asm/cpufeature.h>
7
#include <asm/fpsimd.h>
8
#include <asm/io.h>
9
#include <asm/memory.h>
10
#include <asm/mmu_context.h>
11
#include <asm/neon.h>
12
#include <asm/ptrace.h>
13
#include <asm/tlbflush.h>
14 15 16 17 18 19 20

#ifdef CONFIG_EFI
extern void efi_init(void);
#else
#define efi_init()
#endif

21
int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
22
int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);
23

24
#define arch_efi_call_virt_setup()					\
25
({									\
26
	efi_virtmap_load();						\
27
	__efi_fpsimd_begin();						\
28 29
})

30
#define arch_efi_call_virt(p, f, args...)				\
31
({									\
32
	efi_##f##_t *__f;						\
33
	__f = p->f;							\
34
	__efi_rt_asm_wrapper(__f, #f, args);				\
35 36 37 38
})

#define arch_efi_call_virt_teardown()					\
({									\
39
	__efi_fpsimd_end();						\
40
	efi_virtmap_unload();						\
41 42
})

43 44
efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);

45 46
#define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT)

47 48 49 50 51 52 53 54 55 56 57
/*
 * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not.
 * And EFI shouldn't really play around with priority masking as it is not aware
 * which priorities the OS has assigned to its interrupts.
 */
#define arch_efi_save_flags(state_flags)		\
	((void)((state_flags) = read_sysreg(daif)))

#define arch_efi_restore_flags(state_flags)	write_sysreg(state_flags, daif)


58 59 60 61 62 63 64 65
/* arch specific definitions used by the stub code */

/*
 * AArch64 requires the DTB to be 8-byte aligned in the first 512MiB from
 * start of kernel and may not cross a 2MiB boundary. We set alignment to
 * 2MiB so we know it won't cross a 2MiB boundary.
 */
#define EFI_FDT_ALIGN	SZ_2M   /* used by allocate_new_fdt_and_exit_boot() */
66

67 68 69 70 71 72
/*
 * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the
 * kernel need greater alignment than we require the segments to be padded to.
 */
#define EFI_KIMG_ALIGN	\
	(SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)
73

74 75 76 77 78 79 80 81
/* on arm64, the FDT may be located anywhere in system RAM */
static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
{
	return ULONG_MAX;
}

/*
 * On arm64, we have to ensure that the initrd ends up in the linear region,
82
 * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is
83 84 85
 * guaranteed to cover the kernel Image.
 *
 * Since the EFI stub is part of the kernel Image, we can relax the
86
 * usual requirements in Documentation/arm64/booting.rst, which still
87 88 89 90 91 92
 * apply to other bootloaders, and are required for some kernel
 * configurations.
 */
static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base,
						    unsigned long image_addr)
{
93
	return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1));
94
}
95

96 97
#define efi_call_early(f, ...)		efi_system_table()->boottime->f(__VA_ARGS__)
#define efi_call_runtime(f, ...)	efi_system_table()->runtime->f(__VA_ARGS__)
98
#define efi_is_native()			(true)
99

100
#define efi_table_attr(table, attr, instance)				\
101
	instance->attr
102

103
#define efi_call_proto(protocol, f, instance, ...)			\
104
	instance->f(instance, ##__VA_ARGS__)
105

106
#define alloc_screen_info(x...)		&screen_info
107 108 109 110 111

static inline void free_screen_info(efi_system_table_t *sys_table_arg,
				    struct screen_info *si)
{
}
112

113 114 115
/* redeclare as 'hidden' so the compiler will generate relative references */
extern struct screen_info screen_info __attribute__((__visibility__("hidden")));

116 117 118 119
static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt)
{
}

120 121
#define EFI_ALLOC_ALIGN		SZ_64K

122
/*
123
 * On ARM systems, virtually remapped UEFI runtime services are set up in two
124 125 126 127 128
 * distinct stages:
 * - The stub retrieves the final version of the memory map from UEFI, populates
 *   the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime
 *   service to communicate the new mapping to the firmware (Note that the new
 *   mapping is not live at this time)
129 130 131 132
 * - During an early initcall(), the EFI system table is permanently remapped
 *   and the virtual remapping of the UEFI Runtime Services regions is loaded
 *   into a private set of page tables. If this all succeeds, the Runtime
 *   Services are enabled and the EFI_RUNTIME_SERVICES bit set.
133 134
 */

135 136
static inline void efi_set_pgd(struct mm_struct *mm)
{
137 138 139 140 141 142
	__switch_mm(mm);

	if (system_uses_ttbr0_pan()) {
		if (mm != current->active_mm) {
			/*
			 * Update the current thread's saved ttbr0 since it is
143 144 145 146
			 * restored as part of a return from exception. Enable
			 * access to the valid TTBR0_EL1 and invoke the errata
			 * workaround directly since there is no return from
			 * exception when invoking the EFI run-time services.
147 148
			 */
			update_saved_ttbr0(current, mm);
149 150
			uaccess_ttbr0_enable();
			post_ttbr_update_workaround();
151 152 153 154 155 156
		} else {
			/*
			 * Defer the switch to the current thread's TTBR0_EL1
			 * until uaccess_enable(). Restore the current
			 * thread's saved ttbr0 corresponding to its active_mm
			 */
157
			uaccess_ttbr0_disable();
158
			update_saved_ttbr0(current, current->active_mm);
159 160
		}
	}
161 162
}

163 164 165
void efi_virtmap_load(void);
void efi_virtmap_unload(void);

166
#endif /* _ASM_EFI_H */