rt.c 48.5 KB
Newer Older
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif
82 83
	/* We start is dequeued state, because no RT tasks are queued */
	rt_rq->rt_queued = 0;
84 85 86 87 88 89 90

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

91
#ifdef CONFIG_RT_GROUP_SCHED
92 93 94 95
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
96 97 98

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

99 100
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
101 102 103
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
104 105 106 107 108 109 110 111 112 113 114 115 116
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

117 118 119 120 121 122 123
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_se->rt_rq;

	return rt_rq->rq;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

209 210
#else /* CONFIG_RT_GROUP_SCHED */

211 212
#define rt_entity_is_task(rt_se) (1)

213 214 215 216 217
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

218 219 220 221 222
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

223
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 225
{
	struct task_struct *p = rt_task_of(rt_se);
226 227 228 229 230 231 232

	return task_rq(p);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct rq *rq = rq_of_rt_se(rt_se);
233 234 235 236

	return &rq->rt;
}

237 238 239 240 241 242
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
243 244
#endif /* CONFIG_RT_GROUP_SCHED */

245
#ifdef CONFIG_SMP
246

247
static void pull_rt_task(struct rq *this_rq);
248

Peter Zijlstra's avatar
Peter Zijlstra committed
249 250 251 252 253 254
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	return rq->rt.highest_prio.curr > prev->prio;
}

255
static inline int rt_overloaded(struct rq *rq)
256
{
257
	return atomic_read(&rq->rd->rto_count);
258
}
259

260 261
static inline void rt_set_overload(struct rq *rq)
{
262 263 264
	if (!rq->online)
		return;

265
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266 267 268 269 270 271
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
Peter Zijlstra's avatar
Peter Zijlstra committed
272 273
	 *
	 * Matched by the barrier in pull_rt_task().
274
	 */
Peter Zijlstra's avatar
Peter Zijlstra committed
275
	smp_wmb();
276
	atomic_inc(&rq->rd->rto_count);
277
}
278

279 280
static inline void rt_clear_overload(struct rq *rq)
{
281 282 283
	if (!rq->online)
		return;

284
	/* the order here really doesn't matter */
285
	atomic_dec(&rq->rd->rto_count);
286
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287
}
288

289
static void update_rt_migration(struct rt_rq *rt_rq)
290
{
291
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 293 294
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
295
		}
296 297 298
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
299
	}
300
}
301

302 303
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
304 305
	struct task_struct *p;

306 307 308
	if (!rt_entity_is_task(rt_se))
		return;

309
	p = rt_task_of(rt_se);
310 311 312
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
313
	if (p->nr_cpus_allowed > 1)
314 315 316 317 318 319 320
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
321 322
	struct task_struct *p;

323 324 325
	if (!rt_entity_is_task(rt_se))
		return;

326
	p = rt_task_of(rt_se);
327 328 329
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
330
	if (p->nr_cpus_allowed > 1)
331 332 333 334 335
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

336 337 338 339 340
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

341 342 343 344 345
static DEFINE_PER_CPU(struct callback_head, rt_balance_head);

static void push_rt_tasks(struct rq *);

static inline void queue_push_tasks(struct rq *rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
346
{
347 348 349 350
	if (!has_pushable_tasks(rq))
		return;

	queue_balance_callback(rq, &per_cpu(rt_balance_head, rq->cpu), push_rt_tasks);
Peter Zijlstra's avatar
Peter Zijlstra committed
351 352
}

353 354 355 356 357
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
358 359 360 361

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
362 363 364 365 366 367
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

368 369 370 371 372 373 374
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
375 376
}

377 378
#else

379
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
Peter Zijlstra's avatar
Peter Zijlstra committed
380
{
Peter Zijlstra's avatar
Peter Zijlstra committed
381 382
}

383 384 385 386
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

387
static inline
388 389 390 391
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

392
static inline
393 394 395
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
396

Peter Zijlstra's avatar
Peter Zijlstra committed
397 398 399 400 401
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

402
static inline void pull_rt_task(struct rq *this_rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
403 404 405
{
}

406
static inline void queue_push_tasks(struct rq *rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
407 408
{
}
409 410
#endif /* CONFIG_SMP */

411 412 413
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
static void dequeue_top_rt_rq(struct rt_rq *rt_rq);

Peter Zijlstra's avatar
Peter Zijlstra committed
414 415 416 417 418
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

419
#ifdef CONFIG_RT_GROUP_SCHED
Peter Zijlstra's avatar
Peter Zijlstra committed
420

Peter Zijlstra's avatar
Peter Zijlstra committed
421
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
422 423
{
	if (!rt_rq->tg)
Peter Zijlstra's avatar
Peter Zijlstra committed
424
		return RUNTIME_INF;
Peter Zijlstra's avatar
Peter Zijlstra committed
425

426 427 428 429 430 431
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
Peter Zijlstra's avatar
Peter Zijlstra committed
432 433
}

434 435
typedef struct task_group *rt_rq_iter_t;

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
453

Peter Zijlstra's avatar
Peter Zijlstra committed
454 455 456 457 458 459 460 461
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

462
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
Peter Zijlstra's avatar
Peter Zijlstra committed
463 464
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

Peter Zijlstra's avatar
Peter Zijlstra committed
465
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
466
{
467
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
468 469
	struct sched_rt_entity *rt_se;

470 471 472
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
Peter Zijlstra's avatar
Peter Zijlstra committed
473

474
	if (rt_rq->rt_nr_running) {
475 476 477
		if (!rt_se)
			enqueue_top_rt_rq(rt_rq);
		else if (!on_rt_rq(rt_se))
478
			enqueue_rt_entity(rt_se, false);
479

480
		if (rt_rq->highest_prio.curr < curr->prio)
481
			resched_task(curr);
Peter Zijlstra's avatar
Peter Zijlstra committed
482 483 484
	}
}

Peter Zijlstra's avatar
Peter Zijlstra committed
485
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
486
{
487
	struct sched_rt_entity *rt_se;
488
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
489

490
	rt_se = rt_rq->tg->rt_se[cpu];
Peter Zijlstra's avatar
Peter Zijlstra committed
491

492 493 494
	if (!rt_se)
		dequeue_top_rt_rq(rt_rq);
	else if (on_rt_rq(rt_se))
Peter Zijlstra's avatar
Peter Zijlstra committed
495 496 497
		dequeue_rt_entity(rt_se);
}

498 499 500 501 502
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

Peter Zijlstra's avatar
Peter Zijlstra committed
503 504 505 506 507 508 509 510 511 512 513 514
static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

515
#ifdef CONFIG_SMP
516
static inline const struct cpumask *sched_rt_period_mask(void)
517
{
Nathan Zimmer's avatar
Nathan Zimmer committed
518
	return this_rq()->rd->span;
519
}
Peter Zijlstra's avatar
Peter Zijlstra committed
520
#else
521
static inline const struct cpumask *sched_rt_period_mask(void)
522
{
523
	return cpu_online_mask;
524 525
}
#endif
Peter Zijlstra's avatar
Peter Zijlstra committed
526

527 528
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
Peter Zijlstra's avatar
Peter Zijlstra committed
529
{
530 531
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
Peter Zijlstra's avatar
Peter Zijlstra committed
532

533 534 535 536 537
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

538
#else /* !CONFIG_RT_GROUP_SCHED */
539 540 541

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
542 543 544 545 546 547
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
Peter Zijlstra's avatar
Peter Zijlstra committed
548 549
}

550 551 552 553 554
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

Peter Zijlstra's avatar
Peter Zijlstra committed
555 556 557 558 559 560 561 562
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

Peter Zijlstra's avatar
Peter Zijlstra committed
563
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
564
{
565 566 567 568 569 570 571
	struct rq *rq = rq_of_rt_rq(rt_rq);

	if (!rt_rq->rt_nr_running)
		return;

	enqueue_top_rt_rq(rt_rq);
	resched_task(rq->curr);
Peter Zijlstra's avatar
Peter Zijlstra committed
572 573
}

Peter Zijlstra's avatar
Peter Zijlstra committed
574
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
575
{
576
	dequeue_top_rt_rq(rt_rq);
Peter Zijlstra's avatar
Peter Zijlstra committed
577 578
}

579 580 581 582 583
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}

584
static inline const struct cpumask *sched_rt_period_mask(void)
585
{
586
	return cpu_online_mask;
587 588 589 590 591 592 593 594
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

595 596 597 598 599
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

600
#endif /* CONFIG_RT_GROUP_SCHED */
601

602 603 604 605 606 607 608 609
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

	return (hrtimer_active(&rt_b->rt_period_timer) ||
		rt_rq->rt_time < rt_b->rt_runtime);
}

610
#ifdef CONFIG_SMP
611 612 613
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
614
static int do_balance_runtime(struct rt_rq *rt_rq)
615 616
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
617
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
618 619 620
	int i, weight, more = 0;
	u64 rt_period;

621
	weight = cpumask_weight(rd->span);
622

623
	raw_spin_lock(&rt_b->rt_runtime_lock);
624
	rt_period = ktime_to_ns(rt_b->rt_period);
625
	for_each_cpu(i, rd->span) {
626 627 628 629 630 631
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

632
		raw_spin_lock(&iter->rt_runtime_lock);
633 634 635 636 637
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
638 639 640
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

641 642 643 644
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
645 646
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
647
			diff = div_u64((u64)diff, weight);
648 649 650 651 652 653
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
654
				raw_spin_unlock(&iter->rt_runtime_lock);
655 656 657
				break;
			}
		}
658
next:
659
		raw_spin_unlock(&iter->rt_runtime_lock);
660
	}
661
	raw_spin_unlock(&rt_b->rt_runtime_lock);
662 663 664

	return more;
}
665

666 667 668
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
669 670 671
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
672
	rt_rq_iter_t iter;
673 674 675 676 677
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

678
	for_each_rt_rq(rt_rq, iter, rq) {
679 680 681 682
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

683 684
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
685 686 687 688 689
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
690 691 692
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
693
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
694

695 696 697 698 699
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
700 701
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

702 703 704
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
705
		for_each_cpu(i, rd->span) {
706 707 708
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

709 710 711
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
712
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
713 714
				continue;

715
			raw_spin_lock(&iter->rt_runtime_lock);
716 717 718 719 720 721 722 723
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
724
			raw_spin_unlock(&iter->rt_runtime_lock);
725 726 727 728 729

			if (!want)
				break;
		}

730
		raw_spin_lock(&rt_rq->rt_runtime_lock);
731 732 733 734
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
735 736
		BUG_ON(want);
balanced:
737 738 739 740
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
741
		rt_rq->rt_runtime = RUNTIME_INF;
742
		rt_rq->rt_throttled = 0;
743 744
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
745 746 747 748 749
	}
}

static void __enable_runtime(struct rq *rq)
{
750
	rt_rq_iter_t iter;
751 752 753 754 755
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

756 757 758
	/*
	 * Reset each runqueue's bandwidth settings
	 */
759
	for_each_rt_rq(rt_rq, iter, rq) {
760 761
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

762 763
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
764 765
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
766
		rt_rq->rt_throttled = 0;
767 768
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
769 770 771
	}
}

772 773 774 775
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

776 777 778
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

779
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
780
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
781
		more = do_balance_runtime(rt_rq);
782
		raw_spin_lock(&rt_rq->rt_runtime_lock);
783 784 785 786
	}

	return more;
}
787
#else /* !CONFIG_SMP */
788 789 790 791
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
792
#endif /* CONFIG_SMP */
793

794 795
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
796
	int i, idle = 1, throttled = 0;
797
	const struct cpumask *span;
798 799

	span = sched_rt_period_mask();
800 801 802 803 804 805 806 807 808 809 810 811 812
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
813
	for_each_cpu(i, span) {
814 815 816 817
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

818
		raw_spin_lock(&rq->lock);
819 820 821
		if (rt_rq->rt_time) {
			u64 runtime;

822
			raw_spin_lock(&rt_rq->rt_runtime_lock);
823 824 825 826 827 828 829
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
830 831 832 833 834 835 836

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
837 838 839
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
840
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
841
		} else if (rt_rq->rt_nr_running) {
842
			idle = 0;
843 844 845
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
846 847
		if (rt_rq->rt_throttled)
			throttled = 1;
848 849 850

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
851
		raw_spin_unlock(&rq->lock);
852 853
	}

854 855 856
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

857 858
	return idle;
}
859

Peter Zijlstra's avatar
Peter Zijlstra committed
860 861
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
862
#ifdef CONFIG_RT_GROUP_SCHED
Peter Zijlstra's avatar
Peter Zijlstra committed
863 864 865
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
866
		return rt_rq->highest_prio.curr;
Peter Zijlstra's avatar
Peter Zijlstra committed
867 868 869 870 871
#endif

	return rt_task_of(rt_se)->prio;
}

Peter Zijlstra's avatar
Peter Zijlstra committed
872
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
873
{
Peter Zijlstra's avatar
Peter Zijlstra committed
874
	u64 runtime = sched_rt_runtime(rt_rq);
Peter Zijlstra's avatar
Peter Zijlstra committed
875 876

	if (rt_rq->rt_throttled)
Peter Zijlstra's avatar
Peter Zijlstra committed
877
		return rt_rq_throttled(rt_rq);
Peter Zijlstra's avatar
Peter Zijlstra committed
878

879
	if (runtime >= sched_rt_period(rt_rq))
880 881
		return 0;

882 883 884 885
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
886

Peter Zijlstra's avatar
Peter Zijlstra committed
887
	if (rt_rq->rt_time > runtime) {
888 889 890 891 892 893 894 895
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
			rt_rq->rt_throttled = 1;
John Stultz's avatar
John Stultz committed
896
			printk_deferred_once("sched: RT throttling activated\n");
897 898 899 900 901 902 903 904 905
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

Peter Zijlstra's avatar
Peter Zijlstra committed
906
		if (rt_rq_throttled(rt_rq)) {
Peter Zijlstra's avatar
Peter Zijlstra committed
907
			sched_rt_rq_dequeue(rt_rq);
Peter Zijlstra's avatar
Peter Zijlstra committed
908 909
			return 1;
		}
Peter Zijlstra's avatar
Peter Zijlstra committed
910 911 912 913 914
	}

	return 0;
}

915 916 917 918
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
Alexey Dobriyan's avatar
Alexey Dobriyan committed
919
static void update_curr_rt(struct rq *rq)
920 921
{
	struct task_struct *curr = rq->curr;
Peter Zijlstra's avatar
Peter Zijlstra committed
922
	struct sched_rt_entity *rt_se = &curr->rt;
923 924
	u64 delta_exec;

Peter Zijlstra's avatar
Peter Zijlstra committed
925
	if (curr->sched_class != &rt_sched_class)
926 927
		return;

928
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
929 930
	if (unlikely((s64)delta_exec <= 0))
		return;
Ingo Molnar's avatar
Ingo Molnar committed
931

932 933
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
934 935

	curr->se.sum_exec_runtime += delta_exec;
936 937
	account_group_exec_runtime(curr, delta_exec);

938
	curr->se.exec_start = rq_clock_task(rq);
939
	cpuacct_charge(curr, delta_exec);
Peter Zijlstra's avatar
Peter Zijlstra committed
940

941 942
	sched_rt_avg_update(rq, delta_exec);

943 944 945
	if (!rt_bandwidth_enabled())
		return;

Dhaval Giani's avatar
Dhaval Giani committed
946
	for_each_sched_rt_entity(rt_se) {
947
		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
Dhaval Giani's avatar
Dhaval Giani committed
948

949
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
950
			raw_spin_lock(&rt_rq->rt_runtime_lock);
951 952 953
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
954
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
955
		}
Dhaval Giani's avatar
Dhaval Giani committed
956
	}
957 958
}

959 960 961 962 963 964 965 966 967 968 969 970
static void
dequeue_top_rt_rq(struct rt_rq *rt_rq)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);

	BUG_ON(&rq->rt != rt_rq);

	if (!rt_rq->rt_queued)
		return;

	BUG_ON(!rq->nr_running);

971
	sub_nr_running(rq, rt_rq->rt_nr_running);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	rt_rq->rt_queued = 0;
}

static void
enqueue_top_rt_rq(struct rt_rq *rt_rq)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);

	BUG_ON(&rq->rt != rt_rq);

	if (rt_rq->rt_queued)
		return;
	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
		return;

987
	add_nr_running(rq, rt_rq->rt_nr_running);
988 989 990
	rt_rq->rt_queued = 1;
}

991
#if defined CONFIG_SMP
992

993 994
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
995
{
996
	struct rq *rq = rq_of_rt_rq(rt_rq);
997

998 999 1000 1001 1002 1003 1004
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
1005 1006
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1007
}
1008

1009 1010 1011 1012
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
1013

1014 1015 1016 1017 1018 1019 1020
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
1021 1022
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1023 1024
}

1025 1026
#else /* CONFIG_SMP */

Peter Zijlstra's avatar
Peter Zijlstra committed
1027
static inline
1028 1029 1030 1031 1032
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
1033

1034
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

Peter Zijlstra's avatar
Peter Zijlstra committed
1051
	if (rt_rq->rt_nr_running) {
1052

1053
		WARN_ON(prio < prev_prio);
1054

1055
		/*
1056 1057
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
1058
		 */
1059
		if (prio == prev_prio) {
1060 1061 1062
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
1063
				sched_find_first_bit(array->bitmap);
1064 1065
		}

1066
	} else
1067
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1068

1069 1070
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
1071

1072 1073 1074 1075 1076 1077
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1078

1079
#ifdef CONFIG_RT_GROUP_SCHED
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
Peter Zijlstra's avatar
Peter Zijlstra committed
1094 1095 1096 1097
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static inline
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
{
	struct rt_rq *group_rq = group_rt_rq(rt_se);

	if (group_rq)
		return group_rq->rt_nr_running;
	else
		return 1;
}

1124 1125 1126 1127 1128 1129
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
1130
	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
1142
	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1143 1144 1145 1146

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1147 1148
}

1149
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1150
{
Peter Zijlstra's avatar
Peter Zijlstra committed
1151 1152 1153
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1154
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1155

1156 1157 1158 1159 1160 1161 1162
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
Peter Zijlstra's avatar
Peter Zijlstra committed
1163
		return;
1164

1165 1166 1167 1168
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
Peter Zijlstra's avatar
Peter Zijlstra committed
1169
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1170

Peter Zijlstra's avatar
Peter Zijlstra committed
1171 1172 1173
	inc_rt_tasks(rt_se, rt_rq);
}

1174
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
Peter Zijlstra's avatar
Peter Zijlstra committed
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1190
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
Peter Zijlstra's avatar
Peter Zijlstra committed
1191
{
1192
	struct sched_rt_entity *back = NULL;
Peter Zijlstra's avatar
Peter Zijlstra committed
1193

1194 1195 1196 1197 1198
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

1199 1200
	dequeue_top_rt_rq(rt_rq_of_se(back));

1201 1202
	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1203 1204 1205 1206
			__dequeue_rt_entity(rt_se);
	}
}

1207
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1208
{
1209 1210
	struct rq *rq = rq_of_rt_se(rt_se);

1211 1212
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1213
		__enqueue_rt_entity(rt_se, head);
1214
	enqueue_top_rt_rq(&rq->rt);
1215 1216 1217 1218
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
1219 1220
	struct rq *rq = rq_of_rt_se(rt_se);

1221 1222 1223 1224 1225 1226
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1227
			__enqueue_rt_entity(rt_se, false);
1228
	}
1229
	enqueue_top_rt_rq(&rq->rt);
1230 1231 1232 1233 1234
}

/*
 * Adding/removing a task to/from a priority array:
 */
1235
static void
1236
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
Peter Zijlstra's avatar
Peter Zijlstra committed
1237 1238 1239
{
	struct sched_rt_entity *rt_se = &p->rt;

1240
	if (flags & ENQUEUE_WAKEUP)
Peter Zijlstra's avatar
Peter Zijlstra committed
1241 1242
		rt_se->timeout = 0;

1243
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1244

1245
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1246
		enqueue_pushable_task(rq, p);
Peter Zijlstra's avatar
Peter Zijlstra committed
1247 1248
}

1249
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1250
{
Peter Zijlstra's avatar
Peter Zijlstra committed
1251
	struct sched_rt_entity *rt_se = &p->rt;
1252

1253
	update_curr_rt(rq);
1254
	dequeue_rt_entity(rt_se);
1255

1256
	dequeue_pushable_task(rq, p);
1257 1258 1259
}

/*
1260 1261
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
1262
 */
1263 1264
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
Peter Zijlstra's avatar
Peter Zijlstra committed
1265
{
1266
	if (on_rt_rq(rt_se)) {
1267 1268 1269 1270 1271 1272 1273
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1274
	}
Peter Zijlstra's avatar
Peter Zijlstra committed
1275 1276
}

1277
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1278
{
Peter Zijlstra's avatar
Peter Zijlstra committed
1279 1280
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
1281

Peter Zijlstra's avatar
Peter Zijlstra committed
1282 1283
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1284
		requeue_rt_entity(rt_rq, rt_se, head);
Peter Zijlstra's avatar
Peter Zijlstra committed
1285
	}
1286 1287
}

Peter Zijlstra's avatar
Peter Zijlstra committed
1288
static void yield_task_rt(struct rq *rq)
1289
{
1290
	requeue_task_rt(rq, rq->curr, 0);
1291 1292
}

1293
#ifdef CONFIG_SMP
1294 1295
static int find_lowest_rq(struct task_struct *task);

1296
static int
1297
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1298
{
1299 1300
	struct task_struct *curr;
	struct rq *rq;
1301

1302
	if (p->nr_cpus_allowed == 1)
1303 1304
		goto out;

1305 1306 1307 1308
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1309 1310 1311 1312 1313
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1314
	/*
1315
	 * If the current task on @p's runqueue is an RT task, then
1316 1317 1318 1319
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1320 1321 1322 1323 1324 1325 1326 1327 1328
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1329 1330 1331 1332 1333 1334
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1335
	 */
1336
	if (curr && unlikely(rt_task(curr)) &&
1337
	    (curr->nr_cpus_allowed < 2 ||
1338
	     curr->prio <= p->prio)) {
1339
		int target = find_lowest_rq(p);
1340

1341 1342 1343 1344 1345 1346
		/*
		 * Don't bother moving it if the destination CPU is
		 * not running a lower priority task.
		 */
		if (target != -1 &&
		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1347
			cpu = target;
1348
	}
1349
	rcu_read_unlock();
1350

1351
out:
1352
	return cpu;
1353
}
1354 1355 1356

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1357
	if (rq->curr->nr_cpus_allowed == 1)
1358 1359
		return;

1360
	if (p->nr_cpus_allowed != 1
1361 1362
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1363

1364 1365
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1376 1377
#endif /* CONFIG_SMP */

1378 1379 1380
/*
 * Preempt the current task with a newly woken task if needed:
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1381
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1382
{
1383
	if (p->prio < rq->curr->prio) {
1384
		resched_task(rq->curr);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1401
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1402
		check_preempt_equal_prio(rq, p);
1403
#endif
1404 1405
}

Peter Zijlstra's avatar
Peter Zijlstra committed
1406 1407
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
1408
{
Peter Zijlstra's avatar
Peter Zijlstra committed
1409 1410
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
1411 1412 1413 1414
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
Peter Zijlstra's avatar
Peter Zijlstra committed
1415
	BUG_ON(idx >= MAX_RT_PRIO);
1416 1417

	queue = array->queue + idx;
Peter Zijlstra's avatar
Peter Zijlstra committed
1418
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1419

Peter Zijlstra's avatar
Peter Zijlstra committed
1420 1421
	return next;
}
1422

1423
static struct task_struct *_pick_next_task_rt(struct rq *rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
1424 1425 1426
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
1427
	struct rt_rq *rt_rq  = &rq->rt;
Peter Zijlstra's avatar
Peter Zijlstra committed
1428 1429 1430

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1431
		BUG_ON(!rt_se);
Peter Zijlstra's avatar
Peter Zijlstra committed
1432 1433 1434 1435
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1436
	p->se.exec_start = rq_clock_task(rq);
1437 1438 1439 1440

	return p;
}

1441 1442
static struct task_struct *
pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1443
{
1444 1445 1446
	struct task_struct *p;
	struct rt_rq *rt_rq = &rq->rt;

1447
	if (need_pull_rt_task(rq, prev)) {
1448
		pull_rt_task(rq);
1449 1450
		/*
		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1451 1452
		 * means a dl or stop task can slip in, in which case we need
		 * to re-start task selection.
1453
		 */
1454 1455
		if (unlikely((rq->stop && rq->stop->on_rq) ||
			     rq->dl.dl_nr_running))
1456 1457
			return RETRY_TASK;
	}
1458

1459 1460 1461 1462 1463 1464 1465
	/*
	 * We may dequeue prev's rt_rq in put_prev_task().
	 * So, we update time before rt_nr_running check.
	 */
	if (prev->sched_class == &rt_sched_class)
		update_curr_rt(rq);

1466
	if (!rt_rq->rt_queued)
1467 1468
		return NULL;

1469
	put_prev_task(rq, prev);
1470 1471

	p = _pick_next_task_rt(rq);
1472 1473 1474 1475 1476

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1477
	queue_push_tasks(rq);
1478

Peter Zijlstra's avatar
Peter Zijlstra committed
1479
	return p;
1480 1481
}

1482
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1483
{
1484
	update_curr_rt(rq);
1485 1486 1487 1488 1489

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1490
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1491
		enqueue_pushable_task(rq, p);
1492 1493
}

1494
#ifdef CONFIG_SMP
Peter Zijlstra's avatar
Peter Zijlstra committed
1495

Steven Rostedt's avatar
Steven Rostedt committed
1496 1497 1498
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1499 1500 1501
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1502
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1503 1504 1505 1506
		return 1;
	return 0;
}

1507 1508 1509 1510 1511
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
Steven Rostedt's avatar
Steven Rostedt committed
1512
{
1513 1514
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1515

1516 1517
	if (!has_pushable_tasks(rq))
		return NULL;
1518

1519 1520 1521
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1522 1523
	}

1524
	return NULL;
Steven Rostedt's avatar
Steven Rostedt committed
1525 1526
}

1527
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
Steven Rostedt's avatar
Steven Rostedt committed
1528

Gregory Haskins's avatar
Gregory Haskins committed
1529 1530 1531
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1532
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
Gregory Haskins's avatar
Gregory Haskins committed
1533 1534
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
Gregory Haskins's avatar
Gregory Haskins committed
1535

1536 1537 1538 1539
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1540
	if (task->nr_cpus_allowed == 1)
1541
		return -1; /* No other targets possible */
Gregory Haskins's avatar
Gregory Haskins committed
1542

1543 1544
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
Gregory Haskins's avatar
Gregory Haskins committed
1545 1546 1547 1548 1549 1550 1551 1552 1553

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1554
	if (cpumask_test_cpu(cpu, lowest_mask))
Gregory Haskins's avatar
Gregory Haskins committed
1555 1556 1557 1558 1559 1560
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
Rusty Russell's avatar
Rusty Russell committed
1561 1562
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
Gregory Haskins's avatar
Gregory Haskins committed
1563

1564
	rcu_read_lock();
Rusty Russell's avatar
Rusty Russell committed
1565 1566 1567
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
Gregory Haskins's avatar
Gregory Haskins committed
1568

Rusty Russell's avatar
Rusty Russell committed
1569 1570 1571 1572 1573
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1574 1575
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
Rusty Russell's avatar
Rusty Russell committed
1576
				return this_cpu;
1577
			}
Rusty Russell's avatar
Rusty Russell committed
1578 1579 1580

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1581 1582
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
Rusty Russell's avatar
Rusty Russell committed
1583
				return best_cpu;
1584
			}
Gregory Haskins's avatar
Gregory Haskins committed
1585 1586
		}
	}
1587
	rcu_read_unlock();
Gregory Haskins's avatar
Gregory Haskins committed
1588 1589 1590 1591 1592 1593

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
Rusty Russell's avatar
Rusty Russell committed
1594 1595 1596 1597 1598 1599 1600
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1601 1602 1603
}

/* Will lock the rq it finds */
1604
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1605 1606 1607
{
	struct rq *lowest_rq = NULL;
	int tries;
1608
	int cpu;
Steven Rostedt's avatar
Steven Rostedt committed
1609

1610 1611 1612
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1613
		if ((cpu == -1) || (cpu == rq->cpu))
Steven Rostedt's avatar
Steven Rostedt committed
1614 1615
			break;

1616 1617
		lowest_rq = cpu_rq(cpu);

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
			/*
			 * Target rq has tasks of equal or higher priority,
			 * retrying does not release any lock and is unlikely
			 * to yield a different result.
			 */
			lowest_rq = NULL;
			break;
		}

Steven Rostedt's avatar
Steven Rostedt committed
1628
		/* if the prio of this runqueue changed, try again */
1629
		if (double_lock_balance(rq, lowest_rq)) {
Steven Rostedt's avatar
Steven Rostedt committed
1630 1631 1632 1633 1634 1635
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1636
			if (unlikely(task_rq(task) != rq ||
1637
				     !cpumask_test_cpu(lowest_rq->cpu,
1638
						       tsk_cpus_allowed(task)) ||
1639
				     task_running(rq, task) ||
Peter Zijlstra's avatar
Peter Zijlstra committed
1640
				     !task->on_rq)) {
1641

1642
				double_unlock_balance(rq, lowest_rq);
Steven Rostedt's avatar
Steven Rostedt committed
1643 1644 1645 1646 1647 1648
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1649
		if (lowest_rq->rt.highest_prio.curr > task->prio)
Steven Rostedt's avatar
Steven Rostedt committed
1650 1651 1652
			break;

		/* try again */
1653
		double_unlock_balance(rq, lowest_rq);
Steven Rostedt's avatar
Steven Rostedt committed
1654 1655 1656 1657 1658 1659
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1672
	BUG_ON(p->nr_cpus_allowed <= 1);
1673

Peter Zijlstra's avatar
Peter Zijlstra committed
1674
	BUG_ON(!p->on_rq);
1675 1676 1677 1678 1679
	BUG_ON(!rt_task(p));

	return p;
}

Steven Rostedt's avatar
Steven Rostedt committed
1680 1681 1682 1683 1684
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1685
static int push_rt_task(struct rq *rq)
Steven Rostedt's avatar
Steven Rostedt committed
1686 1687 1688
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1689
	int ret = 0;
Steven Rostedt's avatar
Steven Rostedt committed
1690

Gregory Haskins's avatar
Gregory Haskins committed
1691 1692 1693
	if (!rq->rt.overloaded)
		return 0;

1694
	next_task = pick_next_pushable_task(rq);
Steven Rostedt's avatar
Steven Rostedt committed
1695 1696 1697
	if (!next_task)
		return 0;

Peter Zijlstra's avatar
Peter Zijlstra committed
1698
retry:
1699
	if (unlikely(next_task == rq->curr)) {
1700
		WARN_ON(1);
Steven Rostedt's avatar
Steven Rostedt committed
1701
		return 0;
1702
	}
Steven Rostedt's avatar
Steven Rostedt committed
1703 1704 1705 1706 1707 1708

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1709 1710
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
Steven Rostedt's avatar
Steven Rostedt committed
1711 1712 1713
		return 0;
	}

1714
	/* We might release rq lock */
Steven Rostedt's avatar
Steven Rostedt committed
1715 1716 1717
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1718
	lowest_rq = find_lock_lowest_rq(next_task, rq);
Steven Rostedt's avatar
Steven Rostedt committed
1719 1720 1721
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1722
		 * find_lock_lowest_rq releases rq->lock
1723 1724 1725 1726 1727
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
Steven Rostedt's avatar
Steven Rostedt committed
1728
		 */
1729
		task = pick_next_pushable_task(rq);
1730 1731
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1732 1733 1734 1735
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1736 1737
			 */
			goto out;
Steven Rostedt's avatar
Steven Rostedt committed
1738
		}
1739

1740 1741 1742 1743
		if (!task)
			/* No more tasks, just exit */
			goto out;

1744
		/*
1745
		 * Something has shifted, try again.
1746
		 */
1747 1748 1749
		put_task_struct(next_task);
		next_task = task;
		goto retry;
Steven Rostedt's avatar
Steven Rostedt committed
1750 1751
	}

1752
	deactivate_task(rq, next_task, 0);
Steven Rostedt's avatar
Steven Rostedt committed
1753 1754
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1755
	ret = 1;
Steven Rostedt's avatar
Steven Rostedt committed
1756 1757 1758

	resched_task(lowest_rq->curr);

1759
	double_unlock_balance(rq, lowest_rq);
Steven Rostedt's avatar
Steven Rostedt committed
1760 1761 1762 1763

out:
	put_task_struct(next_task);

1764
	return ret;
Steven Rostedt's avatar
Steven Rostedt committed
1765 1766 1767 1768 1769 1770 1771 1772 1773
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1774
static void pull_rt_task(struct rq *this_rq)
1775
{
1776 1777
	int this_cpu = this_rq->cpu, cpu;
	bool resched = false;
1778
	struct task_struct *p;
1779 1780
	struct rq *src_rq;

1781
	if (likely(!rt_overloaded(this_rq)))
1782
		return;
1783

Peter Zijlstra's avatar
Peter Zijlstra committed
1784 1785 1786 1787 1788 1789
	/*
	 * Match the barrier from rt_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the rto_mask bit.
	 */
	smp_rmb();

1790
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1791 1792 1793 1794
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1807 1808 1809
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1810
		 * alter this_rq
1811
		 */
1812
		double_lock_balance(this_rq, src_rq);
1813 1814

		/*
1815 1816
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1817
		 */
1818
		p = pick_highest_pushable_task(src_rq, this_cpu);
1819 1820 1821 1822 1823

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1824
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1825
			WARN_ON(p == src_rq->curr);
Peter Zijlstra's avatar
Peter Zijlstra committed
1826
			WARN_ON(!p->on_rq);
1827 1828 1829 1830 1831 1832 1833

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1834
			 * current task on the run queue
1835
			 */
1836
			if (p->prio < src_rq->curr->prio)
Mike Galbraith's avatar
Mike Galbraith committed
1837
				goto skip;
1838

1839
			resched = true;
1840 1841 1842 1843 1844 1845 1846

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
Lucas De Marchi's avatar
Lucas De Marchi committed
1847
			 * in another runqueue. (low likelihood
1848 1849 1850
			 * but possible)
			 */
		}
Peter Zijlstra's avatar
Peter Zijlstra committed
1851
skip:
1852
		double_unlock_balance(this_rq, src_rq);
1853 1854
	}

1855 1856
	if (resched)
		resched_task(this_rq->curr);
1857 1858
}

1859 1860 1861 1862
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1863
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1864
{
1865
	if (!task_running(rq, p) &&
1866
	    !test_tsk_need_resched(rq->curr) &&
1867
	    has_pushable_tasks(rq) &&
1868
	    p->nr_cpus_allowed > 1 &&
1869
	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1870
	    (rq->curr->nr_cpus_allowed < 2 ||
1871
	     rq->curr->prio <= p->prio))
1872 1873 1874
		push_rt_tasks(rq);
}

1875
static void set_cpus_allowed_rt(struct task_struct *p,
1876
				const struct cpumask *new_mask)
1877
{
1878 1879
	struct rq *rq;
	int weight;
1880 1881 1882

	BUG_ON(!rt_task(p));

1883 1884
	if (!p->on_rq)
		return;
1885

1886
	weight = cpumask_weight(new_mask);
1887

1888 1889 1890 1891
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1892
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1893
		return;
1894

1895
	rq = task_rq(p);
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1909
	}
1910 1911

	update_rt_migration(&rq->rt);
1912
}
1913

1914
/* Assumes rq->lock is held */
1915
static void rq_online_rt(struct rq *rq)
1916 1917 1918
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1919

1920 1921
	__enable_runtime(rq);

1922
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1923 1924 1925
}

/* Assumes rq->lock is held */
1926
static void rq_offline_rt(struct rq *rq)
1927 1928 1929
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1930

1931 1932
	__disable_runtime(rq);

1933
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1934
}
1935 1936 1937 1938 1939

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1940
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1941 1942 1943 1944 1945 1946 1947 1948
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1949 1950 1951
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

1952
	pull_rt_task(rq);
1953
}
1954

1955
void __init init_sched_rt_class(void)
1956 1957 1958
{
	unsigned int i;

1959
	for_each_possible_cpu(i) {
1960
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1961
					GFP_KERNEL, cpu_to_node(i));
1962
	}
1963
}
1964 1965 1966 1967 1968 1969 1970
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1971
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1982
	if (p->on_rq && rq->curr != p) {
1983
#ifdef CONFIG_SMP
1984
		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1985
		    /* Don't resched if we changed runqueues */
1986
		    push_rt_task(rq) && rq != task_rq(p))
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1998 1999
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2000
{
Peter Zijlstra's avatar
Peter Zijlstra committed
2001
	if (!p->on_rq)
Peter Zijlstra's avatar
Peter Zijlstra committed
2002 2003 2004
		return;

	if (rq->curr == p) {
2005 2006 2007 2008 2009 2010 2011 2012 2013
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
2014 2015 2016
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
2017
		 */
2018
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2019 2020 2021 2022 2023
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
Steven Rostedt's avatar
Steven Rostedt committed
2024
#endif /* CONFIG_SMP */
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

2036 2037 2038 2039
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

2040 2041 2042
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2043 2044 2045 2046

	if (soft != RLIM_INFINITY) {
		unsigned long next;

2047 2048 2049 2050 2051
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

2052
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2053
		if (p->rt.timeout > next)
2054
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2055 2056
	}
}
2057

2058
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2059
{
2060 2061
	struct sched_rt_entity *rt_se = &p->rt;

2062 2063
	update_curr_rt(rq);

2064 2065
	watchdog(rq, p);

2066 2067 2068 2069 2070 2071 2072
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

Peter Zijlstra's avatar
Peter Zijlstra committed
2073
	if (--p->rt.time_slice)
2074 2075
		return;

2076
	p->rt.time_slice = sched_rr_timeslice;
2077

2078
	/*
Li Bin's avatar
Li Bin committed
2079 2080
	 * Requeue to the end of queue if we (and all of our ancestors) are not
	 * the only element on the queue
2081
	 */
2082 2083 2084 2085 2086 2087
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
2088
	}
2089 2090
}

2091 2092 2093 2094
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

2095
	p->se.exec_start = rq_clock_task(rq);
2096 2097 2098

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
2099 2100
}

2101
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2102 2103 2104 2105 2106
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
2107
		return sched_rr_timeslice;
2108 2109 2110 2111
	else
		return 0;
}

2112
const struct sched_class rt_sched_class = {
2113
	.next			= &fair_sched_class,
2114 2115 2116 2117 2118 2119 2120 2121 2122
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2123
#ifdef CONFIG_SMP
Li Zefan's avatar
Li Zefan committed
2124 2125
	.select_task_rq		= select_task_rq_rt,

2126
	.set_cpus_allowed       = set_cpus_allowed_rt,
2127 2128
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2129
	.task_woken		= task_woken_rt,
2130
	.switched_from		= switched_from_rt,
2131
#endif
2132

2133
	.set_curr_task          = set_curr_task_rt,
2134
	.task_tick		= task_tick_rt,
2135

2136 2137
	.get_rr_interval	= get_rr_interval_rt,

2138 2139
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
2140
};
2141 2142 2143 2144

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2145
void print_rt_stats(struct seq_file *m, int cpu)
2146
{
2147
	rt_rq_iter_t iter;
2148 2149 2150
	struct rt_rq *rt_rq;

	rcu_read_lock();
2151
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2152 2153 2154
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2155
#endif /* CONFIG_SCHED_DEBUG */