movinggc.c 7.53 KB
Newer Older
1 2 3 4 5 6 7 8
// SPDX-License-Identifier: GPL-2.0
/*
 * Moving/copying garbage collector
 *
 * Copyright 2012 Google, Inc.
 */

#include "bcachefs.h"
9
#include "alloc_foreground.h"
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#include "btree_iter.h"
#include "btree_update.h"
#include "buckets.h"
#include "clock.h"
#include "disk_groups.h"
#include "extents.h"
#include "eytzinger.h"
#include "io.h"
#include "keylist.h"
#include "move.h"
#include "movinggc.h"
#include "super-io.h"
#include "trace.h"

#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
#include <linux/wait.h>

/*
 * We can't use the entire copygc reserve in one iteration of copygc: we may
 * need the buckets we're freeing up to go back into the copygc reserve to make
 * forward progress, but if the copygc reserve is full they'll be available for
 * any allocation - and it's possible that in a given iteration, we free up most
 * of the buckets we're going to free before we allocate most of the buckets
 * we're going to allocate.
 *
 * If we only use half of the reserve per iteration, then in steady state we'll
 * always have room in the reserve for the buckets we're going to need in the
 * next iteration:
 */
#define COPYGC_BUCKETS_PER_ITER(ca)					\
	((ca)->free[RESERVE_MOVINGGC].size / 2)

/*
 * Max sectors to move per iteration: Have to take into account internal
 * fragmentation from the multiple write points for each generation:
 */
#define COPYGC_SECTORS_PER_ITER(ca)					\
	((ca)->mi.bucket_size *	COPYGC_BUCKETS_PER_ITER(ca))

static inline int sectors_used_cmp(copygc_heap *heap,
				   struct copygc_heap_entry l,
				   struct copygc_heap_entry r)
{
Kent Overstreet's avatar
Kent Overstreet committed
57
	return cmp_int(l.sectors, r.sectors);
58 59 60 61 62 63 64
}

static int bucket_offset_cmp(const void *_l, const void *_r, size_t size)
{
	const struct copygc_heap_entry *l = _l;
	const struct copygc_heap_entry *r = _r;

Kent Overstreet's avatar
Kent Overstreet committed
65
	return cmp_int(l->offset, r->offset);
66 67 68
}

static bool __copygc_pred(struct bch_dev *ca,
69
			  struct bkey_s_c k)
70 71 72
{
	copygc_heap *h = &ca->copygc_heap;

73 74 75 76 77
	switch (k.k->type) {
	case KEY_TYPE_extent: {
		struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
		const struct bch_extent_ptr *ptr =
			bch2_extent_has_device(e, ca->dev_idx);
78

79 80
		if (ptr) {
			struct copygc_heap_entry search = { .offset = ptr->offset };
81

82 83 84 85 86 87 88 89 90 91
			ssize_t i = eytzinger0_find_le(h->data, h->used,
						       sizeof(h->data[0]),
						       bucket_offset_cmp, &search);

			return (i >= 0 &&
				ptr->offset < h->data[i].offset + ca->mi.bucket_size &&
				ptr->gen == h->data[i].gen);
		}
		break;
	}
92 93 94 95 96 97
	}

	return false;
}

static enum data_cmd copygc_pred(struct bch_fs *c, void *arg,
98
				 struct bkey_s_c k,
99 100 101 102 103
				 struct bch_io_opts *io_opts,
				 struct data_opts *data_opts)
{
	struct bch_dev *ca = arg;

104
	if (!__copygc_pred(ca, k))
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		return DATA_SKIP;

	data_opts->target		= dev_to_target(ca->dev_idx);
	data_opts->btree_insert_flags	= BTREE_INSERT_USE_RESERVE;
	data_opts->rewrite_dev		= ca->dev_idx;
	return DATA_REWRITE;
}

static bool have_copygc_reserve(struct bch_dev *ca)
{
	bool ret;

	spin_lock(&ca->freelist_lock);
	ret = fifo_full(&ca->free[RESERVE_MOVINGGC]) ||
		ca->allocator_blocked;
	spin_unlock(&ca->freelist_lock);

	return ret;
}

static void bch2_copygc(struct bch_fs *c, struct bch_dev *ca)
{
	copygc_heap *h = &ca->copygc_heap;
	struct copygc_heap_entry e, *i;
	struct bucket_array *buckets;
	struct bch_move_stats move_stats;
	u64 sectors_to_move = 0, sectors_not_moved = 0;
	u64 buckets_to_move, buckets_not_moved = 0;
	size_t b;
	int ret;

	memset(&move_stats, 0, sizeof(move_stats));
	closure_wait_event(&c->freelist_wait, have_copygc_reserve(ca));

	/*
	 * Find buckets with lowest sector counts, skipping completely
	 * empty buckets, by building a maxheap sorted by sector count,
	 * and repeatedly replacing the maximum element until all
	 * buckets have been visited.
	 */
	h->used = 0;

	/*
	 * We need bucket marks to be up to date - gc can't be recalculating
	 * them:
	 */
	down_read(&c->gc_lock);
	down_read(&ca->bucket_lock);
	buckets = bucket_array(ca);

	for (b = buckets->first_bucket; b < buckets->nbuckets; b++) {
		struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
		struct copygc_heap_entry e;

		if (m.owned_by_allocator ||
		    m.data_type != BCH_DATA_USER ||
		    !bucket_sectors_used(m) ||
		    bucket_sectors_used(m) >= ca->mi.bucket_size)
			continue;

		e = (struct copygc_heap_entry) {
			.gen		= m.gen,
			.sectors	= bucket_sectors_used(m),
			.offset		= bucket_to_sector(ca, b),
		};
170
		heap_add_or_replace(h, e, -sectors_used_cmp, NULL);
171 172 173 174 175 176 177 178
	}
	up_read(&ca->bucket_lock);
	up_read(&c->gc_lock);

	for (i = h->data; i < h->data + h->used; i++)
		sectors_to_move += i->sectors;

	while (sectors_to_move > COPYGC_SECTORS_PER_ITER(ca)) {
179
		BUG_ON(!heap_pop(h, e, -sectors_used_cmp, NULL));
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
		sectors_to_move -= e.sectors;
	}

	buckets_to_move = h->used;

	if (!buckets_to_move)
		return;

	eytzinger0_sort(h->data, h->used,
			sizeof(h->data[0]),
			bucket_offset_cmp, NULL);

	ret = bch2_move_data(c, &ca->copygc_pd.rate,
			     writepoint_ptr(&ca->copygc_write_point),
			     POS_MIN, POS_MAX,
			     copygc_pred, ca,
			     &move_stats);

	down_read(&ca->bucket_lock);
	buckets = bucket_array(ca);
	for (i = h->data; i < h->data + h->used; i++) {
		size_t b = sector_to_bucket(ca, i->offset);
		struct bucket_mark m = READ_ONCE(buckets->b[b].mark);

		if (i->gen == m.gen && bucket_sectors_used(m)) {
			sectors_not_moved += bucket_sectors_used(m);
			buckets_not_moved++;
		}
	}
	up_read(&ca->bucket_lock);

	if (sectors_not_moved && !ret)
212 213
		bch_warn_ratelimited(c,
			"copygc finished but %llu/%llu sectors, %llu/%llu buckets not moved",
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
			 sectors_not_moved, sectors_to_move,
			 buckets_not_moved, buckets_to_move);

	trace_copygc(ca,
		     atomic64_read(&move_stats.sectors_moved), sectors_not_moved,
		     buckets_to_move, buckets_not_moved);
}

static int bch2_copygc_thread(void *arg)
{
	struct bch_dev *ca = arg;
	struct bch_fs *c = ca->fs;
	struct io_clock *clock = &c->io_clock[WRITE];
	struct bch_dev_usage usage;
	unsigned long last;
	u64 available, fragmented, reserve, next;

	set_freezable();

	while (!kthread_should_stop()) {
		if (kthread_wait_freezable(c->copy_gc_enabled))
			break;

		last = atomic_long_read(&clock->now);

239
		reserve = ca->copygc_threshold;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

		usage = bch2_dev_usage_read(c, ca);

		available = __dev_buckets_available(ca, usage) *
			ca->mi.bucket_size;
		if (available > reserve) {
			next = last + available - reserve;
			bch2_kthread_io_clock_wait(clock, next,
					MAX_SCHEDULE_TIMEOUT);
			continue;
		}

		/*
		 * don't start copygc until there's more than half the copygc
		 * reserve of fragmented space:
		 */
		fragmented = usage.sectors_fragmented;
		if (fragmented < reserve) {
			next = last + reserve - fragmented;
			bch2_kthread_io_clock_wait(clock, next,
					MAX_SCHEDULE_TIMEOUT);
			continue;
		}

		bch2_copygc(c, ca);
	}

	return 0;
}

void bch2_copygc_stop(struct bch_dev *ca)
{
	ca->copygc_pd.rate.rate = UINT_MAX;
	bch2_ratelimit_reset(&ca->copygc_pd.rate);

	if (ca->copygc_thread) {
		kthread_stop(ca->copygc_thread);
		put_task_struct(ca->copygc_thread);
	}
	ca->copygc_thread = NULL;
}

int bch2_copygc_start(struct bch_fs *c, struct bch_dev *ca)
{
	struct task_struct *t;

	BUG_ON(ca->copygc_thread);

	if (c->opts.nochanges)
		return 0;

	if (bch2_fs_init_fault("copygc_start"))
		return -ENOMEM;

	t = kthread_create(bch2_copygc_thread, ca,
			   "bch_copygc[%s]", ca->name);
	if (IS_ERR(t))
		return PTR_ERR(t);

	get_task_struct(t);

	ca->copygc_thread = t;
	wake_up_process(ca->copygc_thread);

	return 0;
}

void bch2_dev_copygc_init(struct bch_dev *ca)
{
	bch2_pd_controller_init(&ca->copygc_pd);
	ca->copygc_pd.d_term = 0;
}