dm-btree-remove.c 17 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2011 Red Hat, Inc.
 *
 * This file is released under the GPL.
 */

#include "dm-btree.h"
#include "dm-btree-internal.h"
#include "dm-transaction-manager.h"

11
#include <linux/export.h>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

/*
 * Removing an entry from a btree
 * ==============================
 *
 * A very important constraint for our btree is that no node, except the
 * root, may have fewer than a certain number of entries.
 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
 *
 * Ensuring this is complicated by the way we want to only ever hold the
 * locks on 2 nodes concurrently, and only change nodes in a top to bottom
 * fashion.
 *
 * Each node may have a left or right sibling.  When decending the spine,
 * if a node contains only MIN_ENTRIES then we try and increase this to at
 * least MIN_ENTRIES + 1.  We do this in the following ways:
 *
 * [A] No siblings => this can only happen if the node is the root, in which
 *     case we copy the childs contents over the root.
 *
 * [B] No left sibling
 *     ==> rebalance(node, right sibling)
 *
 * [C] No right sibling
 *     ==> rebalance(left sibling, node)
 *
 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
 *     ==> delete node adding it's contents to left and right
 *
 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
 *     ==> rebalance(left, node, right)
 *
 * After these operations it's possible that the our original node no
 * longer contains the desired sub tree.  For this reason this rebalancing
 * is performed on the children of the current node.  This also avoids
 * having a special case for the root.
 *
 * Once this rebalancing has occurred we can then step into the child node
 * for internal nodes.  Or delete the entry for leaf nodes.
 */

/*
 * Some little utilities for moving node data around.
 */
56
static void node_shift(struct btree_node *n, int shift)
57 58 59 60 61 62 63
{
	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
	uint32_t value_size = le32_to_cpu(n->header.value_size);

	if (shift < 0) {
		shift = -shift;
		BUG_ON(shift > nr_entries);
64
		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65 66 67
		memmove(key_ptr(n, 0),
			key_ptr(n, shift),
			(nr_entries - shift) * sizeof(__le64));
68 69
		memmove(value_ptr(n, 0),
			value_ptr(n, shift),
70 71 72 73 74 75
			(nr_entries - shift) * value_size);
	} else {
		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
		memmove(key_ptr(n, shift),
			key_ptr(n, 0),
			nr_entries * sizeof(__le64));
76 77
		memmove(value_ptr(n, shift),
			value_ptr(n, 0),
78 79 80 81
			nr_entries * value_size);
	}
}

82
static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83 84 85 86 87 88 89 90 91 92 93
{
	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
	uint32_t value_size = le32_to_cpu(left->header.value_size);
	BUG_ON(value_size != le32_to_cpu(right->header.value_size));

	if (shift < 0) {
		shift = -shift;
		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
		memcpy(key_ptr(left, nr_left),
		       key_ptr(right, 0),
		       shift * sizeof(__le64));
94 95
		memcpy(value_ptr(left, nr_left),
		       value_ptr(right, 0),
96 97 98 99 100 101
		       shift * value_size);
	} else {
		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
		memcpy(key_ptr(right, 0),
		       key_ptr(left, nr_left - shift),
		       shift * sizeof(__le64));
102 103
		memcpy(value_ptr(right, 0),
		       value_ptr(left, nr_left - shift),
104 105 106 107 108 109 110
		       shift * value_size);
	}
}

/*
 * Delete a specific entry from a leaf node.
 */
111
static void delete_at(struct btree_node *n, unsigned index)
112 113 114 115 116 117 118 119 120 121 122
{
	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
	unsigned nr_to_copy = nr_entries - (index + 1);
	uint32_t value_size = le32_to_cpu(n->header.value_size);
	BUG_ON(index >= nr_entries);

	if (nr_to_copy) {
		memmove(key_ptr(n, index),
			key_ptr(n, index + 1),
			nr_to_copy * sizeof(__le64));

123 124
		memmove(value_ptr(n, index),
			value_ptr(n, index + 1),
125 126 127 128 129 130
			nr_to_copy * value_size);
	}

	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
}

131
static unsigned merge_threshold(struct btree_node *n)
132
{
133
	return le32_to_cpu(n->header.max_entries) / 3;
134 135 136 137 138
}

struct child {
	unsigned index;
	struct dm_block *block;
139
	struct btree_node *n;
140 141
};

142 143
static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
		      struct btree_node *parent,
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
		      unsigned index, struct child *result)
{
	int r, inc;
	dm_block_t root;

	result->index = index;
	root = value64(parent, index);

	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
			       &result->block, &inc);
	if (r)
		return r;

	result->n = dm_block_data(result->block);

	if (inc)
160
		inc_children(info->tm, result->n, vt);
161

162
	*((__le64 *) value_ptr(parent, index)) =
163 164 165 166 167
		cpu_to_le64(dm_block_location(result->block));

	return 0;
}

168
static void exit_child(struct dm_btree_info *info, struct child *c)
169
{
170
	dm_tm_unlock(info->tm, c->block);
171 172
}

173
static void shift(struct btree_node *left, struct btree_node *right, int count)
174
{
175 176 177 178 179 180 181 182 183
	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
	uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);

	BUG_ON(max_entries != r_max_entries);
	BUG_ON(nr_left - count > max_entries);
	BUG_ON(nr_right + count > max_entries);

184 185 186 187 188 189 190 191 192 193 194
	if (!count)
		return;

	if (count > 0) {
		node_shift(right, count);
		node_copy(left, right, count);
	} else {
		node_copy(left, right, count);
		node_shift(right, count);
	}

195 196
	left->header.nr_entries = cpu_to_le32(nr_left - count);
	right->header.nr_entries = cpu_to_le32(nr_right + count);
197 198
}

199
static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
200 201
			 struct child *l, struct child *r)
{
202 203
	struct btree_node *left = l->n;
	struct btree_node *right = r->n;
204 205
	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
206
	unsigned threshold = 2 * merge_threshold(left) + 1;
207

208
	if (nr_left + nr_right < threshold) {
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		/*
		 * Merge
		 */
		node_copy(left, right, -nr_right);
		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
		delete_at(parent, r->index);

		/*
		 * We need to decrement the right block, but not it's
		 * children, since they're still referenced by left.
		 */
		dm_tm_dec(info->tm, dm_block_location(r->block));
	} else {
		/*
		 * Rebalance.
		 */
		unsigned target_left = (nr_left + nr_right) / 2;
		shift(left, right, nr_left - target_left);
		*key_ptr(parent, r->index) = right->keys[0];
	}
}

static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
232
		      struct dm_btree_value_type *vt, unsigned left_index)
233 234
{
	int r;
235
	struct btree_node *parent;
236 237 238 239
	struct child left, right;

	parent = dm_block_data(shadow_current(s));

240
	r = init_child(info, vt, parent, left_index, &left);
241 242 243
	if (r)
		return r;

244
	r = init_child(info, vt, parent, left_index + 1, &right);
245 246 247 248 249 250 251
	if (r) {
		exit_child(info, &left);
		return r;
	}

	__rebalance2(info, parent, &left, &right);

252 253
	exit_child(info, &left);
	exit_child(info, &right);
254

255
	return 0;
256 257
}

258 259 260 261 262
/*
 * We dump as many entries from center as possible into left, then the rest
 * in right, then rebalance2.  This wastes some cpu, but I want something
 * simple atm.
 */
263
static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
264
			       struct child *l, struct child *c, struct child *r,
265
			       struct btree_node *left, struct btree_node *center, struct btree_node *right,
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
			       uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
{
	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
	unsigned shift = min(max_entries - nr_left, nr_center);

	BUG_ON(nr_left + shift > max_entries);
	node_copy(left, center, -shift);
	left->header.nr_entries = cpu_to_le32(nr_left + shift);

	if (shift != nr_center) {
		shift = nr_center - shift;
		BUG_ON((nr_right + shift) > max_entries);
		node_shift(right, shift);
		node_copy(center, right, shift);
		right->header.nr_entries = cpu_to_le32(nr_right + shift);
	}
	*key_ptr(parent, r->index) = right->keys[0];

	delete_at(parent, c->index);
	r->index--;

	dm_tm_dec(info->tm, dm_block_location(c->block));
	__rebalance2(info, parent, l, r);
}

/*
 * Redistributes entries among 3 sibling nodes.
 */
294
static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
295
			  struct child *l, struct child *c, struct child *r,
296
			  struct btree_node *left, struct btree_node *center, struct btree_node *right,
297 298 299 300 301 302 303 304 305 306 307 308
			  uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
{
	int s;
	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
	unsigned target = (nr_left + nr_center + nr_right) / 3;
	BUG_ON(target > max_entries);

	if (nr_left < nr_right) {
		s = nr_left - target;

		if (s < 0 && nr_center < -s) {
			/* not enough in central node */
309 310
			shift(left, center, -nr_center);
			s += nr_center;
311 312 313 314 315 316 317 318 319 320 321 322
			shift(left, right, s);
			nr_right += s;
		} else
			shift(left, center, s);

		shift(center, right, target - nr_right);

	} else {
		s = target - nr_right;
		if (s > 0 && nr_center < s) {
			/* not enough in central node */
			shift(center, right, nr_center);
323
			s -= nr_center;
324 325 326 327 328 329 330 331 332 333 334 335
			shift(left, right, s);
			nr_left -= s;
		} else
			shift(center, right, s);

		shift(left, center, nr_left - target);
	}

	*key_ptr(parent, c->index) = center->keys[0];
	*key_ptr(parent, r->index) = right->keys[0];
}

336
static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
337 338
			 struct child *l, struct child *c, struct child *r)
{
339 340 341
	struct btree_node *left = l->n;
	struct btree_node *center = c->n;
	struct btree_node *right = r->n;
342 343 344 345 346

	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);

347
	unsigned threshold = merge_threshold(left) * 4 + 1;
348 349 350 351

	BUG_ON(left->header.max_entries != center->header.max_entries);
	BUG_ON(center->header.max_entries != right->header.max_entries);

352 353 354 355 356 357
	if ((nr_left + nr_center + nr_right) < threshold)
		delete_center_node(info, parent, l, c, r, left, center, right,
				   nr_left, nr_center, nr_right);
	else
		redistribute3(info, parent, l, c, r, left, center, right,
			      nr_left, nr_center, nr_right);
358 359 360
}

static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
361
		      struct dm_btree_value_type *vt, unsigned left_index)
362 363
{
	int r;
364
	struct btree_node *parent = dm_block_data(shadow_current(s));
365 366 367 368 369
	struct child left, center, right;

	/*
	 * FIXME: fill out an array?
	 */
370
	r = init_child(info, vt, parent, left_index, &left);
371 372 373
	if (r)
		return r;

374
	r = init_child(info, vt, parent, left_index + 1, &center);
375 376 377 378 379
	if (r) {
		exit_child(info, &left);
		return r;
	}

380
	r = init_child(info, vt, parent, left_index + 2, &right);
381 382 383 384 385 386 387 388
	if (r) {
		exit_child(info, &left);
		exit_child(info, &center);
		return r;
	}

	__rebalance3(info, parent, &left, &center, &right);

389 390 391
	exit_child(info, &left);
	exit_child(info, &center);
	exit_child(info, &right);
392 393 394 395 396

	return 0;
}

static int rebalance_children(struct shadow_spine *s,
397 398
			      struct dm_btree_info *info,
			      struct dm_btree_value_type *vt, uint64_t key)
399 400
{
	int i, r, has_left_sibling, has_right_sibling;
401
	struct btree_node *n;
402 403 404 405 406 407 408 409 410 411 412 413 414

	n = dm_block_data(shadow_current(s));

	if (le32_to_cpu(n->header.nr_entries) == 1) {
		struct dm_block *child;
		dm_block_t b = value64(n, 0);

		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
		if (r)
			return r;

		memcpy(n, dm_block_data(child),
		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
415
		dm_tm_unlock(info->tm, child);
416 417 418 419 420 421 422 423 424 425 426 427 428

		dm_tm_dec(info->tm, dm_block_location(child));
		return 0;
	}

	i = lower_bound(n, key);
	if (i < 0)
		return -ENODATA;

	has_left_sibling = i > 0;
	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);

	if (!has_left_sibling)
429
		r = rebalance2(s, info, vt, i);
430 431

	else if (!has_right_sibling)
432
		r = rebalance2(s, info, vt, i - 1);
433 434

	else
435
		r = rebalance3(s, info, vt, i - 1);
436 437 438 439

	return r;
}

440
static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
{
	int i = lower_bound(n, key);

	if ((i < 0) ||
	    (i >= le32_to_cpu(n->header.nr_entries)) ||
	    (le64_to_cpu(n->keys[i]) != key))
		return -ENODATA;

	*index = i;

	return 0;
}

/*
 * Prepares for removal from one level of the hierarchy.  The caller must
 * call delete_at() to remove the entry at index.
 */
static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
		      struct dm_btree_value_type *vt, dm_block_t root,
		      uint64_t key, unsigned *index)
{
	int i = *index, r;
463
	struct btree_node *n;
464 465 466 467 468 469 470 471 472 473 474 475 476

	for (;;) {
		r = shadow_step(s, root, vt);
		if (r < 0)
			break;

		/*
		 * We have to patch up the parent node, ugly, but I don't
		 * see a way to do this automatically as part of the spine
		 * op.
		 */
		if (shadow_has_parent(s)) {
			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
477
			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
478 479 480 481 482 483 484 485
			       &location, sizeof(__le64));
		}

		n = dm_block_data(shadow_current(s));

		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
			return do_leaf(n, key, index);

486
		r = rebalance_children(s, info, vt, key);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		if (r)
			break;

		n = dm_block_data(shadow_current(s));
		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
			return do_leaf(n, key, index);

		i = lower_bound(n, key);

		/*
		 * We know the key is present, or else
		 * rebalance_children would have returned
		 * -ENODATA
		 */
		root = value64(n, i);
	}

	return r;
}

int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
		    uint64_t *keys, dm_block_t *new_root)
{
	unsigned level, last_level = info->levels - 1;
	int index = 0, r = 0;
	struct shadow_spine spine;
513
	struct btree_node *n;
514
	struct dm_btree_value_type le64_vt;
515

516
	init_le64_type(info->tm, &le64_vt);
517 518 519 520
	init_shadow_spine(&spine, info);
	for (level = 0; level < info->levels; level++) {
		r = remove_raw(&spine, info,
			       (level == last_level ?
521
				&info->value_type : &le64_vt),
522 523 524 525 526 527 528 529 530 531 532 533 534 535
			       root, keys[level], (unsigned *)&index);
		if (r < 0)
			break;

		n = dm_block_data(shadow_current(&spine));
		if (level != last_level) {
			root = value64(n, index);
			continue;
		}

		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));

		if (info->value_type.dec)
			info->value_type.dec(info->value_type.context,
536
					     value_ptr(n, index));
537 538 539 540 541 542 543 544 545 546

		delete_at(n, index);
	}

	*new_root = shadow_root(&spine);
	exit_shadow_spine(&spine);

	return r;
}
EXPORT_SYMBOL_GPL(dm_btree_remove);
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

/*----------------------------------------------------------------*/

static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
			  struct dm_btree_value_type *vt, dm_block_t root,
			  uint64_t key, int *index)
{
	int i = *index, r;
	struct btree_node *n;

	for (;;) {
		r = shadow_step(s, root, vt);
		if (r < 0)
			break;

		/*
		 * We have to patch up the parent node, ugly, but I don't
		 * see a way to do this automatically as part of the spine
		 * op.
		 */
		if (shadow_has_parent(s)) {
			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
			       &location, sizeof(__le64));
		}

		n = dm_block_data(shadow_current(s));

		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
			*index = lower_bound(n, key);
			return 0;
		}

		r = rebalance_children(s, info, vt, key);
		if (r)
			break;

		n = dm_block_data(shadow_current(s));
		if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
			*index = lower_bound(n, key);
			return 0;
		}

		i = lower_bound(n, key);

		/*
		 * We know the key is present, or else
		 * rebalance_children would have returned
		 * -ENODATA
		 */
		root = value64(n, i);
	}

	return r;
}

static int remove_one(struct dm_btree_info *info, dm_block_t root,
		      uint64_t *keys, uint64_t end_key,
		      dm_block_t *new_root, unsigned *nr_removed)
{
	unsigned level, last_level = info->levels - 1;
	int index = 0, r = 0;
	struct shadow_spine spine;
	struct btree_node *n;
611
	struct dm_btree_value_type le64_vt;
612 613
	uint64_t k;

614
	init_le64_type(info->tm, &le64_vt);
615 616
	init_shadow_spine(&spine, info);
	for (level = 0; level < last_level; level++) {
617
		r = remove_raw(&spine, info, &le64_vt,
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
			       root, keys[level], (unsigned *) &index);
		if (r < 0)
			goto out;

		n = dm_block_data(shadow_current(&spine));
		root = value64(n, index);
	}

	r = remove_nearest(&spine, info, &info->value_type,
			   root, keys[last_level], &index);
	if (r < 0)
		goto out;

	n = dm_block_data(shadow_current(&spine));

	if (index < 0)
		index = 0;

	if (index >= le32_to_cpu(n->header.nr_entries)) {
		r = -ENODATA;
		goto out;
	}

	k = le64_to_cpu(n->keys[index]);
	if (k >= keys[last_level] && k < end_key) {
		if (info->value_type.dec)
			info->value_type.dec(info->value_type.context,
					     value_ptr(n, index));

		delete_at(n, index);
648
		keys[last_level] = k + 1ull;
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

	} else
		r = -ENODATA;

out:
	*new_root = shadow_root(&spine);
	exit_shadow_spine(&spine);

	return r;
}

int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
			   uint64_t *first_key, uint64_t end_key,
			   dm_block_t *new_root, unsigned *nr_removed)
{
	int r;

	*nr_removed = 0;
	do {
		r = remove_one(info, root, first_key, end_key, &root, nr_removed);
		if (!r)
			(*nr_removed)++;
	} while (!r);

	*new_root = root;
	return r == -ENODATA ? 0 : r;
}
EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);