rtas-proc.c 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 *   arch/ppc64/kernel/rtas-proc.c
 *   Copyright (C) 2000 Tilmann Bitterberg
 *   (tilmann@bitterberg.de)
 *
 *   RTAS (Runtime Abstraction Services) stuff
 *   Intention is to provide a clean user interface
 *   to use the RTAS.
 *
 *   TODO:
 *   Split off a header file and maybe move it to a different
 *   location. Write Documentation on what the /proc/rtas/ entries
 *   actually do.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/ctype.h>
#include <linux/time.h>
#include <linux/string.h>

#include <asm/uaccess.h>
#include <asm/bitops.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/machdep.h> /* for ppc_md */
#include <asm/time.h>

/* Token for Sensors */
#define KEY_SWITCH		0x0001
#define ENCLOSURE_SWITCH	0x0002
#define THERMAL_SENSOR		0x0003
#define LID_STATUS		0x0004
#define POWER_SOURCE		0x0005
#define BATTERY_VOLTAGE		0x0006
#define BATTERY_REMAINING	0x0007
#define BATTERY_PERCENTAGE	0x0008
#define EPOW_SENSOR		0x0009
#define BATTERY_CYCLESTATE	0x000a
#define BATTERY_CHARGING	0x000b

/* IBM specific sensors */
#define IBM_SURVEILLANCE	0x2328 /* 9000 */
#define IBM_FANRPM		0x2329 /* 9001 */
#define IBM_VOLTAGE		0x232a /* 9002 */
#define IBM_DRCONNECTOR		0x232b /* 9003 */
#define IBM_POWERSUPPLY		0x232c /* 9004 */
#define IBM_INTQUEUE		0x232d /* 9005 */

/* Status return values */
#define SENSOR_CRITICAL_HIGH	13
#define SENSOR_WARNING_HIGH	12
#define SENSOR_NORMAL		11
#define SENSOR_WARNING_LOW	10
#define SENSOR_CRITICAL_LOW	 9
#define SENSOR_SUCCESS		 0
#define SENSOR_HW_ERROR		-1
#define SENSOR_BUSY		-2
#define SENSOR_NOT_EXIST	-3
#define SENSOR_DR_ENTITY	-9000

/* Location Codes */
#define LOC_SCSI_DEV_ADDR	'A'
#define LOC_SCSI_DEV_LOC	'B'
#define LOC_CPU			'C'
#define LOC_DISKETTE		'D'
#define LOC_ETHERNET		'E'
#define LOC_FAN			'F'
#define LOC_GRAPHICS		'G'
/* reserved / not used		'H' */
#define LOC_IO_ADAPTER		'I'
/* reserved / not used		'J' */
#define LOC_KEYBOARD		'K'
#define LOC_LCD			'L'
#define LOC_MEMORY		'M'
#define LOC_NV_MEMORY		'N'
#define LOC_MOUSE		'O'
#define LOC_PLANAR		'P'
#define LOC_OTHER_IO		'Q'
#define LOC_PARALLEL		'R'
#define LOC_SERIAL		'S'
#define LOC_DEAD_RING		'T'
#define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
#define LOC_VOLTAGE		'V'
#define LOC_SWITCH_ADAPTER	'W'
#define LOC_OTHER		'X'
#define LOC_FIRMWARE		'Y'
#define LOC_SCSI		'Z'

/* Tokens for indicators */
#define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
#define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
#define SYSTEM_POWER_STATE	0x0003 
#define WARNING_LIGHT		0x0004
#define DISK_ACTIVITY_LIGHT	0x0005
#define HEX_DISPLAY_UNIT	0x0006
#define BATTERY_WARNING_TIME	0x0007
#define CONDITION_CYCLE_REQUEST	0x0008
#define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
#define DR_ACTION		0x2329 /* 9001 */
#define DR_INDICATOR		0x232a /* 9002 */
/* 9003 - 9004: Vendor specific */
#define GLOBAL_INTERRUPT_QUEUE	0x232d /* 9005 */
/* 9006 - 9999: Vendor specific */

/* other */
#define MAX_SENSORS		 17  /* I only know of 17 sensors */    
#define MAX_LINELENGTH          256
#define SENSOR_PREFIX		"ibm,sensor-"
#define cel_to_fahr(x)		((x*9/5)+32)


/* Globals */
static struct proc_dir_entry *proc_rtas;
static struct rtas_sensors sensors;
static struct device_node *rtas_node;
static unsigned long power_on_time = 0; /* Save the time the user set */
static char progress_led[MAX_LINELENGTH];

static unsigned long rtas_tone_frequency = 1000;
static unsigned long rtas_tone_volume = 0;

/* ****************STRUCTS******************************************* */
struct individual_sensor {
	unsigned int token;
	unsigned int quant;
};

struct rtas_sensors {
        struct individual_sensor sensor[MAX_SENSORS];
	unsigned int quant;
};

/* ****************************************************************** */
/* Declarations */
static int ppc_rtas_sensor_read(char * buf, char ** start, off_t off,
		int count, int *eof, void *data);
static ssize_t ppc_rtas_clock_read(struct file * file, char * buf, 
		size_t count, loff_t *ppos);
static ssize_t ppc_rtas_clock_write(struct file * file, const char * buf, 
		size_t count, loff_t *ppos);
static ssize_t ppc_rtas_progress_read(struct file * file, char * buf,
		size_t count, loff_t *ppos);
static ssize_t ppc_rtas_progress_write(struct file * file, const char * buf,
		size_t count, loff_t *ppos);
static ssize_t ppc_rtas_poweron_read(struct file * file, char * buf,
		size_t count, loff_t *ppos);
static ssize_t ppc_rtas_poweron_write(struct file * file, const char * buf,
		size_t count, loff_t *ppos);

static ssize_t ppc_rtas_tone_freq_write(struct file * file, const char * buf,
		size_t count, loff_t *ppos);
static ssize_t ppc_rtas_tone_freq_read(struct file * file, char * buf,
		size_t count, loff_t *ppos);
static ssize_t ppc_rtas_tone_volume_write(struct file * file, const char * buf,
		size_t count, loff_t *ppos);
static ssize_t ppc_rtas_tone_volume_read(struct file * file, char * buf,
		size_t count, loff_t *ppos);

struct file_operations ppc_rtas_poweron_operations = {
	read:		ppc_rtas_poweron_read,
	write:		ppc_rtas_poweron_write
};
struct file_operations ppc_rtas_progress_operations = {
	read:		ppc_rtas_progress_read,
	write:		ppc_rtas_progress_write
};

struct file_operations ppc_rtas_clock_operations = {
	read:		ppc_rtas_clock_read,
	write:		ppc_rtas_clock_write
};

struct file_operations ppc_rtas_tone_freq_operations = {
	read:		ppc_rtas_tone_freq_read,
	write:		ppc_rtas_tone_freq_write
};
struct file_operations ppc_rtas_tone_volume_operations = {
	read:		ppc_rtas_tone_volume_read,
	write:		ppc_rtas_tone_volume_write
};

int ppc_rtas_find_all_sensors (void);
int ppc_rtas_process_sensor(struct individual_sensor s, int state, 
		int error, char * buf);
char * ppc_rtas_process_error(int error);
int get_location_code(struct individual_sensor s, char * buf);
int check_location_string (char *c, char * buf);
int check_location (char *c, int idx, char * buf);

/* ****************************************************************** */
/* MAIN                                                               */
/* ****************************************************************** */
void proc_rtas_init(void)
{
	struct proc_dir_entry *entry;

	rtas_node = find_devices("rtas");
203
	if ((rtas_node == 0) || (naca->platform == PLATFORM_ISERIES_LPAR)) {
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
		return;
	}
	
	proc_rtas = proc_mkdir("rtas", 0);
	if (proc_rtas == 0)
		return;

	/* /proc/rtas entries */

	entry = create_proc_entry("progress", S_IRUGO|S_IWUSR, proc_rtas);
	if (entry) entry->proc_fops = &ppc_rtas_progress_operations;

	entry = create_proc_entry("clock", S_IRUGO|S_IWUSR, proc_rtas); 
	if (entry) entry->proc_fops = &ppc_rtas_clock_operations;

	entry = create_proc_entry("poweron", S_IWUSR|S_IRUGO, proc_rtas); 
	if (entry) entry->proc_fops = &ppc_rtas_poweron_operations;

	create_proc_read_entry("sensors", S_IRUGO, proc_rtas, 
			ppc_rtas_sensor_read, NULL);
	
	entry = create_proc_entry("frequency", S_IWUSR|S_IRUGO, proc_rtas); 
	if (entry) entry->proc_fops = &ppc_rtas_tone_freq_operations;

	entry = create_proc_entry("volume", S_IWUSR|S_IRUGO, proc_rtas); 
	if (entry) entry->proc_fops = &ppc_rtas_tone_volume_operations;
}

/* ****************************************************************** */
/* POWER-ON-TIME                                                      */
/* ****************************************************************** */
static ssize_t ppc_rtas_poweron_write(struct file * file, const char * buf,
		size_t count, loff_t *ppos)
{
	struct rtc_time tm;
	unsigned long nowtime;
	char *dest;
	int error;

	nowtime = simple_strtoul(buf, &dest, 10);
	if (*dest != '\0' && *dest != '\n') {
		printk("ppc_rtas_poweron_write: Invalid time\n");
		return count;
	}
	power_on_time = nowtime; /* save the time */

	to_tm(nowtime, &tm);

	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
			tm.tm_year, tm.tm_mon, tm.tm_mday, 
			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
	if (error != 0)
		printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
				ppc_rtas_process_error(error));
	return count;
}
/* ****************************************************************** */
static ssize_t ppc_rtas_poweron_read(struct file * file, char * buf,
		size_t count, loff_t *ppos)
{
	int n;
	if (power_on_time == 0)
		n = sprintf(buf, "Power on time not set\n");
	else
		n = sprintf(buf, "%lu\n", power_on_time);

	if (*ppos >= strlen(buf))
		return 0;
	if (n > strlen(buf) - *ppos)
		n = strlen(buf) - *ppos;
	if (n > count)
		n = count;
	*ppos += n;
	return n;
}

/* ****************************************************************** */
/* PROGRESS                                                           */
/* ****************************************************************** */
static ssize_t ppc_rtas_progress_write(struct file * file, const char * buf,
		size_t count, loff_t *ppos)
{
	unsigned long hex;

	strcpy(progress_led, buf); /* save the string */
	/* Lets see if the user passed hexdigits */
	hex = simple_strtoul(buf, NULL, 10);
	
	ppc_md.progress ((char *)buf, hex);
	return count;

	/* clear the line */ /* ppc_md.progress("                   ", 0xffff);*/
}
/* ****************************************************************** */
static ssize_t ppc_rtas_progress_read(struct file * file, char * buf,
		size_t count, loff_t *ppos)
{
	int n = 0;
	if (progress_led != NULL)
		n = sprintf (buf, "%s\n", progress_led);
	if (*ppos >= strlen(buf))
		return 0;
	if (n > strlen(buf) - *ppos)
		n = strlen(buf) - *ppos;
	if (n > count)
		n = count;
	*ppos += n;
	return n;
}

/* ****************************************************************** */
/* CLOCK                                                              */
/* ****************************************************************** */
static ssize_t ppc_rtas_clock_write(struct file * file, const char * buf, 
		size_t count, loff_t *ppos)
{
	struct rtc_time tm;
	unsigned long nowtime;
	char *dest;
	int error;

	nowtime = simple_strtoul(buf, &dest, 10);
	if (*dest != '\0' && *dest != '\n') {
		printk("ppc_rtas_clock_write: Invalid time\n");
		return count;
	}

	to_tm(nowtime, &tm);
	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
			tm.tm_year, tm.tm_mon, tm.tm_mday, 
			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
	if (error != 0)
		printk(KERN_WARNING "error: setting the clock returned: %s\n", 
				ppc_rtas_process_error(error));
	return count;
}
/* ****************************************************************** */
static ssize_t ppc_rtas_clock_read(struct file * file, char * buf, 
		size_t count, loff_t *ppos)
{
	unsigned int year, mon, day, hour, min, sec;
	unsigned long *ret = kmalloc(4*8, GFP_KERNEL);
	int n, error;

	error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
	
	year = ret[0]; mon  = ret[1]; day  = ret[2];
	hour = ret[3]; min  = ret[4]; sec  = ret[5];

	if (error != 0){
		printk(KERN_WARNING "error: reading the clock returned: %s\n", 
				ppc_rtas_process_error(error));
		n = sprintf (buf, "0");
	} else { 
		n = sprintf (buf, "%lu\n", mktime(year, mon, day, hour, min, sec));
	}
	kfree(ret);

	if (*ppos >= strlen(buf))
		return 0;
	if (n > strlen(buf) - *ppos)
		n = strlen(buf) - *ppos;
	if (n > count)
		n = count;
	*ppos += n;
	return n;
}

/* ****************************************************************** */
/* SENSOR STUFF                                                       */
/* ****************************************************************** */
static int ppc_rtas_sensor_read(char * buf, char ** start, off_t off,
		int count, int *eof, void *data)
{
	int i,j,n;
	unsigned long ret;
	int state, error;
	char *buffer;
	int get_sensor_state = rtas_token("get-sensor-state");

	if (count < 0)
		return -EINVAL;

	/* May not be enough */
	buffer = kmalloc(MAX_LINELENGTH*MAX_SENSORS, GFP_KERNEL);

	if (!buffer)
		return -ENOMEM;

	memset(buffer, 0, MAX_LINELENGTH*MAX_SENSORS);

	n  = sprintf ( buffer  , "RTAS (RunTime Abstraction Services) Sensor Information\n");
	n += sprintf ( buffer+n, "Sensor\t\tValue\t\tCondition\tLocation\n");
	n += sprintf ( buffer+n, "********************************************************\n");

	if (ppc_rtas_find_all_sensors() != 0) {
		n += sprintf ( buffer+n, "\nNo sensors are available\n");
		goto return_string;
	}

	for (i=0; i<sensors.quant; i++) {
		j = sensors.sensor[i].quant;
		/* A sensor may have multiple instances */
		while (j >= 0) {
			error =	rtas_call(get_sensor_state, 2, 2, &ret, 
				  sensors.sensor[i].token, sensors.sensor[i].quant-j);
			state = (int) ret;
			n += ppc_rtas_process_sensor(sensors.sensor[i], state, error, buffer+n );
			n += sprintf (buffer+n, "\n");
			j--;
		} /* while */
	} /* for */

return_string:
	if (off >= strlen(buffer)) {
		*eof = 1;
		kfree(buffer);
		return 0;
	}
	if (n > strlen(buffer) - off)
		n = strlen(buffer) - off;
	if (n > count)
		n = count;
	else
		*eof = 1;
	memcpy(buf, buffer + off, n);
	*start = buf;
	kfree(buffer);
	return n;
}

/* ****************************************************************** */

int ppc_rtas_find_all_sensors (void)
{
	unsigned long *utmp;
	int len, i, j;

	utmp = (unsigned long *) get_property(rtas_node, "rtas-sensors", &len);
	if (utmp == NULL) {
		printk (KERN_ERR "error: could not get rtas-sensors\n");
		return 1;
	}

	sensors.quant = len / 8;      /* int + int */

	for (i=0, j=0; j<sensors.quant; i+=2, j++) {
		sensors.sensor[j].token = utmp[i];
		sensors.sensor[j].quant = utmp[i+1];
	}
	return 0;
}

/* ****************************************************************** */
/*
 * Builds a string of what rtas returned
 */
char * ppc_rtas_process_error(int error)
{
	switch (error) {
		case SENSOR_CRITICAL_HIGH:
			return "(critical high)";
		case SENSOR_WARNING_HIGH:
			return "(warning high)";
		case SENSOR_NORMAL:
			return "(normal)";
		case SENSOR_WARNING_LOW:
			return "(warning low)";
		case SENSOR_CRITICAL_LOW:
			return "(critical low)";
		case SENSOR_SUCCESS:
			return "(read ok)";
		case SENSOR_HW_ERROR:
			return "(hardware error)";
		case SENSOR_BUSY:
			return "(busy)";
		case SENSOR_NOT_EXIST:
			return "(non existant)";
		case SENSOR_DR_ENTITY:
			return "(dr entity removed)";
		default:
			return "(UNKNOWN)";
	}
}

/* ****************************************************************** */
/*
 * Builds a string out of what the sensor said
 */

int ppc_rtas_process_sensor(struct individual_sensor s, int state, 
		int error, char * buf) 
{
	/* Defined return vales */
	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", "Mainenance" };
	const char * enclosure_switch[]  = { "Closed", "Open" };
	const char * lid_status[]        = { " ", "Open", "Closed" };
	const char * power_source[]      = { "AC\t", "Battery", "AC & Battery" };
	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
	const char * epow_sensor[]       = { 
		"EPOW Reset", "Cooling warning", "Power warning",
		"System shutdown", "System halt", "EPOW main enclosure",
		"EPOW power off" };
	const char * battery_cyclestate[]  = { "None", "In progress", "Requested" };
	const char * battery_charging[]    = { "Charging", "Discharching", "No current flow" };
	const char * ibm_drconnector[]     = { "Empty", "Present" };
	const char * ibm_intqueue[]        = { "Disabled", "Enabled" };

	int have_strings = 0;
	int temperature = 0;
	int unknown = 0;
	int n = 0;

	/* What kind of sensor do we have here? */
	switch (s.token) {
		case KEY_SWITCH:
			n += sprintf(buf+n, "Key switch:\t");
			n += sprintf(buf+n, "%s\t", key_switch[state]);
			have_strings = 1;
			break;
		case ENCLOSURE_SWITCH:
			n += sprintf(buf+n, "Enclosure switch:\t");
			n += sprintf(buf+n, "%s\t", enclosure_switch[state]);
			have_strings = 1;
			break;
		case THERMAL_SENSOR:
			n += sprintf(buf+n, "Temp. (C/F):\t");
			temperature = 1;
			break;
		case LID_STATUS:
			n += sprintf(buf+n, "Lid status:\t");
			n += sprintf(buf+n, "%s\t", lid_status[state]);
			have_strings = 1;
			break;
		case POWER_SOURCE:
			n += sprintf(buf+n, "Power source:\t");
			n += sprintf(buf+n, "%s\t", power_source[state]);
			have_strings = 1;
			break;
		case BATTERY_VOLTAGE:
			n += sprintf(buf+n, "Battery voltage:\t");
			break;
		case BATTERY_REMAINING:
			n += sprintf(buf+n, "Battery remaining:\t");
			n += sprintf(buf+n, "%s\t", battery_remaining[state]);
			have_strings = 1;
			break;
		case BATTERY_PERCENTAGE:
			n += sprintf(buf+n, "Battery percentage:\t");
			break;
		case EPOW_SENSOR:
			n += sprintf(buf+n, "EPOW Sensor:\t");
			n += sprintf(buf+n, "%s\t", epow_sensor[state]);
			have_strings = 1;
			break;
		case BATTERY_CYCLESTATE:
			n += sprintf(buf+n, "Battery cyclestate:\t");
			n += sprintf(buf+n, "%s\t", battery_cyclestate[state]);
			have_strings = 1;
			break;
		case BATTERY_CHARGING:
			n += sprintf(buf+n, "Battery Charging:\t");
			n += sprintf(buf+n, "%s\t", battery_charging[state]);
			have_strings = 1;
			break;
		case IBM_SURVEILLANCE:
			n += sprintf(buf+n, "Surveillance:\t");
			break;
		case IBM_FANRPM:
			n += sprintf(buf+n, "Fan (rpm):\t");
			break;
		case IBM_VOLTAGE:
			n += sprintf(buf+n, "Voltage (mv):\t");
			break;
		case IBM_DRCONNECTOR:
			n += sprintf(buf+n, "DR connector:\t");
			n += sprintf(buf+n, "%s\t", ibm_drconnector[state]);
			have_strings = 1;
			break;
		case IBM_POWERSUPPLY:
			n += sprintf(buf+n, "Powersupply:\t");
			break;
		case IBM_INTQUEUE:
			n += sprintf(buf+n, "Interrupt queue:\t");
			n += sprintf(buf+n, "%s\t", ibm_intqueue[state]);
			have_strings = 1;
			break;
		default:
			n += sprintf(buf+n,  "Unkown sensor (type %d), ignoring it\n",
					s.token);
			unknown = 1;
			have_strings = 1;
			break;
	}
	if (have_strings == 0) {
		if (temperature) {
			n += sprintf(buf+n, "%4d /%4d\t", state, cel_to_fahr(state));
		} else
			n += sprintf(buf+n, "%10d\t", state);
	}
	if (unknown == 0) {
		n += sprintf ( buf+n, "%s\t", ppc_rtas_process_error(error));
		n += get_location_code(s, buf+n);
	}
	return n;
}

/* ****************************************************************** */

int check_location (char *c, int idx, char * buf)
{
	int n = 0;

	switch (*(c+idx)) {
		case LOC_PLANAR:
			n += sprintf ( buf, "Planar #%c", *(c+idx+1));
			break;
		case LOC_CPU:
			n += sprintf ( buf, "CPU #%c", *(c+idx+1));
			break;
		case LOC_FAN:
			n += sprintf ( buf, "Fan #%c", *(c+idx+1));
			break;
		case LOC_RACKMOUNTED:
			n += sprintf ( buf, "Rack #%c", *(c+idx+1));
			break;
		case LOC_VOLTAGE:
			n += sprintf ( buf, "Voltage #%c", *(c+idx+1));
			break;
		case LOC_LCD:
			n += sprintf ( buf, "LCD #%c", *(c+idx+1));
			break;
		case '.':
			n += sprintf ( buf, "- %c", *(c+idx+1));
		default:
			n += sprintf ( buf, "Unknown location");
			break;
	}
	return n;
}


/* ****************************************************************** */
/* 
 * Format: 
 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
 * the '.' may be an abbrevation
 */
int check_location_string (char *c, char *buf)
{
	int n=0,i=0;

	while (c[i]) {
		if (isalpha(c[i]) || c[i] == '.') {
			 n += check_location(c, i, buf+n);
		}
		else if (c[i] == '/' || c[i] == '-')
			n += sprintf(buf+n, " at ");
		i++;
	}
	return n;
}


/* ****************************************************************** */

int get_location_code(struct individual_sensor s, char * buffer)
{
	char rstr[512], tmp[10], tmp2[10];
	int n=0, i=0, llen, len;
	/* char *buf = kmalloc(MAX_LINELENGTH, GFP_KERNEL); */
	char *ret;

	static int pos = 0; /* remember position where buffer was */

	/* construct the sensor number like 0003 */
	/* fill with zeros */
	n = sprintf(tmp, "%d", s.token);
	len = strlen(tmp);
	while (strlen(tmp) < 4)
		n += sprintf (tmp+n, "0");
	
	/* invert the string */
	while (tmp[i]) {
		if (i<len)
			tmp2[4-len+i] = tmp[i];
		else
			tmp2[3-i] = tmp[i];
		i++;
	}
	tmp2[4] = '\0';

	sprintf (rstr, SENSOR_PREFIX"%s", tmp2);

	ret = (char *) get_property(rtas_node, rstr, &llen);

	n=0;
	if (ret[0] == '\0')
		n += sprintf ( buffer+n, "--- ");/* does not have a location */
	else {
		char t[50];
		ret += pos;

		n += check_location_string(ret, buffer + n);
		n += sprintf ( buffer+n, " ");
		/* see how many characters we have printed */
		sprintf ( t, "%s ", ret);

		pos += strlen(t);
		if (pos >= llen) pos=0;
	}
	return n;
}
/* ****************************************************************** */
/* INDICATORS - Tone Frequency                                        */
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_freq_write(struct file * file, const char * buf,
		size_t count, loff_t *ppos)
{
	unsigned long freq;
	char *dest;
	int error;
	freq = simple_strtoul(buf, &dest, 10);
	if (*dest != '\0' && *dest != '\n') {
		printk("ppc_rtas_tone_freq_write: Invalid tone freqency\n");
		return count;
	}
	if (freq < 0) freq = 0;
	rtas_tone_frequency = freq; /* save it for later */
	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
			TONE_FREQUENCY, 0, freq);
	if (error != 0)
		printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
				ppc_rtas_process_error(error));
	return count;
}
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_freq_read(struct file * file, char * buf,
		size_t count, loff_t *ppos)
{
	int n;
	n = sprintf(buf, "%lu\n", rtas_tone_frequency);

	if (*ppos >= strlen(buf))
		return 0;
	if (n > strlen(buf) - *ppos)
		n = strlen(buf) - *ppos;
	if (n > count)
		n = count;
	*ppos += n;
	return n;
}
/* ****************************************************************** */
/* INDICATORS - Tone Volume                                           */
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_volume_write(struct file * file, const char * buf,
		size_t count, loff_t *ppos)
{
	unsigned long volume;
	char *dest;
	int error;
	volume = simple_strtoul(buf, &dest, 10);
	if (*dest != '\0' && *dest != '\n') {
		printk("ppc_rtas_tone_volume_write: Invalid tone volume\n");
		return count;
	}
	if (volume < 0) volume = 0;
	if (volume > 100) volume = 100;
	
        rtas_tone_volume = volume; /* save it for later */
	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
			TONE_VOLUME, 0, volume);
	if (error != 0)
		printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
				ppc_rtas_process_error(error));
	return count;
}
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_volume_read(struct file * file, char * buf,
		size_t count, loff_t *ppos)
{
	int n;
	n = sprintf(buf, "%lu\n", rtas_tone_volume);

	if (*ppos >= strlen(buf))
		return 0;
	if (n > strlen(buf) - *ppos)
		n = strlen(buf) - *ppos;
	if (n > count)
		n = count;
	*ppos += n;
	return n;
}