vega20_hwmgr.c 110 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Copyright 2018 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/module.h>
#include <linux/slab.h>

#include "hwmgr.h"
#include "amd_powerplay.h"
#include "vega20_smumgr.h"
#include "hardwaremanager.h"
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "cgs_common.h"
#include "vega20_powertune.h"
#include "vega20_inc.h"
#include "pppcielanes.h"
#include "vega20_hwmgr.h"
#include "vega20_processpptables.h"
#include "vega20_pptable.h"
#include "vega20_thermal.h"
#include "vega20_ppsmc.h"
#include "pp_debug.h"
#include "amd_pcie_helpers.h"
#include "ppinterrupt.h"
#include "pp_overdriver.h"
#include "pp_thermal.h"

static void vega20_set_default_registry_data(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);

	data->gfxclk_average_alpha = PPVEGA20_VEGA20GFXCLKAVERAGEALPHA_DFLT;
	data->socclk_average_alpha = PPVEGA20_VEGA20SOCCLKAVERAGEALPHA_DFLT;
	data->uclk_average_alpha = PPVEGA20_VEGA20UCLKCLKAVERAGEALPHA_DFLT;
	data->gfx_activity_average_alpha = PPVEGA20_VEGA20GFXACTIVITYAVERAGEALPHA_DFLT;
	data->lowest_uclk_reserved_for_ulv = PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT;

	data->display_voltage_mode = PPVEGA20_VEGA20DISPLAYVOLTAGEMODE_DFLT;
	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;

	data->registry_data.disallowed_features = 0x0;
	data->registry_data.od_state_in_dc_support = 0;
	data->registry_data.thermal_support = 1;
	data->registry_data.skip_baco_hardware = 0;

	data->registry_data.log_avfs_param = 0;
	data->registry_data.sclk_throttle_low_notification = 1;
	data->registry_data.force_dpm_high = 0;
	data->registry_data.stable_pstate_sclk_dpm_percentage = 75;

	data->registry_data.didt_support = 0;
	if (data->registry_data.didt_support) {
		data->registry_data.didt_mode = 6;
		data->registry_data.sq_ramping_support = 1;
		data->registry_data.db_ramping_support = 0;
		data->registry_data.td_ramping_support = 0;
		data->registry_data.tcp_ramping_support = 0;
		data->registry_data.dbr_ramping_support = 0;
		data->registry_data.edc_didt_support = 1;
		data->registry_data.gc_didt_support = 0;
		data->registry_data.psm_didt_support = 0;
	}

	data->registry_data.pcie_lane_override = 0xff;
	data->registry_data.pcie_speed_override = 0xff;
	data->registry_data.pcie_clock_override = 0xffffffff;
	data->registry_data.regulator_hot_gpio_support = 1;
	data->registry_data.ac_dc_switch_gpio_support = 0;
	data->registry_data.quick_transition_support = 0;
	data->registry_data.zrpm_start_temp = 0xffff;
	data->registry_data.zrpm_stop_temp = 0xffff;
106
	data->registry_data.od8_feature_enable = 1;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
	data->registry_data.disable_water_mark = 0;
	data->registry_data.disable_pp_tuning = 0;
	data->registry_data.disable_xlpp_tuning = 0;
	data->registry_data.disable_workload_policy = 0;
	data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F;
	data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919;
	data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A;
	data->registry_data.force_workload_policy_mask = 0;
	data->registry_data.disable_3d_fs_detection = 0;
	data->registry_data.fps_support = 1;
	data->registry_data.disable_auto_wattman = 1;
	data->registry_data.auto_wattman_debug = 0;
	data->registry_data.auto_wattman_sample_period = 100;
	data->registry_data.auto_wattman_threshold = 50;
	data->registry_data.gfxoff_controlled_by_driver = 1;
	data->gfxoff_allowed = false;
	data->counter_gfxoff = 0;
}

static int vega20_set_features_platform_caps(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	struct amdgpu_device *adev = hwmgr->adev;

	if (data->vddci_control == VEGA20_VOLTAGE_CONTROL_NONE)
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ControlVDDCI);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TablelessHardwareInterface);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_EnableSMU7ThermalManagement);

	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_UVDPowerGating);

	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_VCEPowerGating);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_UnTabledHardwareInterface);

153
	if (data->registry_data.od8_feature_enable)
154
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
155
				PHM_PlatformCaps_OD8inACSupport);
156 157 158 159 160 161 162

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ActivityReporting);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_FanSpeedInTableIsRPM);

	if (data->registry_data.od_state_in_dc_support) {
163
		if (data->registry_data.od8_feature_enable)
164
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
165
					PHM_PlatformCaps_OD8inDCSupport);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	}

	if (data->registry_data.thermal_support &&
	    data->registry_data.fuzzy_fan_control_support &&
	    hwmgr->thermal_controller.advanceFanControlParameters.usTMax)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ODFuzzyFanControlSupport);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DynamicPowerManagement);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SMC);
	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_ThermalPolicyDelay);

	if (data->registry_data.force_dpm_high)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_ExclusiveModeAlwaysHigh);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DynamicUVDState);

	if (data->registry_data.sclk_throttle_low_notification)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_SclkThrottleLowNotification);

	/* power tune caps */
	/* assume disabled */
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PowerContainment);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DiDtSupport);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_SQRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DBRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TDRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_TCPRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DBRRamping);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_DiDtEDCEnable);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_GCEDC);
	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_PSM);

	if (data->registry_data.didt_support) {
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_DiDtSupport);
		if (data->registry_data.sq_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SQRamping);
		if (data->registry_data.db_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_DBRamping);
		if (data->registry_data.td_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_TDRamping);
		if (data->registry_data.tcp_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_TCPRamping);
		if (data->registry_data.dbr_ramping_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_DBRRamping);
		if (data->registry_data.edc_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_DiDtEDCEnable);
		if (data->registry_data.gc_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_GCEDC);
		if (data->registry_data.psm_didt_support)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_PSM);
	}

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
			PHM_PlatformCaps_RegulatorHot);

	if (data->registry_data.ac_dc_switch_gpio_support) {
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_AutomaticDCTransition);
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
	}

	if (data->registry_data.quick_transition_support) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_AutomaticDCTransition);
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_Falcon_QuickTransition);
	}

	if (data->lowest_uclk_reserved_for_ulv != PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT) {
		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_LowestUclkReservedForUlv);
		if (data->lowest_uclk_reserved_for_ulv == 1)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_LowestUclkReservedForUlv);
	}

	if (data->registry_data.custom_fan_support)
		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_CustomFanControlSupport);

	return 0;
}

static void vega20_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	int i;

	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
			FEATURE_DPM_PREFETCHER_BIT;
	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
			FEATURE_DPM_GFXCLK_BIT;
	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
			FEATURE_DPM_UCLK_BIT;
	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
			FEATURE_DPM_SOCCLK_BIT;
	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
			FEATURE_DPM_UVD_BIT;
	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
			FEATURE_DPM_VCE_BIT;
	data->smu_features[GNLD_ULV].smu_feature_id =
			FEATURE_ULV_BIT;
	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
			FEATURE_DPM_MP0CLK_BIT;
	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
			FEATURE_DPM_LINK_BIT;
	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
			FEATURE_DPM_DCEFCLK_BIT;
	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
			FEATURE_DS_GFXCLK_BIT;
	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
			FEATURE_DS_SOCCLK_BIT;
	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
			FEATURE_DS_LCLK_BIT;
	data->smu_features[GNLD_PPT].smu_feature_id =
			FEATURE_PPT_BIT;
	data->smu_features[GNLD_TDC].smu_feature_id =
			FEATURE_TDC_BIT;
	data->smu_features[GNLD_THERMAL].smu_feature_id =
			FEATURE_THERMAL_BIT;
	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
			FEATURE_GFX_PER_CU_CG_BIT;
	data->smu_features[GNLD_RM].smu_feature_id =
			FEATURE_RM_BIT;
	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
			FEATURE_DS_DCEFCLK_BIT;
	data->smu_features[GNLD_ACDC].smu_feature_id =
			FEATURE_ACDC_BIT;
	data->smu_features[GNLD_VR0HOT].smu_feature_id =
			FEATURE_VR0HOT_BIT;
	data->smu_features[GNLD_VR1HOT].smu_feature_id =
			FEATURE_VR1HOT_BIT;
	data->smu_features[GNLD_FW_CTF].smu_feature_id =
			FEATURE_FW_CTF_BIT;
	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
			FEATURE_LED_DISPLAY_BIT;
	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
			FEATURE_FAN_CONTROL_BIT;
	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
	data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT;
	data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT;
	data->smu_features[GNLD_DPM_FCLK].smu_feature_id = FEATURE_DPM_FCLK_BIT;
	data->smu_features[GNLD_DS_FCLK].smu_feature_id = FEATURE_DS_FCLK_BIT;
	data->smu_features[GNLD_DS_MP1CLK].smu_feature_id = FEATURE_DS_MP1CLK_BIT;
	data->smu_features[GNLD_DS_MP0CLK].smu_feature_id = FEATURE_DS_MP0CLK_BIT;
	data->smu_features[GNLD_XGMI].smu_feature_id = FEATURE_XGMI_BIT;

	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
		data->smu_features[i].smu_feature_bitmap =
			(uint64_t)(1ULL << data->smu_features[i].smu_feature_id);
		data->smu_features[i].allowed =
			((data->registry_data.disallowed_features >> i) & 1) ?
			false : true;
	}
}

static int vega20_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
{
	return 0;
}

static int vega20_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
	kfree(hwmgr->backend);
	hwmgr->backend = NULL;

	return 0;
}

static int vega20_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data;
	struct amdgpu_device *adev = hwmgr->adev;

	data = kzalloc(sizeof(struct vega20_hwmgr), GFP_KERNEL);
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;

375 376 377 378
	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_VIDEO];
	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_VIDEO;
	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_VIDEO;

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	vega20_set_default_registry_data(hwmgr);

	data->disable_dpm_mask = 0xff;

	/* need to set voltage control types before EVV patching */
	data->vddc_control = VEGA20_VOLTAGE_CONTROL_NONE;
	data->mvdd_control = VEGA20_VOLTAGE_CONTROL_NONE;
	data->vddci_control = VEGA20_VOLTAGE_CONTROL_NONE;

	data->water_marks_bitmap = 0;
	data->avfs_exist = false;

	vega20_set_features_platform_caps(hwmgr);

	vega20_init_dpm_defaults(hwmgr);

	/* Parse pptable data read from VBIOS */
	vega20_set_private_data_based_on_pptable(hwmgr);

	data->is_tlu_enabled = false;

	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
			VEGA20_MAX_HARDWARE_POWERLEVELS;
	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;

	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
	hwmgr->platform_descriptor.clockStep.engineClock = 500;
	hwmgr->platform_descriptor.clockStep.memoryClock = 500;

	data->total_active_cus = adev->gfx.cu_info.number;

	return 0;
}

static int vega20_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);

	data->low_sclk_interrupt_threshold = 0;

	return 0;
}

static int vega20_setup_asic_task(struct pp_hwmgr *hwmgr)
{
	int ret = 0;

	ret = vega20_init_sclk_threshold(hwmgr);
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to init sclk threshold!",
			return ret);

	return 0;
}

/*
 * @fn vega20_init_dpm_state
 * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
 *
 * @param    dpm_state - the address of the DPM Table to initiailize.
 * @return   None.
 */
static void vega20_init_dpm_state(struct vega20_dpm_state *dpm_state)
{
	dpm_state->soft_min_level = 0x0;
	dpm_state->soft_max_level = 0xffff;
	dpm_state->hard_min_level = 0x0;
	dpm_state->hard_max_level = 0xffff;
}

static int vega20_get_number_of_dpm_level(struct pp_hwmgr *hwmgr,
		PPCLK_e clk_id, uint32_t *num_of_levels)
{
	int ret = 0;

	ret = smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_GetDpmFreqByIndex,
			(clk_id << 16 | 0xFF));
	PP_ASSERT_WITH_CODE(!ret,
			"[GetNumOfDpmLevel] failed to get dpm levels!",
			return ret);

464
	*num_of_levels = smum_get_argument(hwmgr);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	PP_ASSERT_WITH_CODE(*num_of_levels > 0,
			"[GetNumOfDpmLevel] number of clk levels is invalid!",
			return -EINVAL);

	return ret;
}

static int vega20_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr,
		PPCLK_e clk_id, uint32_t index, uint32_t *clk)
{
	int ret = 0;

	ret = smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_GetDpmFreqByIndex,
			(clk_id << 16 | index));
	PP_ASSERT_WITH_CODE(!ret,
			"[GetDpmFreqByIndex] failed to get dpm freq by index!",
			return ret);

484
	*clk = smum_get_argument(hwmgr);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	PP_ASSERT_WITH_CODE(*clk,
			"[GetDpmFreqByIndex] clk value is invalid!",
			return -EINVAL);

	return ret;
}

static int vega20_setup_single_dpm_table(struct pp_hwmgr *hwmgr,
		struct vega20_single_dpm_table *dpm_table, PPCLK_e clk_id)
{
	int ret = 0;
	uint32_t i, num_of_levels, clk;

	ret = vega20_get_number_of_dpm_level(hwmgr, clk_id, &num_of_levels);
	PP_ASSERT_WITH_CODE(!ret,
			"[SetupSingleDpmTable] failed to get clk levels!",
			return ret);

	dpm_table->count = num_of_levels;

	for (i = 0; i < num_of_levels; i++) {
		ret = vega20_get_dpm_frequency_by_index(hwmgr, clk_id, i, &clk);
		PP_ASSERT_WITH_CODE(!ret,
			"[SetupSingleDpmTable] failed to get clk of specific level!",
			return ret);
		dpm_table->dpm_levels[i].value = clk;
		dpm_table->dpm_levels[i].enabled = true;
	}

	return ret;
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
static int vega20_setup_gfxclk_dpm_table(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *dpm_table;
	int ret = 0;

	dpm_table = &(data->dpm_table.gfx_table);
	if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_GFXCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get gfxclk dpm levels!",
				return ret);
	} else {
		dpm_table->count = 1;
		dpm_table->dpm_levels[0].value = data->vbios_boot_state.gfx_clock / 100;
	}

	return ret;
}

static int vega20_setup_memclk_dpm_table(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *dpm_table;
	int ret = 0;

	dpm_table = &(data->dpm_table.mem_table);
	if (data->smu_features[GNLD_DPM_UCLK].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_UCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get memclk dpm levels!",
				return ret);
	} else {
		dpm_table->count = 1;
		dpm_table->dpm_levels[0].value = data->vbios_boot_state.mem_clock / 100;
	}

	return ret;
}
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

/*
 * This function is to initialize all DPM state tables
 * for SMU based on the dependency table.
 * Dynamic state patching function will then trim these
 * state tables to the allowed range based
 * on the power policy or external client requests,
 * such as UVD request, etc.
 */
static int vega20_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *dpm_table;
	int ret = 0;

	memset(&data->dpm_table, 0, sizeof(data->dpm_table));

	/* socclk */
	dpm_table = &(data->dpm_table.soc_table);
	if (data->smu_features[GNLD_DPM_SOCCLK].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_SOCCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get socclk dpm levels!",
				return ret);
	} else {
		dpm_table->count = 1;
		dpm_table->dpm_levels[0].value = data->vbios_boot_state.soc_clock / 100;
	}
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* gfxclk */
	dpm_table = &(data->dpm_table.gfx_table);
591 592 593
	ret = vega20_setup_gfxclk_dpm_table(hwmgr);
	if (ret)
		return ret;
594 595 596 597
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* memclk */
	dpm_table = &(data->dpm_table.mem_table);
598 599 600
	ret = vega20_setup_memclk_dpm_table(hwmgr);
	if (ret)
		return ret;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* eclk */
	dpm_table = &(data->dpm_table.eclk_table);
	if (data->smu_features[GNLD_DPM_VCE].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_ECLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get eclk dpm levels!",
				return ret);
	} else {
		dpm_table->count = 1;
		dpm_table->dpm_levels[0].value = data->vbios_boot_state.eclock / 100;
	}
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* vclk */
	dpm_table = &(data->dpm_table.vclk_table);
	if (data->smu_features[GNLD_DPM_UVD].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_VCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get vclk dpm levels!",
				return ret);
	} else {
		dpm_table->count = 1;
		dpm_table->dpm_levels[0].value = data->vbios_boot_state.vclock / 100;
	}
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* dclk */
	dpm_table = &(data->dpm_table.dclk_table);
	if (data->smu_features[GNLD_DPM_UVD].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get dclk dpm levels!",
				return ret);
	} else {
		dpm_table->count = 1;
		dpm_table->dpm_levels[0].value = data->vbios_boot_state.dclock / 100;
	}
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* dcefclk */
	dpm_table = &(data->dpm_table.dcef_table);
	if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCEFCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get dcefclk dpm levels!",
				return ret);
	} else {
		dpm_table->count = 1;
		dpm_table->dpm_levels[0].value = data->vbios_boot_state.dcef_clock / 100;
	}
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* pixclk */
	dpm_table = &(data->dpm_table.pixel_table);
	if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PIXCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get pixclk dpm levels!",
				return ret);
	} else
		dpm_table->count = 0;
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* dispclk */
	dpm_table = &(data->dpm_table.display_table);
	if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DISPCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get dispclk dpm levels!",
				return ret);
	} else
		dpm_table->count = 0;
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* phyclk */
	dpm_table = &(data->dpm_table.phy_table);
	if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PHYCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get phyclk dpm levels!",
				return ret);
	} else
		dpm_table->count = 0;
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* fclk */
	dpm_table = &(data->dpm_table.fclk_table);
	if (data->smu_features[GNLD_DPM_FCLK].enabled) {
		ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_FCLK);
		PP_ASSERT_WITH_CODE(!ret,
				"[SetupDefaultDpmTable] failed to get fclk dpm levels!",
				return ret);
	} else
		dpm_table->count = 0;
	vega20_init_dpm_state(&(dpm_table->dpm_state));

	/* save a copy of the default DPM table */
	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
			sizeof(struct vega20_dpm_table));

	return 0;
}

/**
* Initializes the SMC table and uploads it
*
* @param    hwmgr  the address of the powerplay hardware manager.
* @param    pInput  the pointer to input data (PowerState)
* @return   always 0
*/
static int vega20_init_smc_table(struct pp_hwmgr *hwmgr)
{
	int result;
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
	struct phm_ppt_v3_information *pptable_information =
		(struct phm_ppt_v3_information *)hwmgr->pptable;

	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
	PP_ASSERT_WITH_CODE(!result,
			"[InitSMCTable] Failed to get vbios bootup values!",
			return result);

	data->vbios_boot_state.vddc     = boot_up_values.usVddc;
	data->vbios_boot_state.vddci    = boot_up_values.usVddci;
	data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
	data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
	data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
	data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
	data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
	data->vbios_boot_state.eclock = boot_up_values.ulEClk;
	data->vbios_boot_state.vclock = boot_up_values.ulVClk;
	data->vbios_boot_state.dclock = boot_up_values.ulDClk;
	data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID;
739

740 741 742 743 744 745
	smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_SetMinDeepSleepDcefclk,
		(uint32_t)(data->vbios_boot_state.dcef_clock / 100));

	memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t));

746 747
	result = smum_smc_table_manager(hwmgr,
					(uint8_t *)pp_table, TABLE_PPTABLE, false);
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	PP_ASSERT_WITH_CODE(!result,
			"[InitSMCTable] Failed to upload PPtable!",
			return result);

	return 0;
}

static int vega20_set_allowed_featuresmask(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	uint32_t allowed_features_low = 0, allowed_features_high = 0;
	int i;
	int ret = 0;

	for (i = 0; i < GNLD_FEATURES_MAX; i++)
		if (data->smu_features[i].allowed)
			data->smu_features[i].smu_feature_id > 31 ?
				(allowed_features_high |=
				 ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT)
				  & 0xFFFFFFFF)) :
				(allowed_features_low |=
				 ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT)
				  & 0xFFFFFFFF));

	ret = smum_send_msg_to_smc_with_parameter(hwmgr,
		PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high);
	PP_ASSERT_WITH_CODE(!ret,
		"[SetAllowedFeaturesMask] Attempt to set allowed features mask(high) failed!",
		return ret);

	ret = smum_send_msg_to_smc_with_parameter(hwmgr,
		PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low);
	PP_ASSERT_WITH_CODE(!ret,
		"[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!",
		return ret);

	return 0;
}

788 789 790 791 792
static int vega20_run_btc_afll(struct pp_hwmgr *hwmgr)
{
	return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAfllBtc);
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static int vega20_enable_all_smu_features(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	uint64_t features_enabled;
	int i;
	bool enabled;
	int ret = 0;

	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr,
			PPSMC_MSG_EnableAllSmuFeatures)) == 0,
			"[EnableAllSMUFeatures] Failed to enable all smu features!",
			return ret);

	ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled);
	PP_ASSERT_WITH_CODE(!ret,
			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
			return ret);

	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
		enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ?
			true : false;
		data->smu_features[i].enabled = enabled;
		data->smu_features[i].supported = enabled;

#if 0
		if (data->smu_features[i].allowed && !enabled)
			pr_info("[EnableAllSMUFeatures] feature %d is expected enabled!", i);
		else if (!data->smu_features[i].allowed && enabled)
			pr_info("[EnableAllSMUFeatures] feature %d is expected disabled!", i);
#endif
	}

	return 0;
}

static int vega20_disable_all_smu_features(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	uint64_t features_enabled;
	int i;
	bool enabled;
	int ret = 0;

	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr,
			PPSMC_MSG_DisableAllSmuFeatures)) == 0,
			"[DisableAllSMUFeatures] Failed to disable all smu features!",
			return ret);

	ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled);
	PP_ASSERT_WITH_CODE(!ret,
			"[DisableAllSMUFeatures] Failed to get enabled smc features!",
			return ret);

	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
		enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ?
			true : false;
		data->smu_features[i].enabled = enabled;
		data->smu_features[i].supported = enabled;
	}

	return 0;
}

858
static int vega20_od8_set_feature_capabilities(
859 860
		struct pp_hwmgr *hwmgr)
{
861 862 863
	struct phm_ppt_v3_information *pptable_information =
		(struct phm_ppt_v3_information *)hwmgr->pptable;
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
864
	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
865 866 867 868 869
	struct vega20_od8_settings *od_settings = &(data->od8_settings);

	od_settings->overdrive8_capabilities = 0;

	if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
870 871 872 873 874
		if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] &&
		    pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 &&
		    pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 &&
		    (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >=
		    pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN]))
875 876
			od_settings->overdrive8_capabilities |= OD8_GFXCLK_LIMITS;

877 878 879 880 881 882 883
		if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] &&
		    (pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >=
		     pp_table->MinVoltageGfx / VOLTAGE_SCALE) &&
		    (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <=
		     pp_table->MaxVoltageGfx / VOLTAGE_SCALE) &&
		    (pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] >=
		     pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1]))
884 885 886 887
			od_settings->overdrive8_capabilities |= OD8_GFXCLK_CURVE;
	}

	if (data->smu_features[GNLD_DPM_UCLK].enabled) {
888 889 890 891 892
		if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] &&
		    pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 &&
		    pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 &&
		    (pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] >=
		    pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX]))
893 894 895
			od_settings->overdrive8_capabilities |= OD8_UCLK_MAX;
	}

896 897 898 899 900
	if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] &&
	    pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
	    pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100 &&
	    pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
	    pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100)
901 902 903
		od_settings->overdrive8_capabilities |= OD8_POWER_LIMIT;

	if (data->smu_features[GNLD_FAN_CONTROL].enabled) {
904 905 906 907 908
		if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] &&
		    pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
		    pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
		    (pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >=
		     pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT]))
909
			od_settings->overdrive8_capabilities |= OD8_ACOUSTIC_LIMIT_SCLK;
910 911 912 913 914 915 916 917

		if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] &&
		    (pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] >=
		    (pp_table->FanPwmMin * pp_table->FanMaximumRpm / 100)) &&
		    pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 &&
		    (pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >=
		     pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED]))
			od_settings->overdrive8_capabilities |= OD8_FAN_SPEED_MIN;
918 919 920
	}

	if (data->smu_features[GNLD_THERMAL].enabled) {
921 922 923 924 925
		if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] &&
		    pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
		    pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
		    (pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >=
		     pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP]))
926 927
			od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_FAN;

928 929 930 931 932
		if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] &&
		    pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
		    pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
		    (pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >=
		     pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX]))
933 934 935
			od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_SYSTEM;
	}

936 937 938 939 940 941 942
	if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_MEMORY_TIMING_TUNE])
		od_settings->overdrive8_capabilities |= OD8_MEMORY_TIMING_TUNE;

	if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ZERO_RPM_CONTROL] &&
	    pp_table->FanZeroRpmEnable)
		od_settings->overdrive8_capabilities |= OD8_FAN_ZERO_RPM_CONTROL;

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	return 0;
}

static int vega20_od8_set_feature_id(
		struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_od8_settings *od_settings = &(data->od8_settings);

	if (od_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) {
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id =
			OD8_GFXCLK_LIMITS;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id =
			OD8_GFXCLK_LIMITS;
	} else {
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id =
			0;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id =
			0;
	}

	if (od_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) {
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id =
			OD8_GFXCLK_CURVE;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id =
			OD8_GFXCLK_CURVE;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id =
			OD8_GFXCLK_CURVE;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id =
			OD8_GFXCLK_CURVE;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id =
			OD8_GFXCLK_CURVE;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id =
			OD8_GFXCLK_CURVE;
	} else {
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id =
			0;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id =
			0;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id =
			0;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id =
			0;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id =
			0;
		od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id =
			0;
	}

	if (od_settings->overdrive8_capabilities & OD8_UCLK_MAX)
		od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = OD8_UCLK_MAX;
	else
		od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = 0;

	if (od_settings->overdrive8_capabilities & OD8_POWER_LIMIT)
		od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = OD8_POWER_LIMIT;
	else
		od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = 0;

	if (od_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK)
		od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id =
			OD8_ACOUSTIC_LIMIT_SCLK;
	else
		od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id =
			0;

	if (od_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN)
		od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id =
			OD8_FAN_SPEED_MIN;
	else
		od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id =
			0;

	if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN)
		od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id =
			OD8_TEMPERATURE_FAN;
	else
		od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id =
			0;

	if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM)
		od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id =
			OD8_TEMPERATURE_SYSTEM;
	else
		od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id =
			0;

	return 0;
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static int vega20_od8_get_gfx_clock_base_voltage(
		struct pp_hwmgr *hwmgr,
		uint32_t *voltage,
		uint32_t freq)
{
	int ret = 0;

	ret = smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_GetAVFSVoltageByDpm,
			((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq));
	PP_ASSERT_WITH_CODE(!ret,
			"[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!",
			return ret);

1047
	*voltage = smum_get_argument(hwmgr);
1048 1049 1050 1051 1052
	*voltage = *voltage / VOLTAGE_SCALE;

	return 0;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static int vega20_od8_initialize_default_settings(
		struct pp_hwmgr *hwmgr)
{
	struct phm_ppt_v3_information *pptable_information =
		(struct phm_ppt_v3_information *)hwmgr->pptable;
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_od8_settings *od8_settings = &(data->od8_settings);
	OverDriveTable_t *od_table = &(data->smc_state_table.overdrive_table);
	int i, ret = 0;

	/* Set Feature Capabilities */
	vega20_od8_set_feature_capabilities(hwmgr);

	/* Map FeatureID to individual settings */
	vega20_od8_set_feature_id(hwmgr);

	/* Set default values */
1070
	ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, true);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to export over drive table!",
			return ret);

	if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) {
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value =
			od_table->GfxclkFmin;
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value =
			od_table->GfxclkFmax;
	} else {
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value =
			0;
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value =
			0;
	}

	if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) {
1088
		od_table->GfxclkFreq1 = od_table->GfxclkFmin;
1089 1090
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value =
			od_table->GfxclkFreq1;
1091 1092

		od_table->GfxclkFreq3 = od_table->GfxclkFmax;
1093 1094
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value =
			od_table->GfxclkFreq3;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

		od_table->GfxclkFreq2 = (od_table->GfxclkFreq1 + od_table->GfxclkFreq3) / 2;
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value =
			od_table->GfxclkFreq2;

		PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr,
				   &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value),
				     od_table->GfxclkFreq1),
				"[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!",
				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0);
		od_table->GfxclkVolt1 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value
			* VOLTAGE_SCALE;

		PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr,
				   &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value),
				     od_table->GfxclkFreq2),
				"[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!",
				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0);
		od_table->GfxclkVolt2 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value
			* VOLTAGE_SCALE;

		PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr,
				   &(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value),
				     od_table->GfxclkFreq3),
				"[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!",
				od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0);
		od_table->GfxclkVolt3 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value
			* VOLTAGE_SCALE;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	} else {
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value =
			0;
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value =
			0;
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value =
			0;
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value =
			0;
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value =
			0;
		od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value =
			0;
	}

	if (od8_settings->overdrive8_capabilities & OD8_UCLK_MAX)
		od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value =
			od_table->UclkFmax;
	else
		od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value =
			0;

	if (od8_settings->overdrive8_capabilities & OD8_POWER_LIMIT)
		od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value =
			od_table->OverDrivePct;
	else
		od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value =
			0;

	if (od8_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK)
		od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value =
			od_table->FanMaximumRpm;
	else
		od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value =
			0;

	if (od8_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN)
		od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value =
1161
			od_table->FanMinimumPwm * data->smc_state_table.pp_table.FanMaximumRpm / 100;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	else
		od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value =
			0;

	if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN)
		od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value =
			od_table->FanTargetTemperature;
	else
		od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value =
			0;

	if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM)
		od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value =
			od_table->MaxOpTemp;
	else
		od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value =
			0;

	for (i = 0; i < OD8_SETTING_COUNT; i++) {
		if (od8_settings->od8_settings_array[i].feature_id) {
			od8_settings->od8_settings_array[i].min_value =
				pptable_information->od_settings_min[i];
			od8_settings->od8_settings_array[i].max_value =
				pptable_information->od_settings_max[i];
			od8_settings->od8_settings_array[i].current_value =
				od8_settings->od8_settings_array[i].default_value;
		} else {
			od8_settings->od8_settings_array[i].min_value =
				0;
			od8_settings->od8_settings_array[i].max_value =
				0;
			od8_settings->od8_settings_array[i].current_value =
				0;
		}
	}

1198
	ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, false);
1199 1200 1201 1202
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to import over drive table!",
			return ret);

1203 1204 1205
	return 0;
}

1206 1207 1208 1209 1210 1211 1212
static int vega20_od8_set_settings(
		struct pp_hwmgr *hwmgr,
		uint32_t index,
		uint32_t value)
{
	OverDriveTable_t od_table;
	int ret = 0;
1213 1214 1215
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_od8_single_setting *od8_settings =
			data->od8_settings.od8_settings_array;
1216

1217
	ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE, true);
1218 1219 1220 1221 1222 1223 1224 1225 1226
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to export over drive table!",
			return ret);

	switch(index) {
	case OD8_SETTING_GFXCLK_FMIN:
		od_table.GfxclkFmin = (uint16_t)value;
		break;
	case OD8_SETTING_GFXCLK_FMAX:
1227 1228 1229 1230
		if (value < od8_settings[OD8_SETTING_GFXCLK_FMAX].min_value ||
		    value > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value)
			return -EINVAL;

1231 1232 1233 1234 1235 1236
		od_table.GfxclkFmax = (uint16_t)value;
		break;
	case OD8_SETTING_GFXCLK_FREQ1:
		od_table.GfxclkFreq1 = (uint16_t)value;
		break;
	case OD8_SETTING_GFXCLK_VOLTAGE1:
1237
		od_table.GfxclkVolt1 = (uint16_t)value;
1238 1239 1240 1241 1242
		break;
	case OD8_SETTING_GFXCLK_FREQ2:
		od_table.GfxclkFreq2 = (uint16_t)value;
		break;
	case OD8_SETTING_GFXCLK_VOLTAGE2:
1243
		od_table.GfxclkVolt2 = (uint16_t)value;
1244 1245 1246 1247 1248
		break;
	case OD8_SETTING_GFXCLK_FREQ3:
		od_table.GfxclkFreq3 = (uint16_t)value;
		break;
	case OD8_SETTING_GFXCLK_VOLTAGE3:
1249
		od_table.GfxclkVolt3 = (uint16_t)value;
1250 1251
		break;
	case OD8_SETTING_UCLK_FMAX:
1252 1253 1254
		if (value < od8_settings[OD8_SETTING_UCLK_FMAX].min_value ||
		    value > od8_settings[OD8_SETTING_UCLK_FMAX].max_value)
			return -EINVAL;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		od_table.UclkFmax = (uint16_t)value;
		break;
	case OD8_SETTING_POWER_PERCENTAGE:
		od_table.OverDrivePct = (int16_t)value;
		break;
	case OD8_SETTING_FAN_ACOUSTIC_LIMIT:
		od_table.FanMaximumRpm = (uint16_t)value;
		break;
	case OD8_SETTING_FAN_MIN_SPEED:
		od_table.FanMinimumPwm = (uint16_t)value;
		break;
	case OD8_SETTING_FAN_TARGET_TEMP:
		od_table.FanTargetTemperature = (uint16_t)value;
		break;
	case OD8_SETTING_OPERATING_TEMP_MAX:
		od_table.MaxOpTemp = (uint16_t)value;
		break;
	}

1274
	ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE, false);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to import over drive table!",
			return ret);

	return 0;
}

static int vega20_get_sclk_od(
		struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = hwmgr->backend;
	struct vega20_single_dpm_table *sclk_table =
			&(data->dpm_table.gfx_table);
	struct vega20_single_dpm_table *golden_sclk_table =
			&(data->golden_dpm_table.gfx_table);
	int value;

	/* od percentage */
	value = DIV_ROUND_UP((sclk_table->dpm_levels[sclk_table->count - 1].value -
		golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) * 100,
		golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value);

	return value;
}

static int vega20_set_sclk_od(
		struct pp_hwmgr *hwmgr, uint32_t value)
{
	struct vega20_hwmgr *data = hwmgr->backend;
	struct vega20_single_dpm_table *golden_sclk_table =
			&(data->golden_dpm_table.gfx_table);
	uint32_t od_sclk;
	int ret = 0;

	od_sclk = golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * value;
1310
	od_sclk /= 100;
1311 1312 1313 1314 1315 1316 1317
	od_sclk += golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;

	ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_GFXCLK_FMAX, od_sclk);
	PP_ASSERT_WITH_CODE(!ret,
			"[SetSclkOD] failed to set od gfxclk!",
			return ret);

1318 1319
	/* retrieve updated gfxclk table */
	ret = vega20_setup_gfxclk_dpm_table(hwmgr);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	PP_ASSERT_WITH_CODE(!ret,
			"[SetSclkOD] failed to refresh gfxclk table!",
			return ret);

	return 0;
}

static int vega20_get_mclk_od(
		struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = hwmgr->backend;
	struct vega20_single_dpm_table *mclk_table =
			&(data->dpm_table.mem_table);
	struct vega20_single_dpm_table *golden_mclk_table =
			&(data->golden_dpm_table.mem_table);
	int value;

	/* od percentage */
	value = DIV_ROUND_UP((mclk_table->dpm_levels[mclk_table->count - 1].value -
		golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) * 100,
		golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value);

	return value;
}

static int vega20_set_mclk_od(
		struct pp_hwmgr *hwmgr, uint32_t value)
{
	struct vega20_hwmgr *data = hwmgr->backend;
	struct vega20_single_dpm_table *golden_mclk_table =
			&(data->golden_dpm_table.mem_table);
	uint32_t od_mclk;
	int ret = 0;

	od_mclk = golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * value;
1355
	od_mclk /= 100;
1356 1357 1358 1359 1360 1361 1362
	od_mclk += golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;

	ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_UCLK_FMAX, od_mclk);
	PP_ASSERT_WITH_CODE(!ret,
			"[SetMclkOD] failed to set od memclk!",
			return ret);

1363 1364
	/* retrieve updated memclk table */
	ret = vega20_setup_memclk_dpm_table(hwmgr);
1365 1366 1367 1368 1369 1370 1371
	PP_ASSERT_WITH_CODE(!ret,
			"[SetMclkOD] failed to refresh memclk table!",
			return ret);

	return 0;
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static int vega20_populate_umdpstate_clocks(
		struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *gfx_table = &(data->dpm_table.gfx_table);
	struct vega20_single_dpm_table *mem_table = &(data->dpm_table.mem_table);

	hwmgr->pstate_sclk = gfx_table->dpm_levels[0].value;
	hwmgr->pstate_mclk = mem_table->dpm_levels[0].value;

	if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
	    mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) {
		hwmgr->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
		hwmgr->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
	}

1388 1389 1390
	hwmgr->pstate_sclk = hwmgr->pstate_sclk * 100;
	hwmgr->pstate_mclk = hwmgr->pstate_mclk * 100;

1391 1392 1393
	return 0;
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static int vega20_get_max_sustainable_clock(struct pp_hwmgr *hwmgr,
		PP_Clock *clock, PPCLK_e clock_select)
{
	int ret = 0;

	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_GetDcModeMaxDpmFreq,
			(clock_select << 16))) == 0,
			"[GetMaxSustainableClock] Failed to get max DC clock from SMC!",
			return ret);
1404
	*clock = smum_get_argument(hwmgr);
1405 1406 1407 1408 1409 1410 1411 1412

	/* if DC limit is zero, return AC limit */
	if (*clock == 0) {
		PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_GetMaxDpmFreq,
			(clock_select << 16))) == 0,
			"[GetMaxSustainableClock] failed to get max AC clock from SMC!",
			return ret);
1413
		*clock = smum_get_argument(hwmgr);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	}

	return 0;
}

static int vega20_init_max_sustainable_clocks(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
		(struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_max_sustainable_clocks *max_sustainable_clocks =
		&(data->max_sustainable_clocks);
	int ret = 0;

	max_sustainable_clocks->uclock = data->vbios_boot_state.mem_clock / 100;
	max_sustainable_clocks->soc_clock = data->vbios_boot_state.soc_clock / 100;
	max_sustainable_clocks->dcef_clock = data->vbios_boot_state.dcef_clock / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

	if (data->smu_features[GNLD_DPM_UCLK].enabled)
		PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
				&(max_sustainable_clocks->uclock),
				PPCLK_UCLK)) == 0,
				"[InitMaxSustainableClocks] failed to get max UCLK from SMC!",
				return ret);

	if (data->smu_features[GNLD_DPM_SOCCLK].enabled)
		PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
				&(max_sustainable_clocks->soc_clock),
				PPCLK_SOCCLK)) == 0,
				"[InitMaxSustainableClocks] failed to get max SOCCLK from SMC!",
				return ret);

	if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
		PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
				&(max_sustainable_clocks->dcef_clock),
				PPCLK_DCEFCLK)) == 0,
				"[InitMaxSustainableClocks] failed to get max DCEFCLK from SMC!",
				return ret);
		PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
				&(max_sustainable_clocks->display_clock),
				PPCLK_DISPCLK)) == 0,
				"[InitMaxSustainableClocks] failed to get max DISPCLK from SMC!",
				return ret);
		PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
				&(max_sustainable_clocks->phy_clock),
				PPCLK_PHYCLK)) == 0,
				"[InitMaxSustainableClocks] failed to get max PHYCLK from SMC!",
				return ret);
		PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
				&(max_sustainable_clocks->pixel_clock),
				PPCLK_PIXCLK)) == 0,
				"[InitMaxSustainableClocks] failed to get max PIXCLK from SMC!",
				return ret);
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
static void vega20_init_powergate_state(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
		(struct vega20_hwmgr *)(hwmgr->backend);

	data->uvd_power_gated = true;
	data->vce_power_gated = true;

	if (data->smu_features[GNLD_DPM_UVD].enabled)
		data->uvd_power_gated = false;

	if (data->smu_features[GNLD_DPM_VCE].enabled)
		data->vce_power_gated = false;
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static int vega20_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
	int result = 0;

	smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_NumOfDisplays, 0);

	result = vega20_set_allowed_featuresmask(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to set allowed featuresmask!\n",
			return result);

	result = vega20_init_smc_table(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to initialize SMC table!",
			return result);

1509 1510 1511 1512 1513
	result = vega20_run_btc_afll(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to run btc afll!",
			return result);

1514 1515 1516 1517 1518
	result = vega20_enable_all_smu_features(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to enable all smu features!",
			return result);

1519 1520 1521
	/* Initialize UVD/VCE powergating state */
	vega20_init_powergate_state(hwmgr);

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	result = vega20_setup_default_dpm_tables(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to setup default DPM tables!",
			return result);

	result = vega20_init_max_sustainable_clocks(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to get maximum sustainable clocks!",
			return result);

	result = vega20_power_control_set_level(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to power control set level!",
			return result);

1537
	result = vega20_od8_initialize_default_settings(hwmgr);
1538 1539 1540 1541
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to initialize odn settings!",
			return result);

1542 1543 1544 1545 1546
	result = vega20_populate_umdpstate_clocks(hwmgr);
	PP_ASSERT_WITH_CODE(!result,
			"[EnableDPMTasks] Failed to populate umdpstate clocks!",
			return result);

1547 1548 1549 1550 1551 1552 1553 1554
	result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetPptLimit,
			POWER_SOURCE_AC << 16);
	PP_ASSERT_WITH_CODE(!result,
			"[GetPptLimit] get default PPT limit failed!",
			return result);
	hwmgr->power_limit =
		hwmgr->default_power_limit = smum_get_argument(hwmgr);

1555
	return 0;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
}

static uint32_t vega20_find_lowest_dpm_level(
		struct vega20_single_dpm_table *table)
{
	uint32_t i;

	for (i = 0; i < table->count; i++) {
		if (table->dpm_levels[i].enabled)
			break;
	}
	if (i >= table->count) {
		i = 0;
		table->dpm_levels[i].enabled = true;
	}

	return i;
}

static uint32_t vega20_find_highest_dpm_level(
		struct vega20_single_dpm_table *table)
{
1578
	int i = 0;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	PP_ASSERT_WITH_CODE(table != NULL,
			"[FindHighestDPMLevel] DPM Table does not exist!",
			return 0);
	PP_ASSERT_WITH_CODE(table->count > 0,
			"[FindHighestDPMLevel] DPM Table has no entry!",
			return 0);
	PP_ASSERT_WITH_CODE(table->count <= MAX_REGULAR_DPM_NUMBER,
			"[FindHighestDPMLevel] DPM Table has too many entries!",
			return MAX_REGULAR_DPM_NUMBER - 1);

	for (i = table->count - 1; i >= 0; i--) {
		if (table->dpm_levels[i].enabled)
			break;
	}
	if (i < 0) {
		i = 0;
		table->dpm_levels[i].enabled = true;
	}

	return i;
}

static int vega20_upload_dpm_min_level(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
1606
	uint32_t min_freq;
1607 1608
	int ret = 0;

1609 1610
	if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
		min_freq = data->dpm_table.gfx_table.dpm_state.soft_min_level;
1611 1612
		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMinByFreq,
1613
					(PPCLK_GFXCLK << 16) | (min_freq & 0xffff))),
1614 1615
					"Failed to set soft min gfxclk !",
					return ret);
1616
	}
1617 1618

	if (data->smu_features[GNLD_DPM_UCLK].enabled) {
1619
		min_freq = data->dpm_table.mem_table.dpm_state.soft_min_level;
1620 1621
		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMinByFreq,
1622
					(PPCLK_UCLK << 16) | (min_freq & 0xffff))),
1623 1624
					"Failed to set soft min memclk !",
					return ret);
1625 1626

		min_freq = data->dpm_table.mem_table.dpm_state.hard_min_level;
1627 1628
		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetHardMinByFreq,
1629
					(PPCLK_UCLK << 16) | (min_freq & 0xffff))),
1630 1631 1632 1633
					"Failed to set hard min memclk !",
					return ret);
	}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	if (data->smu_features[GNLD_DPM_UVD].enabled) {
		min_freq = data->dpm_table.vclk_table.dpm_state.soft_min_level;

		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMinByFreq,
					(PPCLK_VCLK << 16) | (min_freq & 0xffff))),
					"Failed to set soft min vclk!",
					return ret);

		min_freq = data->dpm_table.dclk_table.dpm_state.soft_min_level;

		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMinByFreq,
					(PPCLK_DCLK << 16) | (min_freq & 0xffff))),
					"Failed to set soft min dclk!",
					return ret);
	}

	if (data->smu_features[GNLD_DPM_VCE].enabled) {
		min_freq = data->dpm_table.eclk_table.dpm_state.soft_min_level;

		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMinByFreq,
					(PPCLK_ECLK << 16) | (min_freq & 0xffff))),
					"Failed to set soft min eclk!",
					return ret);
	}

	if (data->smu_features[GNLD_DPM_SOCCLK].enabled) {
		min_freq = data->dpm_table.soc_table.dpm_state.soft_min_level;

		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMinByFreq,
					(PPCLK_SOCCLK << 16) | (min_freq & 0xffff))),
					"Failed to set soft min socclk!",
					return ret);
	}

1672 1673 1674 1675 1676 1677 1678
	return ret;
}

static int vega20_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
1679
	uint32_t max_freq;
1680 1681
	int ret = 0;

1682 1683 1684
	if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
		max_freq = data->dpm_table.gfx_table.dpm_state.soft_max_level;

1685 1686
		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
1687
					(PPCLK_GFXCLK << 16) | (max_freq & 0xffff))),
1688 1689
					"Failed to set soft max gfxclk!",
					return ret);
1690 1691 1692 1693
	}

	if (data->smu_features[GNLD_DPM_UCLK].enabled) {
		max_freq = data->dpm_table.mem_table.dpm_state.soft_max_level;
1694 1695 1696

		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
1697
					(PPCLK_UCLK << 16) | (max_freq & 0xffff))),
1698 1699
					"Failed to set soft max memclk!",
					return ret);
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	}

	if (data->smu_features[GNLD_DPM_UVD].enabled) {
		max_freq = data->dpm_table.vclk_table.dpm_state.soft_max_level;

		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
					(PPCLK_VCLK << 16) | (max_freq & 0xffff))),
					"Failed to set soft max vclk!",
					return ret);

		max_freq = data->dpm_table.dclk_table.dpm_state.soft_max_level;
		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
					(PPCLK_DCLK << 16) | (max_freq & 0xffff))),
					"Failed to set soft max dclk!",
					return ret);
	}

	if (data->smu_features[GNLD_DPM_VCE].enabled) {
		max_freq = data->dpm_table.eclk_table.dpm_state.soft_max_level;

		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
					(PPCLK_ECLK << 16) | (max_freq & 0xffff))),
					"Failed to set soft max eclk!",
					return ret);
	}

	if (data->smu_features[GNLD_DPM_SOCCLK].enabled) {
		max_freq = data->dpm_table.soc_table.dpm_state.soft_max_level;

		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
					(PPCLK_SOCCLK << 16) | (max_freq & 0xffff))),
					"Failed to set soft max socclk!",
					return ret);
	}
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	return ret;
}

int vega20_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	int ret = 0;

	if (data->smu_features[GNLD_DPM_VCE].supported) {
		if (data->smu_features[GNLD_DPM_VCE].enabled == enable) {
			if (enable)
				PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already enabled!\n");
			else
				PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already disabled!\n");
		}

		ret = vega20_enable_smc_features(hwmgr,
				enable,
				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap);
		PP_ASSERT_WITH_CODE(!ret,
				"Attempt to Enable/Disable DPM VCE Failed!",
				return ret);
		data->smu_features[GNLD_DPM_VCE].enabled = enable;
	}

	return 0;
}

static int vega20_get_clock_ranges(struct pp_hwmgr *hwmgr,
		uint32_t *clock,
		PPCLK_e clock_select,
		bool max)
{
	int ret;
	*clock = 0;

	if (max) {
		PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
				PPSMC_MSG_GetMaxDpmFreq, (clock_select << 16))) == 0,
				"[GetClockRanges] Failed to get max clock from SMC!",
				return ret);
1781
		*clock = smum_get_argument(hwmgr);
1782 1783 1784 1785 1786 1787
	} else {
		PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
				PPSMC_MSG_GetMinDpmFreq,
				(clock_select << 16))) == 0,
				"[GetClockRanges] Failed to get min clock from SMC!",
				return ret);
1788
		*clock = smum_get_argument(hwmgr);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	}

	return 0;
}

static uint32_t vega20_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	uint32_t gfx_clk;
	int ret = 0;

	PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_GFXCLK].enabled,
			"[GetSclks]: gfxclk dpm not enabled!\n",
			return -EPERM);

	if (low) {
		ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false);
		PP_ASSERT_WITH_CODE(!ret,
			"[GetSclks]: fail to get min PPCLK_GFXCLK\n",
			return ret);
	} else {
		ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true);
		PP_ASSERT_WITH_CODE(!ret,
			"[GetSclks]: fail to get max PPCLK_GFXCLK\n",
			return ret);
	}

	return (gfx_clk * 100);
}

static uint32_t vega20_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	uint32_t mem_clk;
	int ret = 0;

	PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_UCLK].enabled,
			"[MemMclks]: memclk dpm not enabled!\n",
			return -EPERM);

	if (low) {
		ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false);
		PP_ASSERT_WITH_CODE(!ret,
			"[GetMclks]: fail to get min PPCLK_UCLK\n",
			return ret);
	} else {
		ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true);
		PP_ASSERT_WITH_CODE(!ret,
			"[GetMclks]: fail to get max PPCLK_UCLK\n",
			return ret);
	}

	return (mem_clk * 100);
}

static int vega20_get_gpu_power(struct pp_hwmgr *hwmgr,
		uint32_t *query)
{
	int ret = 0;
	SmuMetrics_t metrics_table;

1852
	ret = smum_smc_table_manager(hwmgr, (uint8_t *)&metrics_table, TABLE_SMU_METRICS, true);
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to export SMU METRICS table!",
			return ret);

	*query = metrics_table.CurrSocketPower << 8;

	return ret;
}

static int vega20_get_current_gfx_clk_freq(struct pp_hwmgr *hwmgr, uint32_t *gfx_freq)
{
	uint32_t gfx_clk = 0;
	int ret = 0;

	*gfx_freq = 0;

	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_GetDpmClockFreq, (PPCLK_GFXCLK << 16))) == 0,
			"[GetCurrentGfxClkFreq] Attempt to get Current GFXCLK Frequency Failed!",
			return ret);
1873
	gfx_clk = smum_get_argument(hwmgr);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

	*gfx_freq = gfx_clk * 100;

	return 0;
}

static int vega20_get_current_mclk_freq(struct pp_hwmgr *hwmgr, uint32_t *mclk_freq)
{
	uint32_t mem_clk = 0;
	int ret = 0;

	*mclk_freq = 0;

	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_GetDpmClockFreq, (PPCLK_UCLK << 16))) == 0,
			"[GetCurrentMClkFreq] Attempt to get Current MCLK Frequency Failed!",
			return ret);
1891
	mem_clk = smum_get_argument(hwmgr);
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

	*mclk_freq = mem_clk * 100;

	return 0;
}

static int vega20_get_current_activity_percent(struct pp_hwmgr *hwmgr,
		uint32_t *activity_percent)
{
	int ret = 0;
	SmuMetrics_t metrics_table;

1904
	ret = smum_smc_table_manager(hwmgr, (uint8_t *)&metrics_table, TABLE_SMU_METRICS, true);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to export SMU METRICS table!",
			return ret);

	*activity_percent = metrics_table.AverageGfxActivity;

	return ret;
}

static int vega20_read_sensor(struct pp_hwmgr *hwmgr, int idx,
			      void *value, int *size)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	int ret = 0;

	switch (idx) {
	case AMDGPU_PP_SENSOR_GFX_SCLK:
		ret = vega20_get_current_gfx_clk_freq(hwmgr, (uint32_t *)value);
		if (!ret)
			*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
		ret = vega20_get_current_mclk_freq(hwmgr, (uint32_t *)value);
		if (!ret)
			*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GPU_LOAD:
		ret = vega20_get_current_activity_percent(hwmgr, (uint32_t *)value);
		if (!ret)
			*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GPU_TEMP:
		*((uint32_t *)value) = vega20_thermal_get_temperature(hwmgr);
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GPU_POWER:
		*size = 16;
		ret = vega20_get_gpu_power(hwmgr, (uint32_t *)value);
		break;
1952 1953 1954 1955 1956
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = vega20_get_enabled_smc_features(hwmgr, (uint64_t *)value);
		if (!ret)
			*size = 8;
		break;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	default:
		ret = -EINVAL;
		break;
	}
	return ret;
}

static int vega20_notify_smc_display_change(struct pp_hwmgr *hwmgr,
		bool has_disp)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_DPM_UCLK].enabled)
		return smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_SetUclkFastSwitch,
1972
			has_disp ? 1 : 0);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	return 0;
}

int vega20_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
		struct pp_display_clock_request *clock_req)
{
	int result = 0;
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
	PPCLK_e clk_select = 0;
	uint32_t clk_request = 0;

	if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
		switch (clk_type) {
		case amd_pp_dcef_clock:
			clk_freq = clock_req->clock_freq_in_khz / 100;
			clk_select = PPCLK_DCEFCLK;
			break;
		case amd_pp_disp_clock:
			clk_select = PPCLK_DISPCLK;
			break;
		case amd_pp_pixel_clock:
			clk_select = PPCLK_PIXCLK;
			break;
		case amd_pp_phy_clock:
			clk_select = PPCLK_PHYCLK;
			break;
		default:
			pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
			result = -EINVAL;
			break;
		}

		if (!result) {
			clk_request = (clk_select << 16) | clk_freq;
			result = smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetHardMinByFreq,
					clk_request);
		}
	}

	return result;
}

static int vega20_notify_smc_display_config_after_ps_adjustment(
		struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	struct PP_Clocks min_clocks = {0};
	struct pp_display_clock_request clock_req;
	int ret = 0;

	if ((hwmgr->display_config->num_display > 1) &&
2029 2030
	     !hwmgr->display_config->multi_monitor_in_sync &&
	     !hwmgr->display_config->nb_pstate_switch_disable)
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		vega20_notify_smc_display_change(hwmgr, false);
	else
		vega20_notify_smc_display_change(hwmgr, true);

	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;

	if (data->smu_features[GNLD_DPM_DCEFCLK].supported) {
		clock_req.clock_type = amd_pp_dcef_clock;
		clock_req.clock_freq_in_khz = min_clocks.dcefClock;
		if (!vega20_display_clock_voltage_request(hwmgr, &clock_req)) {
			if (data->smu_features[GNLD_DS_DCEFCLK].supported)
				PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(
					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
					min_clocks.dcefClockInSR / 100)) == 0,
					"Attempt to set divider for DCEFCLK Failed!",
					return ret);
		} else {
			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
		}
	}

	return 0;
}

static int vega20_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
2061
	uint32_t soft_level;
2062 2063
	int ret = 0;

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.gfx_table));

	data->dpm_table.gfx_table.dpm_state.soft_min_level =
		data->dpm_table.gfx_table.dpm_state.soft_max_level =
		data->dpm_table.gfx_table.dpm_levels[soft_level].value;

	soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.mem_table));

	data->dpm_table.mem_table.dpm_state.soft_min_level =
		data->dpm_table.mem_table.dpm_state.soft_max_level =
		data->dpm_table.mem_table.dpm_levels[soft_level].value;
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

	ret = vega20_upload_dpm_min_level(hwmgr);
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload boot level to highest!",
			return ret);

	ret = vega20_upload_dpm_max_level(hwmgr);
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload dpm max level to highest!",
			return ret);

	return 0;
}

static int vega20_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
2093
	uint32_t soft_level;
2094 2095
	int ret = 0;

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.gfx_table));

	data->dpm_table.gfx_table.dpm_state.soft_min_level =
		data->dpm_table.gfx_table.dpm_state.soft_max_level =
		data->dpm_table.gfx_table.dpm_levels[soft_level].value;

	soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.mem_table));

	data->dpm_table.mem_table.dpm_state.soft_min_level =
		data->dpm_table.mem_table.dpm_state.soft_max_level =
		data->dpm_table.mem_table.dpm_levels[soft_level].value;
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

	ret = vega20_upload_dpm_min_level(hwmgr);
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload boot level to highest!",
			return ret);

	ret = vega20_upload_dpm_max_level(hwmgr);
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload dpm max level to highest!",
			return ret);

	return 0;

}

static int vega20_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
	int ret = 0;

	ret = vega20_upload_dpm_min_level(hwmgr);
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload DPM Bootup Levels!",
			return ret);

	ret = vega20_upload_dpm_max_level(hwmgr);
	PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload DPM Max Levels!",
			return ret);

	return 0;
}

static int vega20_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
{
2142 2143 2144 2145 2146 2147 2148 2149
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table);
	struct vega20_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table);
	struct vega20_single_dpm_table *soc_dpm_table = &(data->dpm_table.soc_table);

	*sclk_mask = 0;
	*mclk_mask = 0;
	*soc_mask  = 0;
2150

2151 2152 2153
	if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
	    mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL &&
	    soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) {
2154 2155
		*sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL;
		*mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL;
2156
		*soc_mask  = VEGA20_UMD_PSTATE_SOCCLK_LEVEL;
2157 2158 2159 2160 2161 2162 2163
	}

	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
		*sclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
		*mclk_mask = 0;
	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2164 2165 2166
		*sclk_mask = gfx_dpm_table->count - 1;
		*mclk_mask = mem_dpm_table->count - 1;
		*soc_mask  = soc_dpm_table->count - 1;
2167
	}
2168

2169 2170 2171 2172 2173 2174 2175
	return 0;
}

static int vega20_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, uint32_t mask)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
2176
	uint32_t soft_min_level, soft_max_level;
2177 2178 2179 2180
	int ret = 0;

	switch (type) {
	case PP_SCLK:
2181 2182 2183 2184 2185 2186 2187
		soft_min_level = mask ? (ffs(mask) - 1) : 0;
		soft_max_level = mask ? (fls(mask) - 1) : 0;

		data->dpm_table.gfx_table.dpm_state.soft_min_level =
			data->dpm_table.gfx_table.dpm_levels[soft_min_level].value;
		data->dpm_table.gfx_table.dpm_state.soft_max_level =
			data->dpm_table.gfx_table.dpm_levels[soft_max_level].value;
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

		ret = vega20_upload_dpm_min_level(hwmgr);
		PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload boot level to lowest!",
			return ret);

		ret = vega20_upload_dpm_max_level(hwmgr);
		PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload dpm max level to highest!",
			return ret);
		break;

	case PP_MCLK:
2201 2202 2203 2204 2205 2206 2207
		soft_min_level = mask ? (ffs(mask) - 1) : 0;
		soft_max_level = mask ? (fls(mask) - 1) : 0;

		data->dpm_table.mem_table.dpm_state.soft_min_level =
			data->dpm_table.mem_table.dpm_levels[soft_min_level].value;
		data->dpm_table.mem_table.dpm_state.soft_max_level =
			data->dpm_table.mem_table.dpm_levels[soft_max_level].value;
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

		ret = vega20_upload_dpm_min_level(hwmgr);
		PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload boot level to lowest!",
			return ret);

		ret = vega20_upload_dpm_max_level(hwmgr);
		PP_ASSERT_WITH_CODE(!ret,
			"Failed to upload dpm max level to highest!",
			return ret);

		break;

	case PP_PCIE:
		break;

	default:
		break;
	}

	return 0;
}

static int vega20_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
				enum amd_dpm_forced_level level)
{
	int ret = 0;
2235
	uint32_t sclk_mask, mclk_mask, soc_mask;
2236 2237 2238 2239 2240

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = vega20_force_dpm_highest(hwmgr);
		break;
2241

2242 2243 2244
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = vega20_force_dpm_lowest(hwmgr);
		break;
2245

2246 2247 2248
	case AMD_DPM_FORCED_LEVEL_AUTO:
		ret = vega20_unforce_dpm_levels(hwmgr);
		break;
2249

2250 2251 2252 2253 2254 2255 2256
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = vega20_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
		if (ret)
			return ret;
2257 2258
		vega20_force_clock_level(hwmgr, PP_SCLK, 1 << sclk_mask);
		vega20_force_clock_level(hwmgr, PP_MCLK, 1 << mclk_mask);
2259
		break;
2260

2261 2262 2263 2264 2265
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
2266

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	return ret;
}

static uint32_t vega20_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);

	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int vega20_get_dal_power_level(struct pp_hwmgr *hwmgr,
		struct amd_pp_simple_clock_info *info)
{
#if 0
	struct phm_ppt_v2_information *table_info =
			(struct phm_ppt_v2_information *)hwmgr->pptable;
	struct phm_clock_and_voltage_limits *max_limits =
			&table_info->max_clock_voltage_on_ac;

	info->engine_max_clock = max_limits->sclk;
	info->memory_max_clock = max_limits->mclk;
#endif
	return 0;
}


static int vega20_get_sclks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
	int i, count;

	PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_GFXCLK].enabled,
		"[GetSclks]: gfxclk dpm not enabled!\n",
		return -EPERM);

	count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
	clocks->num_levels = count;

	for (i = 0; i < count; i++) {
		clocks->data[i].clocks_in_khz =
			dpm_table->dpm_levels[i].value * 100;
		clocks->data[i].latency_in_us = 0;
	}

	return 0;
}

static uint32_t vega20_get_mem_latency(struct pp_hwmgr *hwmgr,
		uint32_t clock)
{
	return 25;
}

static int vega20_get_memclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.mem_table);
	int i, count;

	PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_UCLK].enabled,
		"[GetMclks]: uclk dpm not enabled!\n",
		return -EPERM);

	count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
	clocks->num_levels = data->mclk_latency_table.count = count;

	for (i = 0; i < count; i++) {
		clocks->data[i].clocks_in_khz =
			data->mclk_latency_table.entries[i].frequency =
			dpm_table->dpm_levels[i].value * 100;
		clocks->data[i].latency_in_us =
			data->mclk_latency_table.entries[i].latency =
			vega20_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value);
	}

	return 0;
}

static int vega20_get_dcefclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.dcef_table);
	int i, count;

	PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_DCEFCLK].enabled,
		"[GetDcfclocks]: dcefclk dpm not enabled!\n",
		return -EPERM);

	count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
	clocks->num_levels = count;

	for (i = 0; i < count; i++) {
		clocks->data[i].clocks_in_khz =
			dpm_table->dpm_levels[i].value * 100;
		clocks->data[i].latency_in_us = 0;
	}

	return 0;
}

static int vega20_get_socclocks(struct pp_hwmgr *hwmgr,
		struct pp_clock_levels_with_latency *clocks)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.soc_table);
	int i, count;

	PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_SOCCLK].enabled,
		"[GetSocclks]: socclk dpm not enabled!\n",
		return -EPERM);

	count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
	clocks->num_levels = count;

	for (i = 0; i < count; i++) {
		clocks->data[i].clocks_in_khz =
			dpm_table->dpm_levels[i].value * 100;
		clocks->data[i].latency_in_us = 0;
	}

	return 0;

}

static int vega20_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
		struct pp_clock_levels_with_latency *clocks)
{
	int ret;

	switch (type) {
	case amd_pp_sys_clock:
		ret = vega20_get_sclks(hwmgr, clocks);
		break;
	case amd_pp_mem_clock:
		ret = vega20_get_memclocks(hwmgr, clocks);
		break;
	case amd_pp_dcef_clock:
		ret = vega20_get_dcefclocks(hwmgr, clocks);
		break;
	case amd_pp_soc_clock:
		ret = vega20_get_socclocks(hwmgr, clocks);
		break;
	default:
		return -EINVAL;
	}

	return ret;
}

static int vega20_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
		struct pp_clock_levels_with_voltage *clocks)
{
	clocks->num_levels = 0;

	return 0;
}

static int vega20_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
						   void *clock_ranges)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges;

	if (!data->registry_data.disable_water_mark &&
	    data->smu_features[GNLD_DPM_DCEFCLK].supported &&
	    data->smu_features[GNLD_DPM_SOCCLK].supported) {
		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
		data->water_marks_bitmap |= WaterMarksExist;
		data->water_marks_bitmap &= ~WaterMarksLoaded;
	}

	return 0;
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
static int vega20_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
					enum PP_OD_DPM_TABLE_COMMAND type,
					long *input, uint32_t size)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_od8_single_setting *od8_settings =
			data->od8_settings.od8_settings_array;
	OverDriveTable_t *od_table =
			&(data->smc_state_table.overdrive_table);
	struct pp_clock_levels_with_latency clocks;
	int32_t input_index, input_clk, input_vol, i;
2463
	int od8_id;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	int ret;

	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
				return -EINVAL);

	switch (type) {
	case PP_OD_EDIT_SCLK_VDDC_TABLE:
		if (!(od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id &&
		      od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id)) {
			pr_info("Sclk min/max frequency overdrive not supported\n");
			return -EOPNOTSUPP;
		}

		for (i = 0; i < size; i += 2) {
			if (i + 2 > size) {
				pr_info("invalid number of input parameters %d\n",
					size);
				return -EINVAL;
			}

			input_index = input[i];
			input_clk = input[i + 1];

			if (input_index != 0 && input_index != 1) {
				pr_info("Invalid index %d\n", input_index);
				pr_info("Support min/max sclk frequency setting only which index by 0/1\n");
				return -EINVAL;
			}

			if (input_clk < od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value ||
			    input_clk > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value) {
				pr_info("clock freq %d is not within allowed range [%d - %d]\n",
					input_clk,
					od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value,
					od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value);
				return -EINVAL;
			}

2502 2503 2504 2505
			if ((input_index == 0 && od_table->GfxclkFmin != input_clk) ||
			    (input_index == 1 && od_table->GfxclkFmax != input_clk))
				data->gfxclk_overdrive = true;

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
			if (input_index == 0)
				od_table->GfxclkFmin = input_clk;
			else
				od_table->GfxclkFmax = input_clk;
		}

		break;

	case PP_OD_EDIT_MCLK_VDDC_TABLE:
		if (!od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) {
			pr_info("Mclk max frequency overdrive not supported\n");
			return -EOPNOTSUPP;
		}

		ret = vega20_get_memclocks(hwmgr, &clocks);
		PP_ASSERT_WITH_CODE(!ret,
				"Attempt to get memory clk levels failed!",
				return ret);

		for (i = 0; i < size; i += 2) {
			if (i + 2 > size) {
				pr_info("invalid number of input parameters %d\n",
					size);
				return -EINVAL;
			}

			input_index = input[i];
			input_clk = input[i + 1];

			if (input_index != 1) {
				pr_info("Invalid index %d\n", input_index);
				pr_info("Support max Mclk frequency setting only which index by 1\n");
				return -EINVAL;
			}

			if (input_clk < clocks.data[0].clocks_in_khz / 100 ||
			    input_clk > od8_settings[OD8_SETTING_UCLK_FMAX].max_value) {
				pr_info("clock freq %d is not within allowed range [%d - %d]\n",
					input_clk,
					clocks.data[0].clocks_in_khz / 100,
					od8_settings[OD8_SETTING_UCLK_FMAX].max_value);
				return -EINVAL;
			}

2550 2551 2552
			if (input_index == 1 && od_table->UclkFmax != input_clk)
				data->memclk_overdrive = true;

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
			od_table->UclkFmax = input_clk;
		}

		break;

	case PP_OD_EDIT_VDDC_CURVE:
		if (!(od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) {
			pr_info("Voltage curve calibrate not supported\n");
			return -EOPNOTSUPP;
		}

		for (i = 0; i < size; i += 3) {
			if (i + 3 > size) {
				pr_info("invalid number of input parameters %d\n",
					size);
				return -EINVAL;
			}

			input_index = input[i];
			input_clk = input[i + 1];
			input_vol = input[i + 2];

			if (input_index > 2) {
				pr_info("Setting for point %d is not supported\n",
						input_index + 1);
				pr_info("Three supported points index by 0, 1, 2\n");
				return -EINVAL;
			}

2587 2588 2589
			od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index;
			if (input_clk < od8_settings[od8_id].min_value ||
			    input_clk > od8_settings[od8_id].max_value) {
2590 2591
				pr_info("clock freq %d is not within allowed range [%d - %d]\n",
					input_clk,
2592 2593
					od8_settings[od8_id].min_value,
					od8_settings[od8_id].max_value);
2594 2595 2596
				return -EINVAL;
			}

2597 2598 2599 2600
			od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index;
			if (input_vol < od8_settings[od8_id].min_value ||
			    input_vol > od8_settings[od8_id].max_value) {
				pr_info("clock voltage %d is not within allowed range [%d - %d]\n",
2601
					input_vol,
2602 2603
					od8_settings[od8_id].min_value,
					od8_settings[od8_id].max_value);
2604 2605 2606 2607 2608 2609
				return -EINVAL;
			}

			switch (input_index) {
			case 0:
				od_table->GfxclkFreq1 = input_clk;
2610
				od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE;
2611 2612 2613
				break;
			case 1:
				od_table->GfxclkFreq2 = input_clk;
2614
				od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE;
2615 2616 2617
				break;
			case 2:
				od_table->GfxclkFreq3 = input_clk;
2618
				od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE;
2619 2620 2621 2622 2623 2624
				break;
			}
		}
		break;

	case PP_OD_RESTORE_DEFAULT_TABLE:
2625 2626 2627
		data->gfxclk_overdrive = false;
		data->memclk_overdrive = false;

2628 2629 2630
		ret = smum_smc_table_manager(hwmgr,
					     (uint8_t *)od_table,
					     TABLE_OVERDRIVE, true);
2631 2632 2633 2634 2635 2636
		PP_ASSERT_WITH_CODE(!ret,
				"Failed to export overdrive table!",
				return ret);
		break;

	case PP_OD_COMMIT_DPM_TABLE:
2637 2638 2639
		ret = smum_smc_table_manager(hwmgr,
					     (uint8_t *)od_table,
					     TABLE_OVERDRIVE, false);
2640 2641 2642 2643
		PP_ASSERT_WITH_CODE(!ret,
				"Failed to import overdrive table!",
				return ret);

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
		/* retrieve updated gfxclk table */
		if (data->gfxclk_overdrive) {
			data->gfxclk_overdrive = false;

			ret = vega20_setup_gfxclk_dpm_table(hwmgr);
			if (ret)
				return ret;
		}

		/* retrieve updated memclk table */
		if (data->memclk_overdrive) {
			data->memclk_overdrive = false;

			ret = vega20_setup_memclk_dpm_table(hwmgr);
			if (ret)
				return ret;
		}
2661 2662 2663 2664 2665 2666 2667 2668 2669
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

2670 2671 2672
static int vega20_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
2673 2674 2675 2676 2677 2678
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_od8_single_setting *od8_settings =
			data->od8_settings.od8_settings_array;
	OverDriveTable_t *od_table =
			&(data->smc_state_table.overdrive_table);
2679
	struct pp_clock_levels_with_latency clocks;
2680
	int i, now, size = 0;
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	int ret = 0;

	switch (type) {
	case PP_SCLK:
		ret = vega20_get_current_gfx_clk_freq(hwmgr, &now);
		PP_ASSERT_WITH_CODE(!ret,
				"Attempt to get current gfx clk Failed!",
				return ret);

		ret = vega20_get_sclks(hwmgr, &clocks);
		PP_ASSERT_WITH_CODE(!ret,
				"Attempt to get gfx clk levels Failed!",
				return ret);

		for (i = 0; i < clocks.num_levels; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
				i, clocks.data[i].clocks_in_khz / 100,
				(clocks.data[i].clocks_in_khz == now) ? "*" : "");
		break;

	case PP_MCLK:
		ret = vega20_get_current_mclk_freq(hwmgr, &now);
		PP_ASSERT_WITH_CODE(!ret,
				"Attempt to get current mclk freq Failed!",
				return ret);

		ret = vega20_get_memclocks(hwmgr, &clocks);
		PP_ASSERT_WITH_CODE(!ret,
				"Attempt to get memory clk levels Failed!",
				return ret);

		for (i = 0; i < clocks.num_levels; i++)
			size += sprintf(buf + size, "%d: %uMhz %s\n",
				i, clocks.data[i].clocks_in_khz / 100,
				(clocks.data[i].clocks_in_khz == now) ? "*" : "");
		break;

	case PP_PCIE:
		break;

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	case OD_SCLK:
		if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) {
			size = sprintf(buf, "%s:\n", "OD_SCLK");
			size += sprintf(buf + size, "0: %10uMhz\n",
				od_table->GfxclkFmin);
			size += sprintf(buf + size, "1: %10uMhz\n",
				od_table->GfxclkFmax);
		}
		break;

	case OD_MCLK:
		if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) {
			size = sprintf(buf, "%s:\n", "OD_MCLK");
			size += sprintf(buf + size, "1: %10uMhz\n",
				od_table->UclkFmax);
		}

		break;

	case OD_VDDC_CURVE:
		if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
			size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE");
			size += sprintf(buf + size, "0: %10uMhz %10dmV\n",
				od_table->GfxclkFreq1,
2751
				od_table->GfxclkVolt1 / VOLTAGE_SCALE);
2752 2753
			size += sprintf(buf + size, "1: %10uMhz %10dmV\n",
				od_table->GfxclkFreq2,
2754
				od_table->GfxclkVolt2 / VOLTAGE_SCALE);
2755 2756
			size += sprintf(buf + size, "2: %10uMhz %10dmV\n",
				od_table->GfxclkFreq3,
2757
				od_table->GfxclkVolt3 / VOLTAGE_SCALE);
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		}

		break;

	case OD_RANGE:
		size = sprintf(buf, "%s:\n", "OD_RANGE");

		if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) {
			size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n",
				od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value,
				od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value);
		}

		if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) {
			ret = vega20_get_memclocks(hwmgr, &clocks);
			PP_ASSERT_WITH_CODE(!ret,
					"Fail to get memory clk levels!",
					return ret);

			size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n",
				clocks.data[0].clocks_in_khz / 100,
				od8_settings[OD8_SETTING_UCLK_FMAX].max_value);
		}

		if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
		    od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
			size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n",
				od8_settings[OD8_SETTING_GFXCLK_FREQ1].min_value,
				od8_settings[OD8_SETTING_GFXCLK_FREQ1].max_value);
2792
			size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n",
2793 2794 2795 2796 2797
				od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].min_value,
				od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].max_value);
			size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n",
				od8_settings[OD8_SETTING_GFXCLK_FREQ2].min_value,
				od8_settings[OD8_SETTING_GFXCLK_FREQ2].max_value);
2798
			size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n",
2799 2800 2801 2802 2803
				od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].min_value,
				od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].max_value);
			size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n",
				od8_settings[OD8_SETTING_GFXCLK_FREQ3].min_value,
				od8_settings[OD8_SETTING_GFXCLK_FREQ3].max_value);
2804
			size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n",
2805 2806 2807 2808 2809
				od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].min_value,
				od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].max_value);
		}

		break;
2810 2811 2812 2813 2814 2815
	default:
		break;
	}
	return size;
}

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
static int vega20_set_uclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr,
		struct vega20_single_dpm_table *dpm_table)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	int ret = 0;

	if (data->smu_features[GNLD_DPM_UCLK].enabled) {
		PP_ASSERT_WITH_CODE(dpm_table->count > 0,
				"[SetUclkToHightestDpmLevel] Dpm table has no entry!",
				return -EINVAL);
		PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_UCLK_DPM_LEVELS,
				"[SetUclkToHightestDpmLevel] Dpm table has too many entries!",
				return -EINVAL);

		dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
		PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr,
				PPSMC_MSG_SetHardMinByFreq,
				(PPCLK_UCLK << 16 ) | dpm_table->dpm_state.hard_min_level)),
				"[SetUclkToHightestDpmLevel] Set hard min uclk failed!",
				return ret);
	}

	return ret;
}

static int vega20_pre_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	int ret = 0;

	smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_NumOfDisplays, 0);

	ret = vega20_set_uclk_to_highest_dpm_level(hwmgr,
			&data->dpm_table.mem_table);

	return ret;
}

2855 2856 2857 2858 2859 2860 2861 2862
static int vega20_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	int result = 0;
	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);

	if ((data->water_marks_bitmap & WaterMarksExist) &&
	    !(data->water_marks_bitmap & WaterMarksLoaded)) {
2863 2864
		result = smum_smc_table_manager(hwmgr,
						(uint8_t *)wm_table, TABLE_WATERMARKS, false);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		PP_ASSERT_WITH_CODE(!result,
				"Failed to update WMTABLE!",
				return result);
		data->water_marks_bitmap |= WaterMarksLoaded;
	}

	if ((data->water_marks_bitmap & WaterMarksExist) &&
	    data->smu_features[GNLD_DPM_DCEFCLK].supported &&
	    data->smu_features[GNLD_DPM_SOCCLK].supported) {
		result = smum_send_msg_to_smc_with_parameter(hwmgr,
			PPSMC_MSG_NumOfDisplays,
			hwmgr->display_config->num_display);
	}

	return result;
}

int vega20_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
	struct vega20_hwmgr *data =
			(struct vega20_hwmgr *)(hwmgr->backend);
	int ret = 0;

	if (data->smu_features[GNLD_DPM_UVD].supported) {
		if (data->smu_features[GNLD_DPM_UVD].enabled == enable) {
			if (enable)
				PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already enabled!\n");
			else
				PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already disabled!\n");
		}

		ret = vega20_enable_smc_features(hwmgr,
				enable,
				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap);
		PP_ASSERT_WITH_CODE(!ret,
				"[EnableDisableUVDDPM] Attempt to Enable/Disable DPM UVD Failed!",
				return ret);
		data->smu_features[GNLD_DPM_UVD].enabled = enable;
	}

	return 0;
}

static void vega20_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);

2912 2913 2914
	if (data->vce_power_gated == bgate)
		return ;

2915 2916 2917 2918 2919 2920 2921 2922
	data->vce_power_gated = bgate;
	vega20_enable_disable_vce_dpm(hwmgr, !bgate);
}

static void vega20_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);

2923 2924 2925
	if (data->uvd_power_gated == bgate)
		return ;

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	data->uvd_power_gated = bgate;
	vega20_enable_disable_uvd_dpm(hwmgr, !bgate);
}

static int vega20_apply_clocks_adjust_rules(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	struct vega20_single_dpm_table *dpm_table;
	bool vblank_too_short = false;
	bool disable_mclk_switching;
	uint32_t i, latency;

	disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
                           !hwmgr->display_config->multi_monitor_in_sync) ||
                            vblank_too_short;
    latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;

	/* gfxclk */
	dpm_table = &(data->dpm_table.gfx_table);
	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
	if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
		if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
		}

		if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
		}

		if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
		}
	}

2967 2968 2969 2970 2971 2972 2973
	/* memclk */
	dpm_table = &(data->dpm_table.mem_table);
	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
		if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
		}

		if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
		}

		if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
		}
	}

	/* honour DAL's UCLK Hardmin */
2992 2993 2994
	if (dpm_table->dpm_state.hard_min_level < (hwmgr->display_config->min_mem_set_clock / 100))
		dpm_table->dpm_state.hard_min_level = hwmgr->display_config->min_mem_set_clock / 100;

2995
	/* Hardmin is dependent on displayconfig */
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	if (disable_mclk_switching) {
		dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
		for (i = 0; i < data->mclk_latency_table.count - 1; i++) {
			if (data->mclk_latency_table.entries[i].latency <= latency) {
				if (dpm_table->dpm_levels[i].value >= (hwmgr->display_config->min_mem_set_clock / 100)) {
					dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value;
					break;
				}
			}
		}
	}

	if (hwmgr->display_config->nb_pstate_switch_disable)
		dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	/* vclk */
	dpm_table = &(data->dpm_table.vclk_table);
	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;

	if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
		if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
		}

		if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
		}
	}

	/* dclk */
	dpm_table = &(data->dpm_table.dclk_table);
	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;

	if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
		if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
		}

		if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
		}
	}

	/* socclk */
	dpm_table = &(data->dpm_table.soc_table);
	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;

	if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
		if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
		}

		if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
		}
	}

	/* eclk */
	dpm_table = &(data->dpm_table.eclk_table);
	dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
	dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
	dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;

	if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
		if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
		}

		if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
			dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
			dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
		}
	}

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	return 0;
}

static bool
vega20_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	bool is_update_required = false;

	if (data->display_timing.num_existing_displays !=
			hwmgr->display_config->num_display)
		is_update_required = true;

	if (data->registry_data.gfx_clk_deep_sleep_support &&
	   (data->display_timing.min_clock_in_sr !=
	    hwmgr->display_config->min_core_set_clock_in_sr))
		is_update_required = true;

	return is_update_required;
}

static int vega20_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
	int ret = 0;

	ret = vega20_disable_all_smu_features(hwmgr);
	PP_ASSERT_WITH_CODE(!ret,
			"[DisableDpmTasks] Failed to disable all smu features!",
			return ret);

	return 0;
}

static int vega20_power_off_asic(struct pp_hwmgr *hwmgr)
{
	struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
	int result;

	result = vega20_disable_dpm_tasks(hwmgr);
	PP_ASSERT_WITH_CODE((0 == result),
			"[PowerOffAsic] Failed to disable DPM!",
			);
	data->water_marks_bitmap &= ~(WaterMarksLoaded);

	return result;
}

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static int vega20_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
{
	DpmActivityMonitorCoeffInt_t activity_monitor;
	uint32_t i, size = 0;
	uint16_t workload_type = 0;
	static const char *profile_name[] = {
					"3D_FULL_SCREEN",
					"POWER_SAVING",
					"VIDEO",
					"VR",
					"COMPUTE",
					"CUSTOM"};
	static const char *title[] = {
			"PROFILE_INDEX(NAME)",
			"CLOCK_TYPE(NAME)",
			"FPS",
			"UseRlcBusy",
			"MinActiveFreqType",
			"MinActiveFreq",
			"BoosterFreqType",
			"BoosterFreq",
			"PD_Data_limit_c",
			"PD_Data_error_coeff",
			"PD_Data_error_rate_coeff"};
	int result = 0;

	if (!buf)
		return -EINVAL;

	size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
			title[0], title[1], title[2], title[3], title[4], title[5],
			title[6], title[7], title[8], title[9], title[10]);

	for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
		/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
		workload_type = i + 1;
		result = vega20_get_activity_monitor_coeff(hwmgr,
				(uint8_t *)(&activity_monitor), workload_type);
		PP_ASSERT_WITH_CODE(!result,
				"[GetPowerProfile] Failed to get activity monitor!",
				return result);

		size += sprintf(buf + size, "%2d(%14s%s)\n",
			i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ");

		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
			" ",
			0,
			"GFXCLK",
			activity_monitor.Gfx_FPS,
			activity_monitor.Gfx_UseRlcBusy,
			activity_monitor.Gfx_MinActiveFreqType,
			activity_monitor.Gfx_MinActiveFreq,
			activity_monitor.Gfx_BoosterFreqType,
			activity_monitor.Gfx_BoosterFreq,
			activity_monitor.Gfx_PD_Data_limit_c,
			activity_monitor.Gfx_PD_Data_error_coeff,
			activity_monitor.Gfx_PD_Data_error_rate_coeff);

		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
			" ",
			1,
			"SOCCLK",
			activity_monitor.Soc_FPS,
			activity_monitor.Soc_UseRlcBusy,
			activity_monitor.Soc_MinActiveFreqType,
			activity_monitor.Soc_MinActiveFreq,
			activity_monitor.Soc_BoosterFreqType,
			activity_monitor.Soc_BoosterFreq,
			activity_monitor.Soc_PD_Data_limit_c,
			activity_monitor.Soc_PD_Data_error_coeff,
			activity_monitor.Soc_PD_Data_error_rate_coeff);

		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
			" ",
			2,
			"UCLK",
			activity_monitor.Mem_FPS,
			activity_monitor.Mem_UseRlcBusy,
			activity_monitor.Mem_MinActiveFreqType,
			activity_monitor.Mem_MinActiveFreq,
			activity_monitor.Mem_BoosterFreqType,
			activity_monitor.Mem_BoosterFreq,
			activity_monitor.Mem_PD_Data_limit_c,
			activity_monitor.Mem_PD_Data_error_coeff,
			activity_monitor.Mem_PD_Data_error_rate_coeff);

		size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
			" ",
			3,
			"FCLK",
			activity_monitor.Fclk_FPS,
			activity_monitor.Fclk_UseRlcBusy,
			activity_monitor.Fclk_MinActiveFreqType,
			activity_monitor.Fclk_MinActiveFreq,
			activity_monitor.Fclk_BoosterFreqType,
			activity_monitor.Fclk_BoosterFreq,
			activity_monitor.Fclk_PD_Data_limit_c,
			activity_monitor.Fclk_PD_Data_error_coeff,
			activity_monitor.Fclk_PD_Data_error_rate_coeff);
	}

	return size;
}

static int vega20_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
{
	DpmActivityMonitorCoeffInt_t activity_monitor;
	int result = 0;

	hwmgr->power_profile_mode = input[size];

	if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
		if (size < 10)
			return -EINVAL;

		result = vega20_get_activity_monitor_coeff(hwmgr,
				(uint8_t *)(&activity_monitor),
				WORKLOAD_PPLIB_CUSTOM_BIT);
		PP_ASSERT_WITH_CODE(!result,
				"[SetPowerProfile] Failed to get activity monitor!",
				return result);

		switch (input[0]) {
		case 0: /* Gfxclk */
			activity_monitor.Gfx_FPS = input[1];
			activity_monitor.Gfx_UseRlcBusy = input[2];
			activity_monitor.Gfx_MinActiveFreqType = input[3];
			activity_monitor.Gfx_MinActiveFreq = input[4];
			activity_monitor.Gfx_BoosterFreqType = input[5];
			activity_monitor.Gfx_BoosterFreq = input[6];
			activity_monitor.Gfx_PD_Data_limit_c = input[7];
			activity_monitor.Gfx_PD_Data_error_coeff = input[8];
			activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
			break;
		case 1: /* Socclk */
			activity_monitor.Soc_FPS = input[1];
			activity_monitor.Soc_UseRlcBusy = input[2];
			activity_monitor.Soc_MinActiveFreqType = input[3];
			activity_monitor.Soc_MinActiveFreq = input[4];
			activity_monitor.Soc_BoosterFreqType = input[5];
			activity_monitor.Soc_BoosterFreq = input[6];
			activity_monitor.Soc_PD_Data_limit_c = input[7];
			activity_monitor.Soc_PD_Data_error_coeff = input[8];
			activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
			break;
		case 2: /* Uclk */
			activity_monitor.Mem_FPS = input[1];
			activity_monitor.Mem_UseRlcBusy = input[2];
			activity_monitor.Mem_MinActiveFreqType = input[3];
			activity_monitor.Mem_MinActiveFreq = input[4];
			activity_monitor.Mem_BoosterFreqType = input[5];
			activity_monitor.Mem_BoosterFreq = input[6];
			activity_monitor.Mem_PD_Data_limit_c = input[7];
			activity_monitor.Mem_PD_Data_error_coeff = input[8];
			activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
			break;
		case 3: /* Fclk */
			activity_monitor.Fclk_FPS = input[1];
			activity_monitor.Fclk_UseRlcBusy = input[2];
			activity_monitor.Fclk_MinActiveFreqType = input[3];
			activity_monitor.Fclk_MinActiveFreq = input[4];
			activity_monitor.Fclk_BoosterFreqType = input[5];
			activity_monitor.Fclk_BoosterFreq = input[6];
			activity_monitor.Fclk_PD_Data_limit_c = input[7];
			activity_monitor.Fclk_PD_Data_error_coeff = input[8];
			activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9];
			break;
		}

		result = vega20_set_activity_monitor_coeff(hwmgr,
				(uint8_t *)(&activity_monitor),
				WORKLOAD_PPLIB_CUSTOM_BIT);
		PP_ASSERT_WITH_CODE(!result,
				"[SetPowerProfile] Failed to set activity monitor!",
				return result);
	}

	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
						1 << hwmgr->power_profile_mode);

	return 0;
}

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
static int vega20_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
					uint32_t virtual_addr_low,
					uint32_t virtual_addr_hi,
					uint32_t mc_addr_low,
					uint32_t mc_addr_hi,
					uint32_t size)
{
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
					virtual_addr_hi);
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_SetSystemVirtualDramAddrLow,
					virtual_addr_low);
	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramAddrHigh,
					mc_addr_hi);

	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramAddrLow,
					mc_addr_low);

	smum_send_msg_to_smc_with_parameter(hwmgr,
					PPSMC_MSG_DramLogSetDramSize,
					size);
	return 0;
}

static int vega20_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
		struct PP_TemperatureRange *thermal_data)
{
	struct phm_ppt_v3_information *pptable_information =
		(struct phm_ppt_v3_information *)hwmgr->pptable;

	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));

	thermal_data->max = pptable_information->us_software_shutdown_temp *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return 0;
}

static const struct pp_hwmgr_func vega20_hwmgr_funcs = {
	/* init/fini related */
	.backend_init =
		vega20_hwmgr_backend_init,
	.backend_fini =
		vega20_hwmgr_backend_fini,
	.asic_setup =
		vega20_setup_asic_task,
	.power_off_asic =
		vega20_power_off_asic,
	.dynamic_state_management_enable =
		vega20_enable_dpm_tasks,
	.dynamic_state_management_disable =
		vega20_disable_dpm_tasks,
	/* power state related */
	.apply_clocks_adjust_rules =
		vega20_apply_clocks_adjust_rules,
3376 3377
	.pre_display_config_changed =
		vega20_pre_display_configuration_changed_task,
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	.display_config_changed =
		vega20_display_configuration_changed_task,
	.check_smc_update_required_for_display_configuration =
		vega20_check_smc_update_required_for_display_configuration,
	.notify_smc_display_config_after_ps_adjustment =
		vega20_notify_smc_display_config_after_ps_adjustment,
	/* export to DAL */
	.get_sclk =
		vega20_dpm_get_sclk,
	.get_mclk =
		vega20_dpm_get_mclk,
	.get_dal_power_level =
		vega20_get_dal_power_level,
	.get_clock_by_type_with_latency =
		vega20_get_clock_by_type_with_latency,
	.get_clock_by_type_with_voltage =
		vega20_get_clock_by_type_with_voltage,
	.set_watermarks_for_clocks_ranges =
		vega20_set_watermarks_for_clocks_ranges,
	.display_clock_voltage_request =
		vega20_display_clock_voltage_request,
	/* UMD pstate, profile related */
	.force_dpm_level =
		vega20_dpm_force_dpm_level,
3402 3403 3404 3405
	.get_power_profile_mode =
		vega20_get_power_profile_mode,
	.set_power_profile_mode =
		vega20_set_power_profile_mode,
3406
	/* od related */
3407 3408
	.set_power_limit =
		vega20_set_power_limit,
3409 3410 3411 3412 3413 3414 3415 3416
	.get_sclk_od =
		vega20_get_sclk_od,
	.set_sclk_od =
		vega20_set_sclk_od,
	.get_mclk_od =
		vega20_get_mclk_od,
	.set_mclk_od =
		vega20_set_mclk_od,
3417 3418
	.odn_edit_dpm_table =
		vega20_odn_edit_dpm_table,
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	/* for sysfs to retrive/set gfxclk/memclk */
	.force_clock_level =
		vega20_force_clock_level,
	.print_clock_levels =
		vega20_print_clock_levels,
	.read_sensor =
		vega20_read_sensor,
	/* powergate related */
	.powergate_uvd =
		vega20_power_gate_uvd,
	.powergate_vce =
		vega20_power_gate_vce,
	/* thermal related */
	.start_thermal_controller =
		vega20_start_thermal_controller,
	.stop_thermal_controller =
		vega20_thermal_stop_thermal_controller,
	.get_thermal_temperature_range =
		vega20_get_thermal_temperature_range,
	.register_irq_handlers =
		smu9_register_irq_handlers,
	.disable_smc_firmware_ctf =
		vega20_thermal_disable_alert,
	/* fan control related */
	.get_fan_speed_info =
		vega20_fan_ctrl_get_fan_speed_info,
	.get_fan_speed_rpm =
		vega20_fan_ctrl_get_fan_speed_rpm,
	.get_fan_control_mode =
		vega20_get_fan_control_mode,
	/* smu memory related */
	.notify_cac_buffer_info =
		vega20_notify_cac_buffer_info,
};

int vega20_hwmgr_init(struct pp_hwmgr *hwmgr)
{
	hwmgr->hwmgr_func = &vega20_hwmgr_funcs;
	hwmgr->pptable_func = &vega20_pptable_funcs;

	return 0;
}