of.c 25.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Generic OPP OF helpers
 *
 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
 *	Nishanth Menon
 *	Romit Dasgupta
 *	Kevin Hilman
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/device.h>
19
#include <linux/of_device.h>
20
#include <linux/pm_domain.h>
21
#include <linux/slab.h>
22 23 24 25
#include <linux/export.h>

#include "opp.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Returns opp descriptor node for a device node, caller must
 * do of_node_put().
 */
static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
						     int index)
{
	/* "operating-points-v2" can be an array for power domain providers */
	return of_parse_phandle(np, "operating-points-v2", index);
}

/* Returns opp descriptor node for a device, caller must do of_node_put() */
struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
{
	return _opp_of_get_opp_desc_node(dev->of_node, 0);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);

44
struct opp_table *_managed_opp(struct device *dev, int index)
45
{
46
	struct opp_table *opp_table, *managed_table = NULL;
47
	struct device_node *np;
48

49 50 51
	np = _opp_of_get_opp_desc_node(dev->of_node, index);
	if (!np)
		return NULL;
52

53
	list_for_each_entry(opp_table, &opp_tables, node) {
54 55 56 57 58 59 60 61
		if (opp_table->np == np) {
			/*
			 * Multiple devices can point to the same OPP table and
			 * so will have same node-pointer, np.
			 *
			 * But the OPPs will be considered as shared only if the
			 * OPP table contains a "opp-shared" property.
			 */
62 63 64 65
			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
				_get_opp_table_kref(opp_table);
				managed_table = opp_table;
			}
66

67
			break;
68 69 70
		}
	}

71
	of_node_put(np);
72 73

	return managed_table;
74 75
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/* The caller must call dev_pm_opp_put() after the OPP is used */
static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
					  struct device_node *opp_np)
{
	struct dev_pm_opp *opp;

	lockdep_assert_held(&opp_table_lock);

	mutex_lock(&opp_table->lock);

	list_for_each_entry(opp, &opp_table->opp_list, node) {
		if (opp->np == opp_np) {
			dev_pm_opp_get(opp);
			mutex_unlock(&opp_table->lock);
			return opp;
		}
	}

	mutex_unlock(&opp_table->lock);

	return NULL;
}

static struct device_node *of_parse_required_opp(struct device_node *np,
						 int index)
{
	struct device_node *required_np;

	required_np = of_parse_phandle(np, "required-opps", index);
	if (unlikely(!required_np)) {
		pr_err("%s: Unable to parse required-opps: %pOF, index: %d\n",
		       __func__, np, index);
	}

	return required_np;
}

/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
{
	struct opp_table *opp_table;
117
	struct device_node *opp_table_np;
118 119 120

	lockdep_assert_held(&opp_table_lock);

121 122 123 124 125 126 127
	opp_table_np = of_get_parent(opp_np);
	if (!opp_table_np)
		goto err;

	/* It is safe to put the node now as all we need now is its address */
	of_node_put(opp_table_np);

128
	list_for_each_entry(opp_table, &opp_tables, node) {
129
		if (opp_table_np == opp_table->np) {
130 131 132 133 134
			_get_opp_table_kref(opp_table);
			return opp_table;
		}
	}

135
err:
136 137 138 139 140 141 142
	return ERR_PTR(-ENODEV);
}

/* Free resources previously acquired by _opp_table_alloc_required_tables() */
static void _opp_table_free_required_tables(struct opp_table *opp_table)
{
	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
143
	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
144 145 146 147 148 149 150 151 152 153 154 155 156
	int i;

	if (!required_opp_tables)
		return;

	for (i = 0; i < opp_table->required_opp_count; i++) {
		if (IS_ERR_OR_NULL(required_opp_tables[i]))
			break;

		dev_pm_opp_put_opp_table(required_opp_tables[i]);
	}

	kfree(required_opp_tables);
157
	kfree(genpd_virt_devs);
158 159

	opp_table->required_opp_count = 0;
160
	opp_table->genpd_virt_devs = NULL;
161 162 163 164 165 166 167 168 169 170 171 172
	opp_table->required_opp_tables = NULL;
}

/*
 * Populate all devices and opp tables which are part of "required-opps" list.
 * Checking only the first OPP node should be enough.
 */
static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
					     struct device *dev,
					     struct device_node *opp_np)
{
	struct opp_table **required_opp_tables;
173
	struct device **genpd_virt_devs = NULL;
174 175 176 177 178 179 180 181 182 183 184 185 186 187
	struct device_node *required_np, *np;
	int count, i;

	/* Traversing the first OPP node is all we need */
	np = of_get_next_available_child(opp_np, NULL);
	if (!np) {
		dev_err(dev, "Empty OPP table\n");
		return;
	}

	count = of_count_phandle_with_args(np, "required-opps", NULL);
	if (!count)
		goto put_np;

188 189 190 191 192 193 194
	if (count > 1) {
		genpd_virt_devs = kcalloc(count, sizeof(*genpd_virt_devs),
					GFP_KERNEL);
		if (!genpd_virt_devs)
			goto put_np;
	}

195 196
	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
				      GFP_KERNEL);
197 198
	if (!required_opp_tables) {
		kfree(genpd_virt_devs);
199
		goto put_np;
200
	}
201

202
	opp_table->genpd_virt_devs = genpd_virt_devs;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	opp_table->required_opp_tables = required_opp_tables;
	opp_table->required_opp_count = count;

	for (i = 0; i < count; i++) {
		required_np = of_parse_required_opp(np, i);
		if (!required_np)
			goto free_required_tables;

		required_opp_tables[i] = _find_table_of_opp_np(required_np);
		of_node_put(required_np);

		if (IS_ERR(required_opp_tables[i]))
			goto free_required_tables;

		/*
		 * We only support genpd's OPPs in the "required-opps" for now,
		 * as we don't know how much about other cases. Error out if the
		 * required OPP doesn't belong to a genpd.
		 */
		if (!required_opp_tables[i]->is_genpd) {
			dev_err(dev, "required-opp doesn't belong to genpd: %pOF\n",
				required_np);
			goto free_required_tables;
		}
	}

	goto put_np;

free_required_tables:
	_opp_table_free_required_tables(opp_table);
put_np:
	of_node_put(np);
}

237 238
void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
			int index)
239
{
240 241
	struct device_node *np, *opp_np;
	u32 val;
242 243 244 245 246 247

	/*
	 * Only required for backward compatibility with v1 bindings, but isn't
	 * harmful for other cases. And so we do it unconditionally.
	 */
	np = of_node_get(dev->of_node);
248 249 250 251 252 253 254 255
	if (!np)
		return;

	if (!of_property_read_u32(np, "clock-latency", &val))
		opp_table->clock_latency_ns_max = val;
	of_property_read_u32(np, "voltage-tolerance",
			     &opp_table->voltage_tolerance_v1);

256 257 258
	if (of_find_property(np, "#power-domain-cells", NULL))
		opp_table->is_genpd = true;

259 260 261 262 263 264 265 266 267 268 269 270 271 272
	/* Get OPP table node */
	opp_np = _opp_of_get_opp_desc_node(np, index);
	of_node_put(np);

	if (!opp_np)
		return;

	if (of_property_read_bool(opp_np, "opp-shared"))
		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
	else
		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;

	opp_table->np = opp_np;

273
	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
274
	of_node_put(opp_np);
275 276
}

277 278 279 280 281
void _of_clear_opp_table(struct opp_table *opp_table)
{
	_opp_table_free_required_tables(opp_table);
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Release all resources previously acquired with a call to
 * _of_opp_alloc_required_opps().
 */
void _of_opp_free_required_opps(struct opp_table *opp_table,
				struct dev_pm_opp *opp)
{
	struct dev_pm_opp **required_opps = opp->required_opps;
	int i;

	if (!required_opps)
		return;

	for (i = 0; i < opp_table->required_opp_count; i++) {
		if (!required_opps[i])
			break;

		/* Put the reference back */
		dev_pm_opp_put(required_opps[i]);
	}

	kfree(required_opps);
	opp->required_opps = NULL;
}

/* Populate all required OPPs which are part of "required-opps" list */
static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
				       struct dev_pm_opp *opp)
{
	struct dev_pm_opp **required_opps;
	struct opp_table *required_table;
	struct device_node *np;
	int i, ret, count = opp_table->required_opp_count;

	if (!count)
		return 0;

	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
	if (!required_opps)
		return -ENOMEM;

	opp->required_opps = required_opps;

	for (i = 0; i < count; i++) {
		required_table = opp_table->required_opp_tables[i];

		np = of_parse_required_opp(opp->np, i);
		if (unlikely(!np)) {
			ret = -ENODEV;
			goto free_required_opps;
		}

		required_opps[i] = _find_opp_of_np(required_table, np);
		of_node_put(np);

		if (!required_opps[i]) {
			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
			       __func__, opp->np, i);
			ret = -ENODEV;
			goto free_required_opps;
		}
	}

	return 0;

free_required_opps:
	_of_opp_free_required_opps(opp_table, opp);

	return ret;
}

353 354 355 356 357 358 359
static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
			      struct device_node *np)
{
	unsigned int count = opp_table->supported_hw_count;
	u32 version;
	int ret;

360 361 362 363 364 365 366 367 368 369 370 371
	if (!opp_table->supported_hw) {
		/*
		 * In the case that no supported_hw has been set by the
		 * platform but there is an opp-supported-hw value set for
		 * an OPP then the OPP should not be enabled as there is
		 * no way to see if the hardware supports it.
		 */
		if (of_find_property(np, "opp-supported-hw", NULL))
			return false;
		else
			return true;
	}
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	while (count--) {
		ret = of_property_read_u32_index(np, "opp-supported-hw", count,
						 &version);
		if (ret) {
			dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
				 __func__, count, ret);
			return false;
		}

		/* Both of these are bitwise masks of the versions */
		if (!(version & opp_table->supported_hw[count]))
			return false;
	}

	return true;
}

static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
			      struct opp_table *opp_table)
{
393 394
	u32 *microvolt, *microamp = NULL;
	int supplies, vcount, icount, ret, i, j;
395 396 397
	struct property *prop = NULL;
	char name[NAME_MAX];

398 399
	supplies = opp_table->regulator_count ? opp_table->regulator_count : 1;

400 401 402 403 404 405 406 407 408 409 410 411 412
	/* Search for "opp-microvolt-<name>" */
	if (opp_table->prop_name) {
		snprintf(name, sizeof(name), "opp-microvolt-%s",
			 opp_table->prop_name);
		prop = of_find_property(opp->np, name, NULL);
	}

	if (!prop) {
		/* Search for "opp-microvolt" */
		sprintf(name, "opp-microvolt");
		prop = of_find_property(opp->np, name, NULL);

		/* Missing property isn't a problem, but an invalid entry is */
413 414 415 416 417 418 419 420
		if (!prop) {
			if (!opp_table->regulator_count)
				return 0;

			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
				__func__);
			return -EINVAL;
		}
421 422
	}

423 424
	vcount = of_property_count_u32_elems(opp->np, name);
	if (vcount < 0) {
425
		dev_err(dev, "%s: Invalid %s property (%d)\n",
426 427
			__func__, name, vcount);
		return vcount;
428 429
	}

430 431 432 433
	/* There can be one or three elements per supply */
	if (vcount != supplies && vcount != supplies * 3) {
		dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
			__func__, name, vcount, supplies);
434 435 436
		return -EINVAL;
	}

437 438 439 440 441
	microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
	if (!microvolt)
		return -ENOMEM;

	ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
442 443
	if (ret) {
		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
444 445
		ret = -EINVAL;
		goto free_microvolt;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	}

	/* Search for "opp-microamp-<name>" */
	prop = NULL;
	if (opp_table->prop_name) {
		snprintf(name, sizeof(name), "opp-microamp-%s",
			 opp_table->prop_name);
		prop = of_find_property(opp->np, name, NULL);
	}

	if (!prop) {
		/* Search for "opp-microamp" */
		sprintf(name, "opp-microamp");
		prop = of_find_property(opp->np, name, NULL);
	}

462 463 464 465 466 467 468 469
	if (prop) {
		icount = of_property_count_u32_elems(opp->np, name);
		if (icount < 0) {
			dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
				name, icount);
			ret = icount;
			goto free_microvolt;
		}
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		if (icount != supplies) {
			dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
				__func__, name, icount, supplies);
			ret = -EINVAL;
			goto free_microvolt;
		}

		microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
		if (!microamp) {
			ret = -EINVAL;
			goto free_microvolt;
		}

		ret = of_property_read_u32_array(opp->np, name, microamp,
						 icount);
		if (ret) {
			dev_err(dev, "%s: error parsing %s: %d\n", __func__,
				name, ret);
			ret = -EINVAL;
			goto free_microamp;
		}
	}

	for (i = 0, j = 0; i < supplies; i++) {
		opp->supplies[i].u_volt = microvolt[j++];

		if (vcount == supplies) {
			opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
			opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
		} else {
			opp->supplies[i].u_volt_min = microvolt[j++];
			opp->supplies[i].u_volt_max = microvolt[j++];
		}

		if (microamp)
			opp->supplies[i].u_amp = microamp[i];
	}

free_microamp:
	kfree(microamp);
free_microvolt:
	kfree(microvolt);

	return ret;
515 516 517 518 519 520 521 522 523 524 525
}

/**
 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
 *				  entries
 * @dev:	device pointer used to lookup OPP table.
 *
 * Free OPPs created using static entries present in DT.
 */
void dev_pm_opp_of_remove_table(struct device *dev)
{
526
	_dev_pm_opp_find_and_remove_table(dev);
527 528 529 530 531
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);

/**
 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
532
 * @opp_table:	OPP table
533 534 535 536 537 538 539 540
 * @dev:	device for which we do this operation
 * @np:		device node
 *
 * This function adds an opp definition to the opp table and returns status. The
 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
 * removed by dev_pm_opp_remove.
 *
 * Return:
541 542 543
 * Valid OPP pointer:
 *		On success
 * NULL:
544
 *		Duplicate OPPs (both freq and volt are same) and opp->available
545 546 547
 *		OR if the OPP is not supported by hardware.
 * ERR_PTR(-EEXIST):
 *		Freq are same and volt are different OR
548
 *		Duplicate OPPs (both freq and volt are same) and !opp->available
549 550 551 552
 * ERR_PTR(-ENOMEM):
 *		Memory allocation failure
 * ERR_PTR(-EINVAL):
 *		Failed parsing the OPP node
553
 */
554 555
static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
		struct device *dev, struct device_node *np)
556 557
{
	struct dev_pm_opp *new_opp;
558
	u64 rate = 0;
559 560
	u32 val;
	int ret;
561
	bool rate_not_available = false;
562

563 564
	new_opp = _opp_allocate(opp_table);
	if (!new_opp)
565
		return ERR_PTR(-ENOMEM);
566 567 568

	ret = of_property_read_u64(np, "opp-hz", &rate);
	if (ret < 0) {
569
		/* "opp-hz" is optional for devices like power domains. */
570
		if (!opp_table->is_genpd) {
571 572 573 574 575 576 577 578 579 580 581 582
			dev_err(dev, "%s: opp-hz not found\n", __func__);
			goto free_opp;
		}

		rate_not_available = true;
	} else {
		/*
		 * Rate is defined as an unsigned long in clk API, and so
		 * casting explicitly to its type. Must be fixed once rate is 64
		 * bit guaranteed in clk API.
		 */
		new_opp->rate = (unsigned long)rate;
583 584 585 586 587 588 589 590 591 592 593 594 595 596
	}

	/* Check if the OPP supports hardware's hierarchy of versions or not */
	if (!_opp_is_supported(dev, opp_table, np)) {
		dev_dbg(dev, "OPP not supported by hardware: %llu\n", rate);
		goto free_opp;
	}

	new_opp->turbo = of_property_read_bool(np, "turbo-mode");

	new_opp->np = np;
	new_opp->dynamic = false;
	new_opp->available = true;

597 598 599 600
	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
	if (ret)
		goto free_opp;

601 602 603 604 605
	if (!of_property_read_u32(np, "clock-latency-ns", &val))
		new_opp->clock_latency_ns = val;

	ret = opp_parse_supplies(new_opp, dev, opp_table);
	if (ret)
606
		goto free_required_opps;
607

608 609 610
	if (opp_table->is_genpd)
		new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);

611
	ret = _opp_add(dev, new_opp, opp_table, rate_not_available);
612 613 614 615
	if (ret) {
		/* Don't return error for duplicate OPPs */
		if (ret == -EBUSY)
			ret = 0;
616
		goto free_required_opps;
617
	}
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

	/* OPP to select on device suspend */
	if (of_property_read_bool(np, "opp-suspend")) {
		if (opp_table->suspend_opp) {
			dev_warn(dev, "%s: Multiple suspend OPPs found (%lu %lu)\n",
				 __func__, opp_table->suspend_opp->rate,
				 new_opp->rate);
		} else {
			new_opp->suspend = true;
			opp_table->suspend_opp = new_opp;
		}
	}

	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;

	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu\n",
635
		 __func__, new_opp->turbo, new_opp->rate,
636 637
		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns);
638 639 640 641 642

	/*
	 * Notify the changes in the availability of the operable
	 * frequency/voltage list.
	 */
643
	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
644
	return new_opp;
645

646 647
free_required_opps:
	_of_opp_free_required_opps(opp_table, new_opp);
648
free_opp:
649 650
	_opp_free(new_opp);

651
	return ERR_PTR(ret);
652 653 654
}

/* Initializes OPP tables based on new bindings */
655
static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
656 657
{
	struct device_node *np;
658
	int ret, count = 0, pstate_count = 0;
659
	struct dev_pm_opp *opp;
660

661 662 663 664 665 666
	/* OPP table is already initialized for the device */
	if (opp_table->parsed_static_opps) {
		kref_get(&opp_table->list_kref);
		return 0;
	}

667 668
	kref_init(&opp_table->list_kref);

669
	/* We have opp-table node now, iterate over it and add OPPs */
670
	for_each_available_child_of_node(opp_table->np, np) {
671 672 673
		opp = _opp_add_static_v2(opp_table, dev, np);
		if (IS_ERR(opp)) {
			ret = PTR_ERR(opp);
674 675
			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
				ret);
676
			of_node_put(np);
677
			goto put_list_kref;
678 679
		} else if (opp) {
			count++;
680 681 682 683
		}
	}

	/* There should be one of more OPP defined */
684 685
	if (WARN_ON(!count)) {
		ret = -ENOENT;
686
		goto put_list_kref;
687 688
	}

689 690 691 692 693 694 695 696
	list_for_each_entry(opp, &opp_table->opp_list, node)
		pstate_count += !!opp->pstate;

	/* Either all or none of the nodes shall have performance state set */
	if (pstate_count && pstate_count != count) {
		dev_err(dev, "Not all nodes have performance state set (%d: %d)\n",
			count, pstate_count);
		ret = -ENOENT;
697
		goto put_list_kref;
698 699 700 701 702
	}

	if (pstate_count)
		opp_table->genpd_performance_state = true;

703
	opp_table->parsed_static_opps = true;
704

705 706 707 708
	return 0;

put_list_kref:
	_put_opp_list_kref(opp_table);
709 710 711 712 713

	return ret;
}

/* Initializes OPP tables based on old-deprecated bindings */
714
static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
715 716 717
{
	const struct property *prop;
	const __be32 *val;
718
	int nr, ret = 0;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	prop = of_find_property(dev->of_node, "operating-points", NULL);
	if (!prop)
		return -ENODEV;
	if (!prop->value)
		return -ENODATA;

	/*
	 * Each OPP is a set of tuples consisting of frequency and
	 * voltage like <freq-kHz vol-uV>.
	 */
	nr = prop->length / sizeof(u32);
	if (nr % 2) {
		dev_err(dev, "%s: Invalid OPP table\n", __func__);
		return -EINVAL;
	}

736 737
	kref_init(&opp_table->list_kref);

738 739 740 741 742
	val = prop->value;
	while (nr) {
		unsigned long freq = be32_to_cpup(val++) * 1000;
		unsigned long volt = be32_to_cpup(val++);

743
		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
744 745 746
		if (ret) {
			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
				__func__, freq, ret);
747 748
			_put_opp_list_kref(opp_table);
			return ret;
749
		}
750 751 752
		nr -= 2;
	}

753
	return ret;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/**
 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
 * @dev:	device pointer used to lookup OPP table.
 *
 * Register the initial OPP table with the OPP library for given device.
 *
 * Return:
 * 0		On success OR
 *		Duplicate OPPs (both freq and volt are same) and opp->available
 * -EEXIST	Freq are same and volt are different OR
 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 * -ENOMEM	Memory allocation failure
 * -ENODEV	when 'operating-points' property is not found or is invalid data
 *		in device node.
 * -ENODATA	when empty 'operating-points' property is found
 * -EINVAL	when invalid entries are found in opp-v2 table
 */
int dev_pm_opp_of_add_table(struct device *dev)
{
775
	struct opp_table *opp_table;
776 777
	int ret;

778 779 780 781
	opp_table = dev_pm_opp_get_opp_table_indexed(dev, 0);
	if (!opp_table)
		return -ENOMEM;

782
	/*
783 784
	 * OPPs have two version of bindings now. Also try the old (v1)
	 * bindings for backward compatibility with older dtbs.
785
	 */
786 787 788 789
	if (opp_table->np)
		ret = _of_add_opp_table_v2(dev, opp_table);
	else
		ret = _of_add_opp_table_v1(dev, opp_table);
790

791 792
	if (ret)
		dev_pm_opp_put_opp_table(opp_table);
793 794 795 796 797

	return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/**
 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
 * @dev:	device pointer used to lookup OPP table.
 * @index:	Index number.
 *
 * Register the initial OPP table with the OPP library for given device only
 * using the "operating-points-v2" property.
 *
 * Return:
 * 0		On success OR
 *		Duplicate OPPs (both freq and volt are same) and opp->available
 * -EEXIST	Freq are same and volt are different OR
 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 * -ENOMEM	Memory allocation failure
 * -ENODEV	when 'operating-points' property is not found or is invalid data
 *		in device node.
 * -ENODATA	when empty 'operating-points' property is found
 * -EINVAL	when invalid entries are found in opp-v2 table
 */
int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
{
819
	struct opp_table *opp_table;
820
	int ret, count;
821

822
	if (index) {
823 824 825 826 827 828
		/*
		 * If only one phandle is present, then the same OPP table
		 * applies for all index requests.
		 */
		count = of_count_phandle_with_args(dev->of_node,
						   "operating-points-v2", NULL);
829 830
		if (count != 1)
			return -ENODEV;
831

832
		index = 0;
833
	}
834

835 836 837 838 839 840 841
	opp_table = dev_pm_opp_get_opp_table_indexed(dev, index);
	if (!opp_table)
		return -ENOMEM;

	ret = _of_add_opp_table_v2(dev, opp_table);
	if (ret)
		dev_pm_opp_put_opp_table(opp_table);
842 843 844 845 846

	return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);

847 848 849 850 851 852 853 854 855 856 857
/* CPU device specific helpers */

/**
 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
 * @cpumask:	cpumask for which OPP table needs to be removed
 *
 * This removes the OPP tables for CPUs present in the @cpumask.
 * This should be used only to remove static entries created from DT.
 */
void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
{
858
	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
859 860 861 862 863 864 865 866 867 868 869 870
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);

/**
 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
 * @cpumask:	cpumask for which OPP table needs to be added.
 *
 * This adds the OPP tables for CPUs present in the @cpumask.
 */
int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
{
	struct device *cpu_dev;
871
	int cpu, ret;
872

873 874
	if (WARN_ON(cpumask_empty(cpumask)))
		return -ENODEV;
875 876 877 878 879 880

	for_each_cpu(cpu, cpumask) {
		cpu_dev = get_cpu_device(cpu);
		if (!cpu_dev) {
			pr_err("%s: failed to get cpu%d device\n", __func__,
			       cpu);
881 882
			ret = -ENODEV;
			goto remove_table;
883 884 885 886
		}

		ret = dev_pm_opp_of_add_table(cpu_dev);
		if (ret) {
887 888 889 890 891 892
			/*
			 * OPP may get registered dynamically, don't print error
			 * message here.
			 */
			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
				 __func__, cpu, ret);
893

894
			goto remove_table;
895 896 897
		}
	}

898 899 900 901 902 903
	return 0;

remove_table:
	/* Free all other OPPs */
	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);

/*
 * Works only for OPP v2 bindings.
 *
 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
 */
/**
 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
 *				      @cpu_dev using operating-points-v2
 *				      bindings.
 *
 * @cpu_dev:	CPU device for which we do this operation
 * @cpumask:	cpumask to update with information of sharing CPUs
 *
 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
 *
 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
 */
int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
				   struct cpumask *cpumask)
{
928
	struct device_node *np, *tmp_np, *cpu_np;
929 930 931
	int cpu, ret = 0;

	/* Get OPP descriptor node */
932
	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
933
	if (!np) {
934
		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
935 936 937 938 939 940 941 942 943 944 945 946 947
		return -ENOENT;
	}

	cpumask_set_cpu(cpu_dev->id, cpumask);

	/* OPPs are shared ? */
	if (!of_property_read_bool(np, "opp-shared"))
		goto put_cpu_node;

	for_each_possible_cpu(cpu) {
		if (cpu == cpu_dev->id)
			continue;

948
		cpu_np = of_cpu_device_node_get(cpu);
949 950
		if (!cpu_np) {
			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
951
				__func__, cpu);
952
			ret = -ENOENT;
953 954 955 956
			goto put_cpu_node;
		}

		/* Get OPP descriptor node */
957
		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
958
		of_node_put(cpu_np);
959
		if (!tmp_np) {
960
			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
			ret = -ENOENT;
			goto put_cpu_node;
		}

		/* CPUs are sharing opp node */
		if (np == tmp_np)
			cpumask_set_cpu(cpu, cpumask);

		of_node_put(tmp_np);
	}

put_cpu_node:
	of_node_put(np);
	return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
977

978 979 980 981 982 983 984 985
/**
 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
 * @np: Node that contains the "required-opps" property.
 * @index: Index of the phandle to parse.
 *
 * Returns the performance state of the OPP pointed out by the "required-opps"
 * property at @index in @np.
 *
986 987
 * Return: Zero or positive performance state on success, otherwise negative
 * value on errors.
988
 */
989
int of_get_required_opp_performance_state(struct device_node *np, int index)
990 991 992 993
{
	struct dev_pm_opp *opp;
	struct device_node *required_np;
	struct opp_table *opp_table;
994
	int pstate = -EINVAL;
995 996 997

	required_np = of_parse_required_opp(np, index);
	if (!required_np)
998
		return -EINVAL;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

	opp_table = _find_table_of_opp_np(required_np);
	if (IS_ERR(opp_table)) {
		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
		       __func__, np, PTR_ERR(opp_table));
		goto put_required_np;
	}

	opp = _find_opp_of_np(opp_table, required_np);
	if (opp) {
		pstate = opp->pstate;
		dev_pm_opp_put(opp);
	}

	dev_pm_opp_put_opp_table(opp_table);

put_required_np:
	of_node_put(required_np);

	return pstate;
}
EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/**
 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
 * @opp:	opp for which DT node has to be returned for
 *
 * Return: DT node corresponding to the opp, else 0 on success.
 *
 * The caller needs to put the node with of_node_put() after using it.
 */
struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
{
	if (IS_ERR_OR_NULL(opp)) {
		pr_err("%s: Invalid parameters\n", __func__);
		return NULL;
	}

	return of_node_get(opp->np);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);