space-info.c 52.4 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0

3
#include "misc.h"
4 5 6 7
#include "ctree.h"
#include "space-info.h"
#include "sysfs.h"
#include "volumes.h"
8
#include "free-space-cache.h"
9 10
#include "ordered-data.h"
#include "transaction.h"
11
#include "block-group.h"
12

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*
 * HOW DOES SPACE RESERVATION WORK
 *
 * If you want to know about delalloc specifically, there is a separate comment
 * for that with the delalloc code.  This comment is about how the whole system
 * works generally.
 *
 * BASIC CONCEPTS
 *
 *   1) space_info.  This is the ultimate arbiter of how much space we can use.
 *   There's a description of the bytes_ fields with the struct declaration,
 *   refer to that for specifics on each field.  Suffice it to say that for
 *   reservations we care about total_bytes - SUM(space_info->bytes_) when
 *   determining if there is space to make an allocation.  There is a space_info
 *   for METADATA, SYSTEM, and DATA areas.
 *
 *   2) block_rsv's.  These are basically buckets for every different type of
 *   metadata reservation we have.  You can see the comment in the block_rsv
 *   code on the rules for each type, but generally block_rsv->reserved is how
 *   much space is accounted for in space_info->bytes_may_use.
 *
 *   3) btrfs_calc*_size.  These are the worst case calculations we used based
 *   on the number of items we will want to modify.  We have one for changing
 *   items, and one for inserting new items.  Generally we use these helpers to
 *   determine the size of the block reserves, and then use the actual bytes
 *   values to adjust the space_info counters.
 *
 * MAKING RESERVATIONS, THE NORMAL CASE
 *
 *   We call into either btrfs_reserve_data_bytes() or
 *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
 *   num_bytes we want to reserve.
 *
 *   ->reserve
 *     space_info->bytes_may_reserve += num_bytes
 *
 *   ->extent allocation
 *     Call btrfs_add_reserved_bytes() which does
 *     space_info->bytes_may_reserve -= num_bytes
 *     space_info->bytes_reserved += extent_bytes
 *
 *   ->insert reference
 *     Call btrfs_update_block_group() which does
 *     space_info->bytes_reserved -= extent_bytes
 *     space_info->bytes_used += extent_bytes
 *
 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
 *
 *   Assume we are unable to simply make the reservation because we do not have
 *   enough space
 *
 *   -> __reserve_bytes
 *     create a reserve_ticket with ->bytes set to our reservation, add it to
 *     the tail of space_info->tickets, kick async flush thread
 *
 *   ->handle_reserve_ticket
 *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
 *     on the ticket.
 *
 *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
 *     Flushes various things attempting to free up space.
 *
 *   -> btrfs_try_granting_tickets()
 *     This is called by anything that either subtracts space from
 *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
 *     space_info->total_bytes.  This loops through the ->priority_tickets and
 *     then the ->tickets list checking to see if the reservation can be
 *     completed.  If it can the space is added to space_info->bytes_may_use and
 *     the ticket is woken up.
 *
 *   -> ticket wakeup
 *     Check if ->bytes == 0, if it does we got our reservation and we can carry
 *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
 *     were interrupted.)
 *
 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
 *
 *   Same as the above, except we add ourselves to the
 *   space_info->priority_tickets, and we do not use ticket->wait, we simply
 *   call flush_space() ourselves for the states that are safe for us to call
 *   without deadlocking and hope for the best.
 *
 * THE FLUSHING STATES
 *
 *   Generally speaking we will have two cases for each state, a "nice" state
 *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
 *   reduce the locking over head on the various trees, and even to keep from
 *   doing any work at all in the case of delayed refs.  Each of these delayed
 *   things however hold reservations, and so letting them run allows us to
 *   reclaim space so we can make new reservations.
 *
 *   FLUSH_DELAYED_ITEMS
 *     Every inode has a delayed item to update the inode.  Take a simple write
 *     for example, we would update the inode item at write time to update the
 *     mtime, and then again at finish_ordered_io() time in order to update the
 *     isize or bytes.  We keep these delayed items to coalesce these operations
 *     into a single operation done on demand.  These are an easy way to reclaim
 *     metadata space.
 *
 *   FLUSH_DELALLOC
 *     Look at the delalloc comment to get an idea of how much space is reserved
 *     for delayed allocation.  We can reclaim some of this space simply by
 *     running delalloc, but usually we need to wait for ordered extents to
 *     reclaim the bulk of this space.
 *
 *   FLUSH_DELAYED_REFS
 *     We have a block reserve for the outstanding delayed refs space, and every
 *     delayed ref operation holds a reservation.  Running these is a quick way
 *     to reclaim space, but we want to hold this until the end because COW can
 *     churn a lot and we can avoid making some extent tree modifications if we
 *     are able to delay for as long as possible.
 *
 *   ALLOC_CHUNK
 *     We will skip this the first time through space reservation, because of
 *     overcommit and we don't want to have a lot of useless metadata space when
 *     our worst case reservations will likely never come true.
 *
 *   RUN_DELAYED_IPUTS
 *     If we're freeing inodes we're likely freeing checksums, file extent
 *     items, and extent tree items.  Loads of space could be freed up by these
 *     operations, however they won't be usable until the transaction commits.
 *
 *   COMMIT_TRANS
136 137 138 139 140 141 142
 *     This will commit the transaction.  Historically we had a lot of logic
 *     surrounding whether or not we'd commit the transaction, but this waits born
 *     out of a pre-tickets era where we could end up committing the transaction
 *     thousands of times in a row without making progress.  Now thanks to our
 *     ticketing system we know if we're not making progress and can error
 *     everybody out after a few commits rather than burning the disk hoping for
 *     a different answer.
143
 *
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
 * OVERCOMMIT
 *
 *   Because we hold so many reservations for metadata we will allow you to
 *   reserve more space than is currently free in the currently allocate
 *   metadata space.  This only happens with metadata, data does not allow
 *   overcommitting.
 *
 *   You can see the current logic for when we allow overcommit in
 *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
 *   is no unallocated space to be had, all reservations are kept within the
 *   free space in the allocated metadata chunks.
 *
 *   Because of overcommitting, you generally want to use the
 *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
 *   thing with or without extra unallocated space.
 */

161
u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162 163 164 165 166
			  bool may_use_included)
{
	ASSERT(s_info);
	return s_info->bytes_used + s_info->bytes_reserved +
		s_info->bytes_pinned + s_info->bytes_readonly +
167
		s_info->bytes_zone_unusable +
168 169 170 171 172 173 174 175 176 177 178 179
		(may_use_included ? s_info->bytes_may_use : 0);
}

/*
 * after adding space to the filesystem, we need to clear the full flags
 * on all the space infos.
 */
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
{
	struct list_head *head = &info->space_info;
	struct btrfs_space_info *found;

180
	list_for_each_entry(found, head, list)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
		found->full = 0;
}

static int create_space_info(struct btrfs_fs_info *info, u64 flags)
{

	struct btrfs_space_info *space_info;
	int i;
	int ret;

	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
	if (!space_info)
		return -ENOMEM;

	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
		INIT_LIST_HEAD(&space_info->block_groups[i]);
	init_rwsem(&space_info->groups_sem);
	spin_lock_init(&space_info->lock);
	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
	INIT_LIST_HEAD(&space_info->ro_bgs);
	INIT_LIST_HEAD(&space_info->tickets);
	INIT_LIST_HEAD(&space_info->priority_tickets);
204
	space_info->clamp = 1;
205

206 207
	ret = btrfs_sysfs_add_space_info_type(info, space_info);
	if (ret)
208 209
		return ret;

210
	list_add(&space_info->list, &info->space_info);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	if (flags & BTRFS_BLOCK_GROUP_DATA)
		info->data_sinfo = space_info;

	return ret;
}

int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
{
	struct btrfs_super_block *disk_super;
	u64 features;
	u64 flags;
	int mixed = 0;
	int ret;

	disk_super = fs_info->super_copy;
	if (!btrfs_super_root(disk_super))
		return -EINVAL;

	features = btrfs_super_incompat_flags(disk_super);
	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

	flags = BTRFS_BLOCK_GROUP_SYSTEM;
	ret = create_space_info(fs_info, flags);
	if (ret)
		goto out;

	if (mixed) {
		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
		ret = create_space_info(fs_info, flags);
	} else {
		flags = BTRFS_BLOCK_GROUP_METADATA;
		ret = create_space_info(fs_info, flags);
		if (ret)
			goto out;

		flags = BTRFS_BLOCK_GROUP_DATA;
		ret = create_space_info(fs_info, flags);
	}
out:
	return ret;
}

void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
			     u64 total_bytes, u64 bytes_used,
256
			     u64 bytes_readonly, u64 bytes_zone_unusable,
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
			     struct btrfs_space_info **space_info)
{
	struct btrfs_space_info *found;
	int factor;

	factor = btrfs_bg_type_to_factor(flags);

	found = btrfs_find_space_info(info, flags);
	ASSERT(found);
	spin_lock(&found->lock);
	found->total_bytes += total_bytes;
	found->disk_total += total_bytes * factor;
	found->bytes_used += bytes_used;
	found->disk_used += bytes_used * factor;
	found->bytes_readonly += bytes_readonly;
272
	found->bytes_zone_unusable += bytes_zone_unusable;
273 274
	if (total_bytes > 0)
		found->full = 0;
275
	btrfs_try_granting_tickets(info, found);
276 277 278 279 280 281 282 283 284 285 286 287
	spin_unlock(&found->lock);
	*space_info = found;
}

struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
					       u64 flags)
{
	struct list_head *head = &info->space_info;
	struct btrfs_space_info *found;

	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;

288 289
	list_for_each_entry(found, head, list) {
		if (found->flags & flags)
290 291 292 293
			return found;
	}
	return NULL;
}
294

295 296 297
static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
			  struct btrfs_space_info *space_info,
			  enum btrfs_reserve_flush_enum flush)
298 299 300 301 302
{
	u64 profile;
	u64 avail;
	int factor;

303
	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		profile = btrfs_system_alloc_profile(fs_info);
	else
		profile = btrfs_metadata_alloc_profile(fs_info);

	avail = atomic64_read(&fs_info->free_chunk_space);

	/*
	 * If we have dup, raid1 or raid10 then only half of the free
	 * space is actually usable.  For raid56, the space info used
	 * doesn't include the parity drive, so we don't have to
	 * change the math
	 */
	factor = btrfs_bg_type_to_factor(profile);
	avail = div_u64(avail, factor);

	/*
	 * If we aren't flushing all things, let us overcommit up to
	 * 1/2th of the space. If we can flush, don't let us overcommit
	 * too much, let it overcommit up to 1/8 of the space.
	 */
	if (flush == BTRFS_RESERVE_FLUSH_ALL)
		avail >>= 3;
	else
		avail >>= 1;
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	return avail;
}

int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
			 struct btrfs_space_info *space_info, u64 bytes,
			 enum btrfs_reserve_flush_enum flush)
{
	u64 avail;
	u64 used;

	/* Don't overcommit when in mixed mode */
	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
		return 0;

	used = btrfs_space_info_used(space_info, true);
	avail = calc_available_free_space(fs_info, space_info, flush);
344 345 346 347 348

	if (used + bytes < space_info->total_bytes + avail)
		return 1;
	return 0;
}
349

350 351 352 353 354 355 356 357 358 359
static void remove_ticket(struct btrfs_space_info *space_info,
			  struct reserve_ticket *ticket)
{
	if (!list_empty(&ticket->list)) {
		list_del_init(&ticket->list);
		ASSERT(space_info->reclaim_size >= ticket->bytes);
		space_info->reclaim_size -= ticket->bytes;
	}
}

360 361 362 363
/*
 * This is for space we already have accounted in space_info->bytes_may_use, so
 * basically when we're returning space from block_rsv's.
 */
364 365
void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
				struct btrfs_space_info *space_info)
366 367 368 369
{
	struct list_head *head;
	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;

370
	lockdep_assert_held(&space_info->lock);
371

372
	head = &space_info->priority_tickets;
373
again:
374 375 376 377 378 379
	while (!list_empty(head)) {
		struct reserve_ticket *ticket;
		u64 used = btrfs_space_info_used(space_info, true);

		ticket = list_first_entry(head, struct reserve_ticket, list);

David Sterba's avatar
David Sterba committed
380
		/* Check and see if our ticket can be satisfied now. */
381
		if ((used + ticket->bytes <= space_info->total_bytes) ||
382 383
		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
					 flush)) {
384 385 386
			btrfs_space_info_update_bytes_may_use(fs_info,
							      space_info,
							      ticket->bytes);
387
			remove_ticket(space_info, ticket);
388 389 390 391
			ticket->bytes = 0;
			space_info->tickets_id++;
			wake_up(&ticket->wait);
		} else {
392
			break;
393 394 395
		}
	}

396
	if (head == &space_info->priority_tickets) {
397 398 399 400 401
		head = &space_info->tickets;
		flush = BTRFS_RESERVE_FLUSH_ALL;
		goto again;
	}
}
402 403 404 405 406 407 408 409 410 411

#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
do {									\
	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
	spin_lock(&__rsv->lock);					\
	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
		   __rsv->size, __rsv->reserved);			\
	spin_unlock(&__rsv->lock);					\
} while (0)

412 413
static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
				    struct btrfs_space_info *info)
414
{
415
	lockdep_assert_held(&info->lock);
416

417 418
	/* The free space could be negative in case of overcommit */
	btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
419
		   info->flags,
420
		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
421 422
		   info->full ? "" : "not ");
	btrfs_info(fs_info,
423
		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
424 425
		info->total_bytes, info->bytes_used, info->bytes_pinned,
		info->bytes_reserved, info->bytes_may_use,
426
		info->bytes_readonly, info->bytes_zone_unusable);
427 428 429 430 431 432 433

	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);

434 435 436 437 438 439
}

void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
			   struct btrfs_space_info *info, u64 bytes,
			   int dump_block_groups)
{
440
	struct btrfs_block_group *cache;
441 442 443 444 445 446
	int index = 0;

	spin_lock(&info->lock);
	__btrfs_dump_space_info(fs_info, info);
	spin_unlock(&info->lock);

447 448 449 450 451 452 453 454
	if (!dump_block_groups)
		return;

	down_read(&info->groups_sem);
again:
	list_for_each_entry(cache, &info->block_groups[index], list) {
		spin_lock(&cache->lock);
		btrfs_info(fs_info,
455
			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
456
			cache->start, cache->length, cache->used, cache->pinned,
457 458
			cache->reserved, cache->zone_unusable,
			cache->ro ? "[readonly]" : "");
459
		spin_unlock(&cache->lock);
460
		btrfs_dump_free_space(cache, bytes);
461 462 463 464 465
	}
	if (++index < BTRFS_NR_RAID_TYPES)
		goto again;
	up_read(&info->groups_sem);
}
466 467 468 469 470 471 472

static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
					u64 to_reclaim)
{
	u64 bytes;
	u64 nr;

473
	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
474 475 476 477 478 479 480 481 482 483 484
	nr = div64_u64(to_reclaim, bytes);
	if (!nr)
		nr = 1;
	return nr;
}

#define EXTENT_SIZE_PER_ITEM	SZ_256K

/*
 * shrink metadata reservation for delalloc
 */
485 486
static void shrink_delalloc(struct btrfs_fs_info *fs_info,
			    struct btrfs_space_info *space_info,
487 488
			    u64 to_reclaim, bool wait_ordered,
			    bool for_preempt)
489 490 491
{
	struct btrfs_trans_handle *trans;
	u64 delalloc_bytes;
492
	u64 ordered_bytes;
493 494 495 496
	u64 items;
	long time_left;
	int loops;

497 498 499 500 501
	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
	if (delalloc_bytes == 0 && ordered_bytes == 0)
		return;

502
	/* Calc the number of the pages we need flush for space reservation */
503 504 505 506 507 508
	if (to_reclaim == U64_MAX) {
		items = U64_MAX;
	} else {
		/*
		 * to_reclaim is set to however much metadata we need to
		 * reclaim, but reclaiming that much data doesn't really track
509 510 511 512 513 514 515 516
		 * exactly.  What we really want to do is reclaim full inode's
		 * worth of reservations, however that's not available to us
		 * here.  We will take a fraction of the delalloc bytes for our
		 * flushing loops and hope for the best.  Delalloc will expand
		 * the amount we write to cover an entire dirty extent, which
		 * will reclaim the metadata reservation for that range.  If
		 * it's not enough subsequent flush stages will be more
		 * aggressive.
517
		 */
518
		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
519 520
		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
	}
521 522 523 524 525 526 527 528

	trans = (struct btrfs_trans_handle *)current->journal_info;

	/*
	 * If we are doing more ordered than delalloc we need to just wait on
	 * ordered extents, otherwise we'll waste time trying to flush delalloc
	 * that likely won't give us the space back we need.
	 */
529
	if (ordered_bytes > delalloc_bytes && !for_preempt)
530 531 532
		wait_ordered = true;

	loops = 0;
533
	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
534 535
		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
		long nr_pages = min_t(u64, temp, LONG_MAX);
536
		int async_pages;
537 538

		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
		/*
		 * We need to make sure any outstanding async pages are now
		 * processed before we continue.  This is because things like
		 * sync_inode() try to be smart and skip writing if the inode is
		 * marked clean.  We don't use filemap_fwrite for flushing
		 * because we want to control how many pages we write out at a
		 * time, thus this is the only safe way to make sure we've
		 * waited for outstanding compressed workers to have started
		 * their jobs and thus have ordered extents set up properly.
		 *
		 * This exists because we do not want to wait for each
		 * individual inode to finish its async work, we simply want to
		 * start the IO on everybody, and then come back here and wait
		 * for all of the async work to catch up.  Once we're done with
		 * that we know we'll have ordered extents for everything and we
		 * can decide if we wait for that or not.
		 *
		 * If we choose to replace this in the future, make absolutely
		 * sure that the proper waiting is being done in the async case,
		 * as there have been bugs in that area before.
		 */
		async_pages = atomic_read(&fs_info->async_delalloc_pages);
		if (!async_pages)
			goto skip_async;

		/*
		 * We don't want to wait forever, if we wrote less pages in this
		 * loop than we have outstanding, only wait for that number of
		 * pages, otherwise we can wait for all async pages to finish
		 * before continuing.
		 */
		if (async_pages > nr_pages)
			async_pages -= nr_pages;
		else
			async_pages = 0;
		wait_event(fs_info->async_submit_wait,
			   atomic_read(&fs_info->async_delalloc_pages) <=
			   async_pages);
skip_async:
579 580 581 582 583 584 585 586
		loops++;
		if (wait_ordered && !trans) {
			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
		} else {
			time_left = schedule_timeout_killable(1);
			if (time_left)
				break;
		}
587

588 589 590 591 592 593 594 595
		/*
		 * If we are for preemption we just want a one-shot of delalloc
		 * flushing so we can stop flushing if we decide we don't need
		 * to anymore.
		 */
		if (for_preempt)
			break;

596 597 598 599 600 601 602 603
		spin_lock(&space_info->lock);
		if (list_empty(&space_info->tickets) &&
		    list_empty(&space_info->priority_tickets)) {
			spin_unlock(&space_info->lock);
			break;
		}
		spin_unlock(&space_info->lock);

604 605
		delalloc_bytes = percpu_counter_sum_positive(
						&fs_info->delalloc_bytes);
606 607
		ordered_bytes = percpu_counter_sum_positive(
						&fs_info->ordered_bytes);
608 609 610 611 612 613 614 615 616 617
	}
}

/*
 * Try to flush some data based on policy set by @state. This is only advisory
 * and may fail for various reasons. The caller is supposed to examine the
 * state of @space_info to detect the outcome.
 */
static void flush_space(struct btrfs_fs_info *fs_info,
		       struct btrfs_space_info *space_info, u64 num_bytes,
618
		       enum btrfs_flush_state state, bool for_preempt)
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
{
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_trans_handle *trans;
	int nr;
	int ret = 0;

	switch (state) {
	case FLUSH_DELAYED_ITEMS_NR:
	case FLUSH_DELAYED_ITEMS:
		if (state == FLUSH_DELAYED_ITEMS_NR)
			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
		else
			nr = -1;

		trans = btrfs_join_transaction(root);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			break;
		}
		ret = btrfs_run_delayed_items_nr(trans, nr);
		btrfs_end_transaction(trans);
		break;
	case FLUSH_DELALLOC:
	case FLUSH_DELALLOC_WAIT:
643 644 645
	case FLUSH_DELALLOC_FULL:
		if (state == FLUSH_DELALLOC_FULL)
			num_bytes = U64_MAX;
646
		shrink_delalloc(fs_info, space_info, num_bytes,
647
				state != FLUSH_DELALLOC, for_preempt);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
		break;
	case FLUSH_DELAYED_REFS_NR:
	case FLUSH_DELAYED_REFS:
		trans = btrfs_join_transaction(root);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			break;
		}
		if (state == FLUSH_DELAYED_REFS_NR)
			nr = calc_reclaim_items_nr(fs_info, num_bytes);
		else
			nr = 0;
		btrfs_run_delayed_refs(trans, nr);
		btrfs_end_transaction(trans);
		break;
	case ALLOC_CHUNK:
	case ALLOC_CHUNK_FORCE:
		trans = btrfs_join_transaction(root);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			break;
		}
		ret = btrfs_chunk_alloc(trans,
671
				btrfs_get_alloc_profile(fs_info, space_info->flags),
672 673 674 675 676 677
				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
					CHUNK_ALLOC_FORCE);
		btrfs_end_transaction(trans);
		if (ret > 0 || ret == -ENOSPC)
			ret = 0;
		break;
678
	case RUN_DELAYED_IPUTS:
679 680 681 682 683 684 685
		/*
		 * If we have pending delayed iputs then we could free up a
		 * bunch of pinned space, so make sure we run the iputs before
		 * we do our pinned bytes check below.
		 */
		btrfs_run_delayed_iputs(fs_info);
		btrfs_wait_on_delayed_iputs(fs_info);
686 687
		break;
	case COMMIT_TRANS:
688
		ASSERT(current->journal_info == NULL);
689 690 691 692 693 694 695
		trans = btrfs_join_transaction(root);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			break;
		}
		ret = btrfs_commit_transaction(trans);
		break;
696 697 698 699 700 701
	default:
		ret = -ENOSPC;
		break;
	}

	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
702
				ret, for_preempt);
703 704 705 706 707
	return;
}

static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
708
				 struct btrfs_space_info *space_info)
709 710
{
	u64 used;
711
	u64 avail;
712
	u64 to_reclaim = space_info->reclaim_size;
713

714
	lockdep_assert_held(&space_info->lock);
715 716 717 718 719 720 721 722 723 724 725 726 727 728

	avail = calc_available_free_space(fs_info, space_info,
					  BTRFS_RESERVE_FLUSH_ALL);
	used = btrfs_space_info_used(space_info, true);

	/*
	 * We may be flushing because suddenly we have less space than we had
	 * before, and now we're well over-committed based on our current free
	 * space.  If that's the case add in our overage so we make sure to put
	 * appropriate pressure on the flushing state machine.
	 */
	if (space_info->total_bytes + avail < used)
		to_reclaim += used - (space_info->total_bytes + avail);

729 730 731
	return to_reclaim;
}

732
static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
733
				    struct btrfs_space_info *space_info)
734
{
735
	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
736
	u64 ordered, delalloc;
737
	u64 thresh = div_factor_fine(space_info->total_bytes, 90);
738
	u64 used;
739 740

	/* If we're just plain full then async reclaim just slows us down. */
741 742
	if ((space_info->bytes_used + space_info->bytes_reserved +
	     global_rsv_size) >= thresh)
743
		return false;
744

745 746 747 748 749 750 751 752 753 754 755 756 757 758
	used = space_info->bytes_may_use + space_info->bytes_pinned;

	/* The total flushable belongs to the global rsv, don't flush. */
	if (global_rsv_size >= used)
		return false;

	/*
	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
	 * that devoted to other reservations then there's no sense in flushing,
	 * we don't have a lot of things that need flushing.
	 */
	if (used - global_rsv_size <= SZ_128M)
		return false;

759 760 761 762 763 764 765
	/*
	 * We have tickets queued, bail so we don't compete with the async
	 * flushers.
	 */
	if (space_info->reclaim_size)
		return false;

766 767 768 769 770 771 772 773 774 775 776 777
	/*
	 * If we have over half of the free space occupied by reservations or
	 * pinned then we want to start flushing.
	 *
	 * We do not do the traditional thing here, which is to say
	 *
	 *   if (used >= ((total_bytes + avail) / 2))
	 *     return 1;
	 *
	 * because this doesn't quite work how we want.  If we had more than 50%
	 * of the space_info used by bytes_used and we had 0 available we'd just
	 * constantly run the background flusher.  Instead we want it to kick in
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	 * if our reclaimable space exceeds our clamped free space.
	 *
	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
	 * the following:
	 *
	 * Amount of RAM        Minimum threshold       Maximum threshold
	 *
	 *        256GiB                     1GiB                  128GiB
	 *        128GiB                   512MiB                   64GiB
	 *         64GiB                   256MiB                   32GiB
	 *         32GiB                   128MiB                   16GiB
	 *         16GiB                    64MiB                    8GiB
	 *
	 * These are the range our thresholds will fall in, corresponding to how
	 * much delalloc we need for the background flusher to kick in.
793
	 */
794

795 796
	thresh = calc_available_free_space(fs_info, space_info,
					   BTRFS_RESERVE_FLUSH_ALL);
797 798 799 800
	used = space_info->bytes_used + space_info->bytes_reserved +
	       space_info->bytes_readonly + global_rsv_size;
	if (used < space_info->total_bytes)
		thresh += space_info->total_bytes - used;
801
	thresh >>= space_info->clamp;
802

803
	used = space_info->bytes_pinned;
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	/*
	 * If we have more ordered bytes than delalloc bytes then we're either
	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
	 * around.  Preemptive flushing is only useful in that it can free up
	 * space before tickets need to wait for things to finish.  In the case
	 * of ordered extents, preemptively waiting on ordered extents gets us
	 * nothing, if our reservations are tied up in ordered extents we'll
	 * simply have to slow down writers by forcing them to wait on ordered
	 * extents.
	 *
	 * In the case that ordered is larger than delalloc, only include the
	 * block reserves that we would actually be able to directly reclaim
	 * from.  In this case if we're heavy on metadata operations this will
	 * clearly be heavy enough to warrant preemptive flushing.  In the case
	 * of heavy DIO or ordered reservations, preemptive flushing will just
	 * waste time and cause us to slow down.
821 822 823 824 825 826
	 *
	 * We want to make sure we truly are maxed out on ordered however, so
	 * cut ordered in half, and if it's still higher than delalloc then we
	 * can keep flushing.  This is to avoid the case where we start
	 * flushing, and now delalloc == ordered and we stop preemptively
	 * flushing when we could still have several gigs of delalloc to flush.
827
	 */
828
	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
829
	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
830 831 832
	if (ordered >= delalloc)
		used += fs_info->delayed_refs_rsv.reserved +
			fs_info->delayed_block_rsv.reserved;
833
	else
834
		used += space_info->bytes_may_use - global_rsv_size;
835 836 837 838 839

	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
}

840 841 842 843 844 845 846
static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
				  struct btrfs_space_info *space_info,
				  struct reserve_ticket *ticket)
{
	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
	u64 min_bytes;

847 848 849
	if (!ticket->steal)
		return false;

850 851 852 853
	if (global_rsv->space_info != space_info)
		return false;

	spin_lock(&global_rsv->lock);
854
	min_bytes = div_factor(global_rsv->size, 1);
855 856 857 858 859
	if (global_rsv->reserved < min_bytes + ticket->bytes) {
		spin_unlock(&global_rsv->lock);
		return false;
	}
	global_rsv->reserved -= ticket->bytes;
860
	remove_ticket(space_info, ticket);
861 862 863 864 865 866 867 868 869 870
	ticket->bytes = 0;
	wake_up(&ticket->wait);
	space_info->tickets_id++;
	if (global_rsv->reserved < global_rsv->size)
		global_rsv->full = 0;
	spin_unlock(&global_rsv->lock);

	return true;
}

Josef Bacik's avatar
Josef Bacik committed
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/*
 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 * @fs_info - fs_info for this fs
 * @space_info - the space info we were flushing
 *
 * We call this when we've exhausted our flushing ability and haven't made
 * progress in satisfying tickets.  The reservation code handles tickets in
 * order, so if there is a large ticket first and then smaller ones we could
 * very well satisfy the smaller tickets.  This will attempt to wake up any
 * tickets in the list to catch this case.
 *
 * This function returns true if it was able to make progress by clearing out
 * other tickets, or if it stumbles across a ticket that was smaller than the
 * first ticket.
 */
static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
				   struct btrfs_space_info *space_info)
888 889
{
	struct reserve_ticket *ticket;
Josef Bacik's avatar
Josef Bacik committed
890
	u64 tickets_id = space_info->tickets_id;
891
	const bool aborted = BTRFS_FS_ERROR(fs_info);
Josef Bacik's avatar
Josef Bacik committed
892

893 894
	trace_btrfs_fail_all_tickets(fs_info, space_info);

895 896 897 898 899
	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
		__btrfs_dump_space_info(fs_info, space_info);
	}

Josef Bacik's avatar
Josef Bacik committed
900 901 902 903 904
	while (!list_empty(&space_info->tickets) &&
	       tickets_id == space_info->tickets_id) {
		ticket = list_first_entry(&space_info->tickets,
					  struct reserve_ticket, list);

905
		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
906 907
			return true;

908
		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
909 910 911
			btrfs_info(fs_info, "failing ticket with %llu bytes",
				   ticket->bytes);

912
		remove_ticket(space_info, ticket);
913 914 915 916
		if (aborted)
			ticket->error = -EIO;
		else
			ticket->error = -ENOSPC;
917
		wake_up(&ticket->wait);
Josef Bacik's avatar
Josef Bacik committed
918 919 920 921 922 923 924

		/*
		 * We're just throwing tickets away, so more flushing may not
		 * trip over btrfs_try_granting_tickets, so we need to call it
		 * here to see if we can make progress with the next ticket in
		 * the list.
		 */
925 926
		if (!aborted)
			btrfs_try_granting_tickets(fs_info, space_info);
927
	}
Josef Bacik's avatar
Josef Bacik committed
928
	return (tickets_id != space_info->tickets_id);
929 930 931 932 933 934 935 936 937 938 939 940
}

/*
 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 * will loop and continuously try to flush as long as we are making progress.
 * We count progress as clearing off tickets each time we have to loop.
 */
static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
{
	struct btrfs_fs_info *fs_info;
	struct btrfs_space_info *space_info;
	u64 to_reclaim;
941
	enum btrfs_flush_state flush_state;
942 943 944 945 946 947 948
	int commit_cycles = 0;
	u64 last_tickets_id;

	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);

	spin_lock(&space_info->lock);
949
	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
950 951 952 953 954 955 956 957 958 959
	if (!to_reclaim) {
		space_info->flush = 0;
		spin_unlock(&space_info->lock);
		return;
	}
	last_tickets_id = space_info->tickets_id;
	spin_unlock(&space_info->lock);

	flush_state = FLUSH_DELAYED_ITEMS_NR;
	do {
960
		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
961 962 963 964 965 966 967
		spin_lock(&space_info->lock);
		if (list_empty(&space_info->tickets)) {
			space_info->flush = 0;
			spin_unlock(&space_info->lock);
			return;
		}
		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
968
							      space_info);
969 970 971 972 973 974 975 976 977
		if (last_tickets_id == space_info->tickets_id) {
			flush_state++;
		} else {
			last_tickets_id = space_info->tickets_id;
			flush_state = FLUSH_DELAYED_ITEMS_NR;
			if (commit_cycles)
				commit_cycles--;
		}

978 979 980 981 982 983 984 985
		/*
		 * We do not want to empty the system of delalloc unless we're
		 * under heavy pressure, so allow one trip through the flushing
		 * logic before we start doing a FLUSH_DELALLOC_FULL.
		 */
		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
			flush_state++;

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
		/*
		 * We don't want to force a chunk allocation until we've tried
		 * pretty hard to reclaim space.  Think of the case where we
		 * freed up a bunch of space and so have a lot of pinned space
		 * to reclaim.  We would rather use that than possibly create a
		 * underutilized metadata chunk.  So if this is our first run
		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
		 * commit the transaction.  If nothing has changed the next go
		 * around then we can force a chunk allocation.
		 */
		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
			flush_state++;

		if (flush_state > COMMIT_TRANS) {
			commit_cycles++;
			if (commit_cycles > 2) {
Josef Bacik's avatar
Josef Bacik committed
1002
				if (maybe_fail_all_tickets(fs_info, space_info)) {
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
					flush_state = FLUSH_DELAYED_ITEMS_NR;
					commit_cycles--;
				} else {
					space_info->flush = 0;
				}
			} else {
				flush_state = FLUSH_DELAYED_ITEMS_NR;
			}
		}
		spin_unlock(&space_info->lock);
	} while (flush_state <= COMMIT_TRANS);
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * This handles pre-flushing of metadata space before we get to the point that
 * we need to start blocking threads on tickets.  The logic here is different
 * from the other flush paths because it doesn't rely on tickets to tell us how
 * much we need to flush, instead it attempts to keep us below the 80% full
 * watermark of space by flushing whichever reservation pool is currently the
 * largest.
 */
static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
{
	struct btrfs_fs_info *fs_info;
	struct btrfs_space_info *space_info;
	struct btrfs_block_rsv *delayed_block_rsv;
	struct btrfs_block_rsv *delayed_refs_rsv;
	struct btrfs_block_rsv *global_rsv;
	struct btrfs_block_rsv *trans_rsv;
1032
	int loops = 0;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	fs_info = container_of(work, struct btrfs_fs_info,
			       preempt_reclaim_work);
	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
	delayed_block_rsv = &fs_info->delayed_block_rsv;
	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
	global_rsv = &fs_info->global_block_rsv;
	trans_rsv = &fs_info->trans_block_rsv;

	spin_lock(&space_info->lock);
1043
	while (need_preemptive_reclaim(fs_info, space_info)) {
1044 1045 1046 1047 1048
		enum btrfs_flush_state flush;
		u64 delalloc_size = 0;
		u64 to_reclaim, block_rsv_size;
		u64 global_rsv_size = global_rsv->reserved;

1049 1050
		loops++;

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		/*
		 * We don't have a precise counter for the metadata being
		 * reserved for delalloc, so we'll approximate it by subtracting
		 * out the block rsv's space from the bytes_may_use.  If that
		 * amount is higher than the individual reserves, then we can
		 * assume it's tied up in delalloc reservations.
		 */
		block_rsv_size = global_rsv_size +
			delayed_block_rsv->reserved +
			delayed_refs_rsv->reserved +
			trans_rsv->reserved;
		if (block_rsv_size < space_info->bytes_may_use)
			delalloc_size = space_info->bytes_may_use - block_rsv_size;
		spin_unlock(&space_info->lock);

		/*
		 * We don't want to include the global_rsv in our calculation,
		 * because that's space we can't touch.  Subtract it from the
		 * block_rsv_size for the next checks.
		 */
		block_rsv_size -= global_rsv_size;

		/*
		 * We really want to avoid flushing delalloc too much, as it
		 * could result in poor allocation patterns, so only flush it if
		 * it's larger than the rest of the pools combined.
		 */
		if (delalloc_size > block_rsv_size) {
			to_reclaim = delalloc_size;
			flush = FLUSH_DELALLOC;
		} else if (space_info->bytes_pinned >
			   (delayed_block_rsv->reserved +
			    delayed_refs_rsv->reserved)) {
			to_reclaim = space_info->bytes_pinned;
1085
			flush = COMMIT_TRANS;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		} else if (delayed_block_rsv->reserved >
			   delayed_refs_rsv->reserved) {
			to_reclaim = delayed_block_rsv->reserved;
			flush = FLUSH_DELAYED_ITEMS_NR;
		} else {
			to_reclaim = delayed_refs_rsv->reserved;
			flush = FLUSH_DELAYED_REFS_NR;
		}

		/*
		 * We don't want to reclaim everything, just a portion, so scale
		 * down the to_reclaim by 1/4.  If it takes us down to 0,
		 * reclaim 1 items worth.
		 */
		to_reclaim >>= 2;
		if (!to_reclaim)
			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1103
		flush_space(fs_info, space_info, to_reclaim, flush, true);
1104 1105 1106
		cond_resched();
		spin_lock(&space_info->lock);
	}
1107 1108 1109 1110

	/* We only went through once, back off our clamping. */
	if (loops == 1 && !space_info->reclaim_size)
		space_info->clamp = max(1, space_info->clamp - 1);
1111
	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1112 1113 1114
	spin_unlock(&space_info->lock);
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/*
 * FLUSH_DELALLOC_WAIT:
 *   Space is freed from flushing delalloc in one of two ways.
 *
 *   1) compression is on and we allocate less space than we reserved
 *   2) we are overwriting existing space
 *
 *   For #1 that extra space is reclaimed as soon as the delalloc pages are
 *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
 *   length to ->bytes_reserved, and subtracts the reserved space from
 *   ->bytes_may_use.
 *
 *   For #2 this is trickier.  Once the ordered extent runs we will drop the
 *   extent in the range we are overwriting, which creates a delayed ref for
 *   that freed extent.  This however is not reclaimed until the transaction
 *   commits, thus the next stages.
 *
 * RUN_DELAYED_IPUTS
 *   If we are freeing inodes, we want to make sure all delayed iputs have
 *   completed, because they could have been on an inode with i_nlink == 0, and
 *   thus have been truncated and freed up space.  But again this space is not
 *   immediately re-usable, it comes in the form of a delayed ref, which must be
 *   run and then the transaction must be committed.
 *
 * COMMIT_TRANS
1140 1141
 *   This is where we reclaim all of the pinned space generated by running the
 *   iputs
1142 1143 1144 1145 1146
 *
 * ALLOC_CHUNK_FORCE
 *   For data we start with alloc chunk force, however we could have been full
 *   before, and then the transaction commit could have freed new block groups,
 *   so if we now have space to allocate do the force chunk allocation.
1147
 */
1148
static const enum btrfs_flush_state data_flush_states[] = {
1149
	FLUSH_DELALLOC_FULL,
1150 1151
	RUN_DELAYED_IPUTS,
	COMMIT_TRANS,
1152
	ALLOC_CHUNK_FORCE,
1153 1154 1155
};

static void btrfs_async_reclaim_data_space(struct work_struct *work)
1156
{
1157 1158 1159
	struct btrfs_fs_info *fs_info;
	struct btrfs_space_info *space_info;
	u64 last_tickets_id;
1160
	enum btrfs_flush_state flush_state = 0;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
	space_info = fs_info->data_sinfo;

	spin_lock(&space_info->lock);
	if (list_empty(&space_info->tickets)) {
		space_info->flush = 0;
		spin_unlock(&space_info->lock);
		return;
	}
	last_tickets_id = space_info->tickets_id;
	spin_unlock(&space_info->lock);

	while (!space_info->full) {
1175
		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1176 1177 1178 1179 1180 1181
		spin_lock(&space_info->lock);
		if (list_empty(&space_info->tickets)) {
			space_info->flush = 0;
			spin_unlock(&space_info->lock);
			return;
		}
1182 1183 1184 1185

		/* Something happened, fail everything and bail. */
		if (BTRFS_FS_ERROR(fs_info))
			goto aborted_fs;
1186 1187 1188 1189 1190 1191
		last_tickets_id = space_info->tickets_id;
		spin_unlock(&space_info->lock);
	}

	while (flush_state < ARRAY_SIZE(data_flush_states)) {
		flush_space(fs_info, space_info, U64_MAX,
1192
			    data_flush_states[flush_state], false);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		spin_lock(&space_info->lock);
		if (list_empty(&space_info->tickets)) {
			space_info->flush = 0;
			spin_unlock(&space_info->lock);
			return;
		}

		if (last_tickets_id == space_info->tickets_id) {
			flush_state++;
		} else {
			last_tickets_id = space_info->tickets_id;
			flush_state = 0;
		}

		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
			if (space_info->full) {
				if (maybe_fail_all_tickets(fs_info, space_info))
					flush_state = 0;
				else
					space_info->flush = 0;
			} else {
				flush_state = 0;
			}
1216 1217 1218 1219 1220

			/* Something happened, fail everything and bail. */
			if (BTRFS_FS_ERROR(fs_info))
				goto aborted_fs;

1221 1222 1223
		}
		spin_unlock(&space_info->lock);
	}
1224 1225 1226 1227 1228 1229
	return;

aborted_fs:
	maybe_fail_all_tickets(fs_info, space_info);
	space_info->flush = 0;
	spin_unlock(&space_info->lock);
1230 1231 1232 1233 1234 1235
}

void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
{
	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1236 1237
	INIT_WORK(&fs_info->preempt_reclaim_work,
		  btrfs_preempt_reclaim_metadata_space);
1238 1239 1240 1241 1242 1243 1244 1245
}

static const enum btrfs_flush_state priority_flush_states[] = {
	FLUSH_DELAYED_ITEMS_NR,
	FLUSH_DELAYED_ITEMS,
	ALLOC_CHUNK,
};

1246 1247 1248 1249 1250 1251 1252
static const enum btrfs_flush_state evict_flush_states[] = {
	FLUSH_DELAYED_ITEMS_NR,
	FLUSH_DELAYED_ITEMS,
	FLUSH_DELAYED_REFS_NR,
	FLUSH_DELAYED_REFS,
	FLUSH_DELALLOC,
	FLUSH_DELALLOC_WAIT,
1253
	FLUSH_DELALLOC_FULL,
1254 1255 1256 1257
	ALLOC_CHUNK,
	COMMIT_TRANS,
};

1258
static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1259 1260 1261 1262
				struct btrfs_space_info *space_info,
				struct reserve_ticket *ticket,
				const enum btrfs_flush_state *states,
				int states_nr)
1263 1264
{
	u64 to_reclaim;
1265
	int flush_state = 0;
1266 1267

	spin_lock(&space_info->lock);
1268
	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1269 1270 1271 1272 1273 1274 1275
	/*
	 * This is the priority reclaim path, so to_reclaim could be >0 still
	 * because we may have only satisified the priority tickets and still
	 * left non priority tickets on the list.  We would then have
	 * to_reclaim but ->bytes == 0.
	 */
	if (ticket->bytes == 0) {
1276 1277 1278 1279
		spin_unlock(&space_info->lock);
		return;
	}

1280 1281
	while (flush_state < states_nr) {
		spin_unlock(&space_info->lock);
1282 1283
		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
			    false);
1284 1285 1286 1287 1288 1289
		flush_state++;
		spin_lock(&space_info->lock);
		if (ticket->bytes == 0) {
			spin_unlock(&space_info->lock);
			return;
		}
1290 1291
	}

1292 1293 1294 1295 1296 1297
	/* Attempt to steal from the global rsv if we can. */
	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
		ticket->error = -ENOSPC;
		remove_ticket(space_info, ticket);
	}

1298 1299 1300 1301 1302 1303 1304
	/*
	 * We must run try_granting_tickets here because we could be a large
	 * ticket in front of a smaller ticket that can now be satisfied with
	 * the available space.
	 */
	btrfs_try_granting_tickets(fs_info, space_info);
	spin_unlock(&space_info->lock);
1305 1306
}

1307 1308
static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
					struct btrfs_space_info *space_info,
1309
					struct reserve_ticket *ticket)
1310
{
1311
	spin_lock(&space_info->lock);
1312 1313 1314 1315 1316 1317 1318

	/* We could have been granted before we got here. */
	if (ticket->bytes == 0) {
		spin_unlock(&space_info->lock);
		return;
	}

1319
	while (!space_info->full) {
1320
		spin_unlock(&space_info->lock);
1321
		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1322 1323 1324 1325 1326 1327
		spin_lock(&space_info->lock);
		if (ticket->bytes == 0) {
			spin_unlock(&space_info->lock);
			return;
		}
	}
1328 1329 1330 1331 1332

	ticket->error = -ENOSPC;
	remove_ticket(space_info, ticket);
	btrfs_try_granting_tickets(fs_info, space_info);
	spin_unlock(&space_info->lock);
1333 1334
}

1335 1336 1337
static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
				struct btrfs_space_info *space_info,
				struct reserve_ticket *ticket)
1338 1339 1340 1341 1342 1343 1344 1345 1346

{
	DEFINE_WAIT(wait);
	int ret = 0;

	spin_lock(&space_info->lock);
	while (ticket->bytes > 0 && ticket->error == 0) {
		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
		if (ret) {
1347 1348 1349 1350 1351 1352 1353 1354
			/*
			 * Delete us from the list. After we unlock the space
			 * info, we don't want the async reclaim job to reserve
			 * space for this ticket. If that would happen, then the
			 * ticket's task would not known that space was reserved
			 * despite getting an error, resulting in a space leak
			 * (bytes_may_use counter of our space_info).
			 */
1355
			remove_ticket(space_info, ticket);
1356
			ticket->error = -EINTR;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
			break;
		}
		spin_unlock(&space_info->lock);

		schedule();

		finish_wait(&ticket->wait, &wait);
		spin_lock(&space_info->lock);
	}
	spin_unlock(&space_info->lock);
}

1369
/**
1370 1371 1372 1373 1374
 * Do the appropriate flushing and waiting for a ticket
 *
 * @fs_info:    the filesystem
 * @space_info: space info for the reservation
 * @ticket:     ticket for the reservation
1375 1376
 * @start_ns:   timestamp when the reservation started
 * @orig_bytes: amount of bytes originally reserved
1377
 * @flush:      how much we can flush
1378 1379 1380 1381 1382 1383 1384
 *
 * This does the work of figuring out how to flush for the ticket, waiting for
 * the reservation, and returning the appropriate error if there is one.
 */
static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
				 struct btrfs_space_info *space_info,
				 struct reserve_ticket *ticket,
1385
				 u64 start_ns, u64 orig_bytes,
1386 1387 1388 1389
				 enum btrfs_reserve_flush_enum flush)
{
	int ret;

1390
	switch (flush) {
1391
	case BTRFS_RESERVE_FLUSH_DATA:
1392
	case BTRFS_RESERVE_FLUSH_ALL:
1393
	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1394
		wait_reserve_ticket(fs_info, space_info, ticket);
1395 1396
		break;
	case BTRFS_RESERVE_FLUSH_LIMIT:
1397 1398 1399
		priority_reclaim_metadata_space(fs_info, space_info, ticket,
						priority_flush_states,
						ARRAY_SIZE(priority_flush_states));
1400 1401 1402 1403 1404 1405
		break;
	case BTRFS_RESERVE_FLUSH_EVICT:
		priority_reclaim_metadata_space(fs_info, space_info, ticket,
						evict_flush_states,
						ARRAY_SIZE(evict_flush_states));
		break;
1406
	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1407
		priority_reclaim_data_space(fs_info, space_info, ticket);
1408
		break;
1409 1410 1411 1412
	default:
		ASSERT(0);
		break;
	}
1413 1414 1415

	ret = ticket->error;
	ASSERT(list_empty(&ticket->list));
1416 1417 1418 1419 1420 1421 1422
	/*
	 * Check that we can't have an error set if the reservation succeeded,
	 * as that would confuse tasks and lead them to error out without
	 * releasing reserved space (if an error happens the expectation is that
	 * space wasn't reserved at all).
	 */
	ASSERT(!(ticket->bytes == 0 && ticket->error));
1423 1424
	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
				   start_ns, flush, ticket->error);
1425 1426 1427
	return ret;
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * This returns true if this flush state will go through the ordinary flushing
 * code.
 */
static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
{
	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
				       struct btrfs_space_info *space_info)
{
	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);

	/*
	 * If we're heavy on ordered operations then clamping won't help us.  We
	 * need to clamp specifically to keep up with dirty'ing buffered
	 * writers, because there's not a 1:1 correlation of writing delalloc
	 * and freeing space, like there is with flushing delayed refs or
	 * delayed nodes.  If we're already more ordered than delalloc then
	 * we're keeping up, otherwise we aren't and should probably clamp.
	 */
	if (ordered < delalloc)
		space_info->clamp = min(space_info->clamp + 1, 8);
}

1456 1457 1458 1459 1460 1461
static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
{
	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
		flush == BTRFS_RESERVE_FLUSH_EVICT);
}

1462
/**
1463 1464 1465 1466 1467 1468
 * Try to reserve bytes from the block_rsv's space
 *
 * @fs_info:    the filesystem
 * @space_info: space info we want to allocate from
 * @orig_bytes: number of bytes we want
 * @flush:      whether or not we can flush to make our reservation
1469 1470 1471 1472 1473 1474 1475 1476
 *
 * This will reserve orig_bytes number of bytes from the space info associated
 * with the block_rsv.  If there is not enough space it will make an attempt to
 * flush out space to make room.  It will do this by flushing delalloc if
 * possible or committing the transaction.  If flush is 0 then no attempts to
 * regain reservations will be made and this will fail if there is not enough
 * space already.
 */
1477 1478 1479
static int __reserve_bytes(struct btrfs_fs_info *fs_info,
			   struct btrfs_space_info *space_info, u64 orig_bytes,
			   enum btrfs_reserve_flush_enum flush)
1480
{
1481
	struct work_struct *async_work;
1482
	struct reserve_ticket ticket;
1483
	u64 start_ns = 0;
1484 1485
	u64 used;
	int ret = 0;
1486
	bool pending_tickets;
1487 1488 1489 1490

	ASSERT(orig_bytes);
	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);

1491 1492 1493 1494 1495
	if (flush == BTRFS_RESERVE_FLUSH_DATA)
		async_work = &fs_info->async_data_reclaim_work;
	else
		async_work = &fs_info->async_reclaim_work;

1496 1497 1498
	spin_lock(&space_info->lock);
	ret = -ENOSPC;
	used = btrfs_space_info_used(space_info, true);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	/*
	 * We don't want NO_FLUSH allocations to jump everybody, they can
	 * generally handle ENOSPC in a different way, so treat them the same as
	 * normal flushers when it comes to skipping pending tickets.
	 */
	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
		pending_tickets = !list_empty(&space_info->tickets) ||
			!list_empty(&space_info->priority_tickets);
	else
		pending_tickets = !list_empty(&space_info->priority_tickets);
1510 1511

	/*
1512 1513
	 * Carry on if we have enough space (short-circuit) OR call
	 * can_overcommit() to ensure we can overcommit to continue.
1514
	 */
1515 1516
	if (!pending_tickets &&
	    ((used + orig_bytes <= space_info->total_bytes) ||
1517
	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
						      orig_bytes);
		ret = 0;
	}

	/*
	 * If we couldn't make a reservation then setup our reservation ticket
	 * and kick the async worker if it's not already running.
	 *
	 * If we are a priority flusher then we just need to add our ticket to
	 * the list and we will do our own flushing further down.
	 */
	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
		ticket.bytes = orig_bytes;
		ticket.error = 0;
1533
		space_info->reclaim_size += ticket.bytes;
1534
		init_waitqueue_head(&ticket.wait);
1535
		ticket.steal = can_steal(flush);
1536 1537 1538
		if (trace_btrfs_reserve_ticket_enabled())
			start_ns = ktime_get_ns();

1539
		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1540 1541
		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1542 1543
			list_add_tail(&ticket.list, &space_info->tickets);
			if (!space_info->flush) {
1544 1545 1546 1547 1548 1549 1550 1551 1552
				/*
				 * We were forced to add a reserve ticket, so
				 * our preemptive flushing is unable to keep
				 * up.  Clamp down on the threshold for the
				 * preemptive flushing in order to keep up with
				 * the workload.
				 */
				maybe_clamp_preempt(fs_info, space_info);

1553 1554 1555 1556 1557
				space_info->flush = 1;
				trace_btrfs_trigger_flush(fs_info,
							  space_info->flags,
							  orig_bytes, flush,
							  "enospc");
1558
				queue_work(system_unbound_wq, async_work);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
			}
		} else {
			list_add_tail(&ticket.list,
				      &space_info->priority_tickets);
		}
	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
		used += orig_bytes;
		/*
		 * We will do the space reservation dance during log replay,
		 * which means we won't have fs_info->fs_root set, so don't do
		 * the async reclaim as we will panic.
		 */
		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1572 1573
		    !work_busy(&fs_info->preempt_reclaim_work) &&
		    need_preemptive_reclaim(fs_info, space_info)) {
1574 1575 1576
			trace_btrfs_trigger_flush(fs_info, space_info->flags,
						  orig_bytes, flush, "preempt");
			queue_work(system_unbound_wq,
1577
				   &fs_info->preempt_reclaim_work);
1578 1579 1580 1581 1582 1583
		}
	}
	spin_unlock(&space_info->lock);
	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
		return ret;

1584 1585
	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
				     orig_bytes, flush);
1586 1587 1588
}

/**
1589 1590 1591 1592 1593 1594
 * Trye to reserve metadata bytes from the block_rsv's space
 *
 * @root:       the root we're allocating for
 * @block_rsv:  block_rsv we're allocating for
 * @orig_bytes: number of bytes we want
 * @flush:      whether or not we can flush to make our reservation
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
 *
 * This will reserve orig_bytes number of bytes from the space info associated
 * with the block_rsv.  If there is not enough space it will make an attempt to
 * flush out space to make room.  It will do this by flushing delalloc if
 * possible or committing the transaction.  If flush is 0 then no attempts to
 * regain reservations will be made and this will fail if there is not enough
 * space already.
 */
int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
				 struct btrfs_block_rsv *block_rsv,
				 u64 orig_bytes,
				 enum btrfs_reserve_flush_enum flush)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	int ret;

1611
	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	if (ret == -ENOSPC) {
		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
					      block_rsv->space_info->flags,
					      orig_bytes, 1);

		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
			btrfs_dump_space_info(fs_info, block_rsv->space_info,
					      orig_bytes, 0);
	}
	return ret;
}
1623 1624

/**
1625 1626 1627 1628 1629
 * Try to reserve data bytes for an allocation
 *
 * @fs_info: the filesystem
 * @bytes:   number of bytes we need
 * @flush:   how we are allowed to flush
1630 1631 1632 1633 1634 1635 1636 1637
 *
 * This will reserve bytes from the data space info.  If there is not enough
 * space then we will attempt to flush space as specified by flush.
 */
int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
			     enum btrfs_reserve_flush_enum flush)
{
	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1638
	int ret;
1639

1640 1641
	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1642 1643
	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);

1644 1645 1646
	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
	if (ret == -ENOSPC) {
		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1647
					      data_sinfo->flags, bytes, 1);
1648 1649 1650
		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
	}
1651 1652
	return ret;
}