regmap.c 72.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22
#include <linux/log2.h>
23
#include <linux/hwspinlock.h>
24
#include <asm/unaligned.h>
25

Mark Brown's avatar
Mark Brown committed
26
#define CREATE_TRACE_POINTS
27
#include "trace.h"
Mark Brown's avatar
Mark Brown committed
28

29
#include "internal.h"
30

31 32 33 34 35 36 37 38 39 40
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
41
			       bool *change, bool force_write);
42

43 44
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
45 46
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
47 48
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
49 50
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
51 52
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

68 69
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
70 71 72 73 74 75 76 77 78 79 80 81
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
82
EXPORT_SYMBOL_GPL(regmap_check_range_table);
83

84 85 86 87 88 89 90 91
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

92
	if (map->wr_table)
93
		return regmap_check_range_table(map, reg, map->wr_table);
94

95 96 97
	return true;
}

98 99 100 101 102
bool regmap_cached(struct regmap *map, unsigned int reg)
{
	int ret;
	unsigned int val;

103
	if (map->cache_type == REGCACHE_NONE)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
		return false;

	if (!map->cache_ops)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	map->lock(map->lock_arg);
	ret = regcache_read(map, reg, &val);
	map->unlock(map->lock_arg);
	if (ret)
		return false;

	return true;
}

121 122
bool regmap_readable(struct regmap *map, unsigned int reg)
{
123 124 125
	if (!map->reg_read)
		return false;

126 127 128
	if (map->max_register && reg > map->max_register)
		return false;

129 130 131
	if (map->format.format_write)
		return false;

132 133 134
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

135
	if (map->rd_table)
136
		return regmap_check_range_table(map, reg, map->rd_table);
137

138 139 140 141 142
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
143
	if (!map->format.format_write && !regmap_readable(map, reg))
144 145 146 147 148
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

149
	if (map->volatile_table)
150
		return regmap_check_range_table(map, reg, map->volatile_table);
151

152 153 154 155
	if (map->cache_ops)
		return false;
	else
		return true;
156 157 158 159
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
160
	if (!regmap_readable(map, reg))
161 162 163 164 165
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

166
	if (map->precious_table)
167
		return regmap_check_range_table(map, reg, map->precious_table);
168

169 170 171
	return false;
}

172 173 174 175 176 177 178 179 180 181 182
bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->readable_noinc_reg)
		return map->readable_noinc_reg(map->dev, reg);

	if (map->rd_noinc_table)
		return regmap_check_range_table(map, reg, map->rd_noinc_table);

	return true;
}

183
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
Paul Bolle's avatar
Paul Bolle committed
184
	size_t num)
185 186 187 188
{
	unsigned int i;

	for (i = 0; i < num; i++)
189
		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
190 191 192 193 194
			return false;

	return true;
}

195 196 197 198 199 200 201 202
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

217 218 219 220 221 222 223 224 225 226
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

227
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
228 229 230
{
	u8 *b = buf;

231
	b[0] = val << shift;
232 233
}

234
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
235
{
236
	put_unaligned_be16(val << shift, buf);
237 238
}

239 240
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
241
	put_unaligned_le16(val << shift, buf);
242 243
}

244 245 246
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
247 248 249
	u16 v = val << shift;

	memcpy(buf, &v, sizeof(v));
250 251
}

252
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
253 254 255
{
	u8 *b = buf;

256 257
	val <<= shift;

258 259 260 261 262
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

263
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
264
{
265
	put_unaligned_be32(val << shift, buf);
266 267
}

268 269
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
270
	put_unaligned_le32(val << shift, buf);
271 272
}

273 274 275
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
276 277 278
	u32 v = val << shift;

	memcpy(buf, &v, sizeof(v));
279 280
}

Xiubo Li's avatar
Xiubo Li committed
281 282 283
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
284
	put_unaligned_be64((u64) val << shift, buf);
Xiubo Li's avatar
Xiubo Li committed
285 286 287 288
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
289
	put_unaligned_le64((u64) val << shift, buf);
Xiubo Li's avatar
Xiubo Li committed
290 291 292 293 294
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
295 296 297
	u64 v = (u64) val << shift;

	memcpy(buf, &v, sizeof(v));
Xiubo Li's avatar
Xiubo Li committed
298 299 300
}
#endif

301
static void regmap_parse_inplace_noop(void *buf)
302
{
303 304 305 306 307
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
308 309 310 311

	return b[0];
}

312 313
static unsigned int regmap_parse_16_be(const void *buf)
{
314
	return get_unaligned_be16(buf);
315 316
}

317 318
static unsigned int regmap_parse_16_le(const void *buf)
{
319
	return get_unaligned_le16(buf);
320 321
}

322
static void regmap_parse_16_be_inplace(void *buf)
323
{
324
	u16 v = get_unaligned_be16(buf);
325

326
	memcpy(buf, &v, sizeof(v));
327 328
}

329 330
static void regmap_parse_16_le_inplace(void *buf)
{
331
	u16 v = get_unaligned_le16(buf);
332

333
	memcpy(buf, &v, sizeof(v));
334 335
}

336
static unsigned int regmap_parse_16_native(const void *buf)
337
{
338 339 340 341
	u16 v;

	memcpy(&v, buf, sizeof(v));
	return v;
342 343
}

344
static unsigned int regmap_parse_24(const void *buf)
345
{
346
	const u8 *b = buf;
347 348 349 350 351 352 353
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

354 355
static unsigned int regmap_parse_32_be(const void *buf)
{
356
	return get_unaligned_be32(buf);
357 358
}

359 360
static unsigned int regmap_parse_32_le(const void *buf)
{
361
	return get_unaligned_le32(buf);
362 363
}

364
static void regmap_parse_32_be_inplace(void *buf)
365
{
366
	u32 v = get_unaligned_be32(buf);
367

368
	memcpy(buf, &v, sizeof(v));
369 370
}

371 372
static void regmap_parse_32_le_inplace(void *buf)
{
373
	u32 v = get_unaligned_le32(buf);
374

375
	memcpy(buf, &v, sizeof(v));
376 377
}

378
static unsigned int regmap_parse_32_native(const void *buf)
379
{
380 381 382 383
	u32 v;

	memcpy(&v, buf, sizeof(v));
	return v;
384 385
}

Xiubo Li's avatar
Xiubo Li committed
386 387 388
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
389
	return get_unaligned_be64(buf);
Xiubo Li's avatar
Xiubo Li committed
390 391 392 393
}

static unsigned int regmap_parse_64_le(const void *buf)
{
394
	return get_unaligned_le64(buf);
Xiubo Li's avatar
Xiubo Li committed
395 396 397 398
}

static void regmap_parse_64_be_inplace(void *buf)
{
399
	u64 v =  get_unaligned_be64(buf);
Xiubo Li's avatar
Xiubo Li committed
400

401
	memcpy(buf, &v, sizeof(v));
Xiubo Li's avatar
Xiubo Li committed
402 403 404 405
}

static void regmap_parse_64_le_inplace(void *buf)
{
406
	u64 v = get_unaligned_le64(buf);
Xiubo Li's avatar
Xiubo Li committed
407

408
	memcpy(buf, &v, sizeof(v));
Xiubo Li's avatar
Xiubo Li committed
409 410 411 412
}

static unsigned int regmap_parse_64_native(const void *buf)
{
413 414 415 416
	u64 v;

	memcpy(&v, buf, sizeof(v));
	return v;
Xiubo Li's avatar
Xiubo Li committed
417 418 419
}
#endif

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static void regmap_lock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irqsave(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
				    &map->spinlock_flags);
}

static void regmap_unlock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock(map->hwlock);
}

static void regmap_unlock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irq(map->hwlock);
}

static void regmap_unlock_hwlock_irqrestore(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
}

463
static void regmap_lock_unlock_none(void *__map)
464 465 466
{

}
467

468
static void regmap_lock_mutex(void *__map)
469
{
470
	struct regmap *map = __map;
471 472 473
	mutex_lock(&map->mutex);
}

474
static void regmap_unlock_mutex(void *__map)
475
{
476
	struct regmap *map = __map;
477 478 479
	mutex_unlock(&map->mutex);
}

480
static void regmap_lock_spinlock(void *__map)
481
__acquires(&map->spinlock)
482
{
483
	struct regmap *map = __map;
484 485 486 487
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
488 489
}

490
static void regmap_unlock_spinlock(void *__map)
491
__releases(&map->spinlock)
492
{
493
	struct regmap *map = __map;
494
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
495 496
}

497 498 499 500 501 502 503 504 505
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

506 507 508 509 510 511 512 513
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
Geliang Tang's avatar
Geliang Tang committed
514
			rb_entry(*new, struct regmap_range_node, node);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
Geliang Tang's avatar
Geliang Tang committed
538
			rb_entry(node, struct regmap_range_node, node);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
604

605 606 607 608 609 610 611 612
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

613 614 615
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
616
{
617
	struct device_node *np;
618
	enum regmap_endian endian;
619

620
	/* Retrieve the endianness specification from the regmap config */
621
	endian = config->val_format_endian;
622

623
	/* If the regmap config specified a non-default value, use that */
624 625
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
626

627 628 629
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
630

631 632 633 634 635
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;
636 637
		else if (of_property_read_bool(np, "native-endian"))
			endian = REGMAP_ENDIAN_NATIVE;
638 639 640 641 642

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
643 644

	/* Retrieve the endianness specification from the bus config */
645 646
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
647

648
	/* If the bus specified a non-default value, use that */
649 650
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
651 652

	/* Use this if no other value was found */
653
	return REGMAP_ENDIAN_BIG;
654
}
655
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
656

657 658 659 660 661 662
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
663
{
664
	struct regmap *map;
665
	int ret = -EINVAL;
666
	enum regmap_endian reg_endian, val_endian;
667
	int i, j;
668

669
	if (!config)
670
		goto err;
671 672 673 674 675 676 677

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

678 679 680 681 682 683 684 685
	if (config->name) {
		map->name = kstrdup_const(config->name, GFP_KERNEL);
		if (!map->name) {
			ret = -ENOMEM;
			goto err_map;
		}
	}

686
	if (config->disable_locking) {
687
		map->lock = map->unlock = regmap_lock_unlock_none;
688
		regmap_debugfs_disable(map);
689
	} else if (config->lock && config->unlock) {
690 691 692
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
693
	} else if (config->use_hwlock) {
694 695 696
		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
		if (!map->hwlock) {
			ret = -ENXIO;
697
			goto err_name;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		}

		switch (config->hwlock_mode) {
		case HWLOCK_IRQSTATE:
			map->lock = regmap_lock_hwlock_irqsave;
			map->unlock = regmap_unlock_hwlock_irqrestore;
			break;
		case HWLOCK_IRQ:
			map->lock = regmap_lock_hwlock_irq;
			map->unlock = regmap_unlock_hwlock_irq;
			break;
		default:
			map->lock = regmap_lock_hwlock;
			map->unlock = regmap_unlock_hwlock;
			break;
		}

		map->lock_arg = map;
716
	} else {
717 718
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
719 720 721
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
722 723
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
724 725 726 727
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
728 729
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
730 731
		}
		map->lock_arg = map;
732
	}
733 734 735 736 737 738 739 740 741 742

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

743
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
744
	map->format.pad_bytes = config->pad_bits / 8;
745
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
746 747
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
748
	map->reg_shift = config->pad_bits % 8;
749 750 751 752
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
753 754 755 756
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
757 758
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
759
	map->can_multi_write = config->can_multi_write && bus && bus->write;
760 761 762 763
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
764 765
	map->dev = dev;
	map->bus = bus;
766
	map->bus_context = bus_context;
767
	map->max_register = config->max_register;
768 769 770 771
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
772
	map->rd_noinc_table = config->rd_noinc_table;
773 774 775
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
776
	map->precious_reg = config->precious_reg;
777
	map->readable_noinc_reg = config->readable_noinc_reg;
778
	map->cache_type = config->cache_type;
779

780 781
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
782
	INIT_LIST_HEAD(&map->async_free);
783 784
	init_waitqueue_head(&map->async_waitq);

785 786 787
	if (config->read_flag_mask ||
	    config->write_flag_mask ||
	    config->zero_flag_mask) {
788 789
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
790
	} else if (bus) {
791 792 793
		map->read_flag_mask = bus->read_flag_mask;
	}

794 795 796 797
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

798 799 800 801 802 803
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

804 805 806 807
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
808
		map->reg_update_bits = bus->reg_update_bits;
809
	}
810

811 812
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
813

814
	switch (config->reg_bits + map->reg_shift) {
815 816 817 818 819 820
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
821
			goto err_hwlock;
822 823 824
		}
		break;

825 826 827 828 829 830
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
831
			goto err_hwlock;
832 833 834 835 836 837 838 839 840
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
841
			goto err_hwlock;
842 843 844
		}
		break;

845 846 847 848 849 850
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
851
			goto err_hwlock;
852 853 854
		}
		break;

855 856 857 858 859
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
860 861 862 863
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
864 865 866
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_16_le;
			break;
867 868 869 870
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
871
			goto err_hwlock;
872
		}
873 874
		break;

875 876
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
877
			goto err_hwlock;
878 879 880
		map->format.format_reg = regmap_format_24;
		break;

881
	case 32:
882 883 884 885
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
886 887 888
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_32_le;
			break;
889 890 891 892
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
893
			goto err_hwlock;
894
		}
895 896
		break;

Xiubo Li's avatar
Xiubo Li committed
897 898 899 900 901 902
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
903 904 905
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_64_le;
			break;
Xiubo Li's avatar
Xiubo Li committed
906 907 908 909
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
910
			goto err_hwlock;
Xiubo Li's avatar
Xiubo Li committed
911 912 913 914
		}
		break;
#endif

915
	default:
916
		goto err_hwlock;
917 918
	}

919 920 921
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

922 923 924 925
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
926
		map->format.parse_inplace = regmap_parse_inplace_noop;
927 928
		break;
	case 16:
929 930 931 932
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
933
			map->format.parse_inplace = regmap_parse_16_be_inplace;
934
			break;
935 936 937 938 939
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
940 941 942 943 944
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
945
			goto err_hwlock;
946
		}
947
		break;
948
	case 24:
949
		if (val_endian != REGMAP_ENDIAN_BIG)
950
			goto err_hwlock;
951 952 953
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
954
	case 32:
955 956 957 958
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
959
			map->format.parse_inplace = regmap_parse_32_be_inplace;
960
			break;
961 962 963 964 965
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
966 967 968 969 970
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
971
			goto err_hwlock;
972
		}
973
		break;
Xiubo Li's avatar
Xiubo Li committed
974
#ifdef CONFIG_64BIT
975
	case 64:
Xiubo Li's avatar
Xiubo Li committed
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
992
			goto err_hwlock;
Xiubo Li's avatar
Xiubo Li committed
993 994 995
		}
		break;
#endif
996 997
	}

998 999 1000
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
1001
			goto err_hwlock;
1002
		map->use_single_write = true;
1003
	}
1004

1005 1006
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
1007
		goto err_hwlock;
1008

1009
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1010 1011
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
1012
		goto err_hwlock;
1013 1014
	}

1015 1016
	if (map->format.format_write) {
		map->defer_caching = false;
1017
		map->reg_write = _regmap_bus_formatted_write;
1018 1019
	} else if (map->format.format_val) {
		map->defer_caching = true;
1020
		map->reg_write = _regmap_bus_raw_write;
1021 1022 1023
	}

skip_format_initialization:
1024

1025
	map->range_tree = RB_ROOT;
1026
	for (i = 0; i < config->num_ranges; i++) {
1027 1028 1029 1030
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
1031 1032 1033
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
1034
			goto err_range;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
1054 1055 1056

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
1057
		for (j = 0; j < config->num_ranges; j++) {
1058 1059 1060 1061 1062
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

1063 1064 1065 1066
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

1067 1068
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
1069 1070 1071
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
1072 1073 1074 1075 1076
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
1077 1078 1079
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

1090
		new->map = map;
1091
		new->name = range_cfg->name;
1092 1093 1094 1095 1096 1097 1098 1099
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

1100
		if (!_regmap_range_add(map, new)) {
1101
			dev_err(map->dev, "Failed to add range %d\n", i);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
1115

1116
	ret = regcache_init(map, config);
1117
	if (ret != 0)
1118 1119
		goto err_range;

1120
	if (dev) {
1121 1122 1123
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1124 1125
	} else {
		regmap_debugfs_init(map, config->name);
1126
	}
1127

1128 1129
	return map;

1130
err_regcache:
1131
	regcache_exit(map);
1132 1133
err_range:
	regmap_range_exit(map);
1134
	kfree(map->work_buf);
1135
err_hwlock:
1136
	if (map->hwlock)
1137
		hwspin_lock_free(map->hwlock);
1138 1139
err_name:
	kfree_const(map->name);
1140 1141 1142 1143 1144
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1145
EXPORT_SYMBOL_GPL(__regmap_init);
1146

1147 1148 1149 1150 1151
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1152 1153 1154 1155 1156 1157
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1158 1159 1160 1161 1162 1163 1164
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1165 1166
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1176
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1177

1178 1179 1180 1181 1182 1183
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1184
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1185 1186
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1187 1188 1189
}

/**
1190
 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
1216 1217
 * devm_regmap_field_free() - Free a register field allocated using
 *                            devm_regmap_field_alloc.
1218 1219 1220
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
1221 1222 1223 1224
 *
 * Free register field allocated using devm_regmap_field_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cyle.
1225 1226 1227 1228 1229 1230 1231 1232 1233
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
1234
 * regmap_field_alloc() - Allocate and initialise a register field.
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
1258 1259
 * regmap_field_free() - Free register field allocated using
 *                       regmap_field_alloc.
1260 1261 1262 1263 1264 1265 1266 1267 1268
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1269
/**
1270
 * regmap_reinit_cache() - Reinitialise the current register cache
1271 1272 1273 1274 1275 1276 1277 1278
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1279 1280 1281
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1282 1283 1284 1285
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1286
	regmap_debugfs_exit(map);
1287 1288 1289 1290 1291 1292

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
1293
	map->readable_noinc_reg = config->readable_noinc_reg;
1294 1295
	map->cache_type = config->cache_type;

1296
	regmap_debugfs_init(map, config->name);
1297

1298 1299 1300
	map->cache_bypass = false;
	map->cache_only = false;

1301
	return regcache_init(map, config);
1302
}
1303
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1304

1305
/**
1306 1307 1308
 * regmap_exit() - Free a previously allocated register map
 *
 * @map: Register map to operate on.
1309 1310 1311
 */
void regmap_exit(struct regmap *map)
{
1312 1313
	struct regmap_async *async;

1314
	regcache_exit(map);
1315
	regmap_debugfs_exit(map);
1316
	regmap_range_exit(map);
1317
	if (map->bus && map->bus->free_context)
1318
		map->bus->free_context(map->bus_context);
1319
	kfree(map->work_buf);
1320 1321 1322 1323 1324 1325 1326 1327
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1328
	if (map->hwlock)
1329
		hwspin_lock_free(map->hwlock);
1330
	kfree_const(map->name);
1331
	kfree(map->patch);
1332 1333 1334 1335
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
1346
		return !strcmp((*r)->name, data);
1347 1348 1349 1350 1351
	else
		return 1;
}

/**
1352
 * dev_get_regmap() - Obtain the regmap (if any) for a device
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

1374
/**
1375
 * regmap_get_device() - Obtain the device from a regmap
1376 1377 1378 1379 1380 1381 1382 1383 1384
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1385
EXPORT_SYMBOL_GPL(regmap_get_device);
1386

1387
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1388
			       struct regmap_range_node *range,
1389 1390 1391 1392 1393 1394 1395 1396
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1397 1398
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1399

1400 1401 1402 1403
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1404

1405 1406 1407 1408
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1409

1410 1411 1412 1413 1414 1415 1416 1417
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1418

1419 1420 1421
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1422
					  &page_chg, false);
1423

1424
		map->work_buf = orig_work_buf;
1425

1426
		if (ret != 0)
1427
			return ret;
1428 1429
	}

1430 1431
	*reg = range->window_start + win_offset;

1432 1433 1434
	return 0;
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
					  unsigned long mask)
{
	u8 *buf;
	int i;

	if (!mask || !map->work_buf)
		return;

	buf = map->work_buf;

	for (i = 0; i < max_bytes; i++)
		buf[i] |= (mask >> (8 * i)) & 0xff;
}

1450 1451
static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
				  const void *val, size_t val_len)
1452
{
1453
	struct regmap_range_node *range;
1454 1455 1456
	unsigned long flags;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1457 1458 1459
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1460 1461
	int i;

1462
	WARN_ON(!map->bus);
1463

1464 1465 1466
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1467
			if (!map->writeable_reg(map->dev,
1468
					       reg + regmap_get_offset(map, i)))
1469
				return -EINVAL;
1470

1471 1472 1473 1474
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1475
			ival = map->format.parse_val(val + (i * val_bytes));
1476 1477
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1478
					     ival);
1479 1480
			if (ret) {
				dev_err(map->dev,
1481
					"Error in caching of register: %x ret: %d\n",
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1492 1493
	range = _regmap_range_lookup(map, reg);
	if (range) {
1494 1495 1496 1497 1498 1499
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1500
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1501
				win_residue, val_len / map->format.val_bytes);
1502 1503 1504
			ret = _regmap_raw_write_impl(map, reg, val,
						     win_residue *
						     map->format.val_bytes);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1519
		if (ret != 0)
1520 1521
			return ret;
	}
1522

1523
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1524 1525
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->write_flag_mask);
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1537
	if (map->async && map->bus->async_write) {
1538
		struct regmap_async *async;
1539

1540
		trace_regmap_async_write_start(map, reg, val_len);
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1585 1586 1587 1588 1589 1590

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
1591
			list_move(&async->list, &map->async_free);
1592 1593
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
1594 1595

		return ret;
1596 1597
	}

1598
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
Mark Brown's avatar
Mark Brown committed
1599

1600 1601 1602 1603
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1604
	if (val == work_val)
1605
		ret = map->bus->write(map->bus_context, map->work_buf,
1606 1607 1608
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1609
	else if (map->bus->gather_write)
1610
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1611 1612
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1613
					     val, val_len);
1614 1615
	else
		ret = -ENOTSUPP;
1616

1617
	/* If that didn't work fall back on linearising by hand. */
1618
	if (ret == -ENOTSUPP) {
1619 1620
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1621 1622 1623 1624
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1625 1626
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1627
		ret = map->bus->write(map->bus_context, buf, len);
1628 1629

		kfree(buf);
1630
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1631 1632 1633 1634 1635
		/* regcache_drop_region() takes lock that we already have,
		 * thus call map->cache_ops->drop() directly
		 */
		if (map->cache_ops && map->cache_ops->drop)
			map->cache_ops->drop(map, reg, reg + 1);
1636 1637
	}

1638
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
Mark Brown's avatar
Mark Brown committed
1639

1640 1641 1642
	return ret;
}

1643 1644 1645 1646 1647 1648 1649
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1650 1651
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1652 1653 1654
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1677 1678 1679 1680 1681 1682 1683
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1684
	WARN_ON(!map->bus || !map->format.format_write);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1695
	trace_regmap_hw_write_start(map, reg, 1);
1696 1697 1698 1699

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1700
	trace_regmap_hw_write_done(map, reg, 1);
1701 1702 1703 1704

	return ret;
}

1705 1706 1707 1708 1709 1710 1711 1712
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1713 1714 1715 1716 1717
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1718
	WARN_ON(!map->bus || !map->format.format_val);
1719 1720 1721

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
1722 1723 1724 1725 1726
	return _regmap_raw_write_impl(map, reg,
				      map->work_buf +
				      map->format.reg_bytes +
				      map->format.pad_bytes,
				      map->format.val_bytes);
1727 1728
}

1729 1730 1731 1732 1733
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1734 1735
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1736
{
Mark Brown's avatar
Mark Brown committed
1737
	int ret;
1738
	void *context = _regmap_map_get_context(map);
1739

1740 1741 1742
	if (!regmap_writeable(map, reg))
		return -EIO;

1743
	if (!map->cache_bypass && !map->defer_caching) {
1744 1745 1746
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1747 1748
		if (map->cache_only) {
			map->cache_dirty = true;
1749
			return 0;
1750
		}
1751 1752
	}

1753
#ifdef LOG_DEVICE
1754
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1755 1756 1757
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1758
	trace_regmap_reg_write(map, reg, val);
Mark Brown's avatar
Mark Brown committed
1759

1760
	return map->reg_write(context, reg, val);
1761 1762 1763
}

/**
1764
 * regmap_write() - Write a value to a single register
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1777
	if (!IS_ALIGNED(reg, map->reg_stride))
1778 1779
		return -EINVAL;

1780
	map->lock(map->lock_arg);
1781 1782 1783

	ret = _regmap_write(map, reg, val);

1784
	map->unlock(map->lock_arg);
1785 1786 1787 1788 1789

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1790
/**
1791
 * regmap_write_async() - Write a value to a single register asynchronously
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1804
	if (!IS_ALIGNED(reg, map->reg_stride))
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1821 1822 1823 1824 1825
int _regmap_raw_write(struct regmap *map, unsigned int reg,
		      const void *val, size_t val_len)
{
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
1826 1827
	size_t chunk_count, chunk_bytes;
	size_t chunk_regs = val_count;
1828 1829 1830 1831 1832
	int ret, i;

	if (!val_count)
		return -EINVAL;

1833 1834 1835 1836 1837 1838 1839
	if (map->use_single_write)
		chunk_regs = 1;
	else if (map->max_raw_write && val_len > map->max_raw_write)
		chunk_regs = map->max_raw_write / val_bytes;

	chunk_count = val_count / chunk_regs;
	chunk_bytes = chunk_regs * val_bytes;
1840 1841 1842

	/* Write as many bytes as possible with chunk_size */
	for (i = 0; i < chunk_count; i++) {
1843
		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1844 1845
		if (ret)
			return ret;
1846 1847 1848 1849

		reg += regmap_get_offset(map, chunk_regs);
		val += chunk_bytes;
		val_len -= chunk_bytes;
1850 1851 1852
	}

	/* Write remaining bytes */
1853 1854
	if (val_len)
		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1855 1856 1857 1858

	return ret;
}

1859
/**
1860
 * regmap_raw_write() - Write raw values to one or more registers
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1880
	if (!regmap_can_raw_write(map))
1881
		return -EINVAL;
1882 1883 1884
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1885
	map->lock(map->lock_arg);
1886

1887
	ret = _regmap_raw_write(map, reg, val, val_len);
1888

1889
	map->unlock(map->lock_arg);
1890 1891 1892 1893 1894

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1895
/**
1896 1897
 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
 *                                   register field.
1898 1899 1900 1901
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
1902 1903 1904
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1905
 *
1906 1907 1908
 * Perform a read/modify/write cycle on the register field with change,
 * async, force option.
 *
1909 1910 1911
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1912 1913 1914
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
1915 1916 1917
{
	mask = (mask << field->shift) & field->mask;

1918 1919 1920
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
1921
}
1922
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1923

1924
/**
1925 1926
 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
 *                                    register field with port ID
1927 1928 1929 1930 1931
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
1932 1933 1934
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1935 1936 1937 1938
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1939 1940 1941
int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
1942 1943 1944 1945 1946 1947
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

1948 1949 1950 1951
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
1952
}
1953
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1954

1955 1956
/**
 * regmap_bulk_write() - Write multiple registers to the device
1957 1958 1959 1960 1961 1962 1963
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1964
 * data to the device either in single transfer or multiple transfer.
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1975
	if (!IS_ALIGNED(reg, map->reg_stride))
1976
		return -EINVAL;
1977

1978
	/*
1979 1980
	 * Some devices don't support bulk write, for them we have a series of
	 * single write operations.
1981
	 */
1982
	if (!map->bus || !map->format.parse_inplace) {
1983
		map->lock(map->lock_arg);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
2006

2007 2008 2009
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
2010 2011 2012
			if (ret != 0)
				goto out;
		}
2013 2014
out:
		map->unlock(map->lock_arg);
2015
	} else {
2016 2017
		void *wval;

2018
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2019
		if (!wval)
2020
			return -ENOMEM;
2021

2022
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2023
			map->format.parse_inplace(wval + i);
2024

2025
		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2026 2027

		kfree(wval);
2028
	}
2029 2030 2031 2032
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

2033 2034 2035 2036 2037
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
Xiubo Li's avatar
Xiubo Li committed
2038
 * relative. The page register has been written if that was necessary.
2039 2040
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
2041
				       const struct reg_sequence *regs,
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

2054 2055 2056
	if (!len)
		return -EINVAL;

2057 2058 2059 2060 2061 2062 2063 2064 2065
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
2066 2067
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
2068
		trace_regmap_hw_write_start(map, reg, 1);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
2083
		trace_regmap_hw_write_done(map, reg, 1);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2098
					       struct reg_sequence *regs,
2099 2100 2101 2102
					       size_t num_regs)
{
	int ret;
	int i, n;
2103
	struct reg_sequence *base;
2104
	unsigned int this_page = 0;
2105
	unsigned int page_change = 0;
2106 2107 2108
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
2109 2110
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2146 2147 2148
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2149 2150 2151 2152

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

2153 2154
				base += n;
				n = 0;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2166
		}
2167

2168 2169 2170 2171 2172 2173
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2174
static int _regmap_multi_reg_write(struct regmap *map,
2175
				   const struct reg_sequence *regs,
2176
				   size_t num_regs)
2177
{
2178 2179 2180 2181 2182 2183 2184 2185
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2186 2187 2188

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2201
			if (!IS_ALIGNED(reg, map->reg_stride))
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2224 2225

	for (i = 0; i < num_regs; i++) {
2226 2227
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2228 2229 2230 2231

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2232
		range = _regmap_range_lookup(map, reg);
2233
		if (range || regs[i].delay_us) {
2234 2235
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2236 2237 2238 2239 2240 2241 2242
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2243 2244 2245
			return ret;
		}
	}
2246
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2247 2248
}

2249 2250
/**
 * regmap_multi_reg_write() - Write multiple registers to the device
2251 2252 2253 2254 2255
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2256 2257 2258
 * Write multiple registers to the device where the set of register, value
 * pairs are supplied in any order, possibly not all in a single range.
 *
2259
 * The 'normal' block write mode will send ultimately send data on the
2260
 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2261 2262 2263
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2264
 *
2265 2266
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2267
 */
2268
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2269
			   int num_regs)
2270
{
2271
	int ret;
2272 2273 2274

	map->lock(map->lock_arg);

2275 2276
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2277 2278 2279 2280 2281 2282
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2283 2284 2285
/**
 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
 *                                     device but not the cache
2286 2287 2288 2289 2290
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2291 2292 2293
 * Write multiple registers to the device but not the cache where the set
 * of register are supplied in any order.
 *
2294 2295 2296 2297 2298 2299 2300
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2301
int regmap_multi_reg_write_bypassed(struct regmap *map,
2302
				    const struct reg_sequence *regs,
2303
				    int num_regs)
2304
{
2305 2306
	int ret;
	bool bypass;
2307 2308 2309

	map->lock(map->lock_arg);

2310 2311 2312 2313 2314 2315 2316
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2317 2318 2319 2320
	map->unlock(map->lock_arg);

	return ret;
}
2321
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2322

2323
/**
2324 2325
 * regmap_raw_write_async() - Write raw values to one or more registers
 *                            asynchronously
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2352
	if (!IS_ALIGNED(reg, map->reg_stride))
2353 2354 2355 2356
		return -EINVAL;

	map->lock(map->lock_arg);

2357 2358 2359 2360 2361
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2362 2363 2364 2365 2366 2367 2368

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2369 2370 2371
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2372
	struct regmap_range_node *range;
2373 2374
	int ret;

2375
	WARN_ON(!map->bus);
2376

2377 2378 2379
	if (!map->bus || !map->bus->read)
		return -EINVAL;

2380 2381 2382 2383
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2384
		if (ret != 0)
2385 2386
			return ret;
	}
2387

2388
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2389 2390
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->read_flag_mask);
2391
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
Mark Brown's avatar
Mark Brown committed
2392

2393
	ret = map->bus->read(map->bus_context, map->work_buf,
2394
			     map->format.reg_bytes + map->format.pad_bytes,
Mark Brown's avatar
Mark Brown committed
2395
			     val, val_len);
2396

2397
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
Mark Brown's avatar
Mark Brown committed
2398 2399

	return ret;
2400 2401
}

2402 2403 2404 2405 2406 2407 2408 2409
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2410 2411 2412 2413 2414
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;
2415 2416
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
2417 2418 2419 2420

	if (!map->format.parse_val)
		return -EINVAL;

2421
	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2422
	if (ret == 0)
2423
		*val = map->format.parse_val(work_val);
2424 2425 2426 2427

	return ret;
}

2428 2429 2430 2431
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2432 2433
	void *context = _regmap_map_get_context(map);

2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2443 2444 2445
	if (!regmap_readable(map, reg))
		return -EIO;

2446
	ret = map->reg_read(context, reg, val);
Mark Brown's avatar
Mark Brown committed
2447
	if (ret == 0) {
2448
#ifdef LOG_DEVICE
2449
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2450 2451 2452
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2453
		trace_regmap_reg_read(map, reg, *val);
2454

2455 2456 2457
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2458

2459 2460 2461 2462
	return ret;
}

/**
2463
 * regmap_read() - Read a value from a single register
2464
 *
2465
 * @map: Register map to read from
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2476
	if (!IS_ALIGNED(reg, map->reg_stride))
2477 2478
		return -EINVAL;

2479
	map->lock(map->lock_arg);
2480 2481 2482

	ret = _regmap_read(map, reg, val);

2483
	map->unlock(map->lock_arg);
2484 2485 2486 2487 2488 2489

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
2490
 * regmap_raw_read() - Read raw data from the device
2491
 *
2492
 * @map: Register map to read from
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2503 2504 2505 2506
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2507

2508 2509
	if (!map->bus)
		return -EINVAL;
2510 2511
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2512
	if (!IS_ALIGNED(reg, map->reg_stride))
2513
		return -EINVAL;
2514 2515
	if (val_count == 0)
		return -EINVAL;
2516

2517
	map->lock(map->lock_arg);
2518

2519 2520
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2521 2522
		size_t chunk_count, chunk_bytes;
		size_t chunk_regs = val_count;
2523

2524 2525 2526 2527 2528
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}

2529 2530 2531 2532
		if (map->use_single_read)
			chunk_regs = 1;
		else if (map->max_raw_read && val_len > map->max_raw_read)
			chunk_regs = map->max_raw_read / val_bytes;
2533

2534 2535 2536 2537
		chunk_count = val_count / chunk_regs;
		chunk_bytes = chunk_regs * val_bytes;

		/* Read bytes that fit into whole chunks */
2538
		for (i = 0; i < chunk_count; i++) {
2539
			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2540
			if (ret != 0)
2541 2542 2543 2544 2545
				goto out;

			reg += regmap_get_offset(map, chunk_regs);
			val += chunk_bytes;
			val_len -= chunk_bytes;
2546
		}
2547

2548
		/* Read remaining bytes */
2549 2550
		if (val_len) {
			ret = _regmap_raw_read(map, reg, val, val_len);
2551
			if (ret != 0)
2552
				goto out;
2553
		}
2554 2555 2556 2557 2558
	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2559
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2560
					   &v);
2561 2562 2563
			if (ret != 0)
				goto out;

2564
			map->format.format_val(val + (i * val_bytes), v, 0);
2565 2566
		}
	}
2567

2568
 out:
2569
	map->unlock(map->lock_arg);
2570 2571 2572 2573 2574

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2575
/**
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
 * regmap_noinc_read(): Read data from a register without incrementing the
 *			register number
 *
 * @map: Register map to read from
 * @reg: Register to read from
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
 * The regmap API usually assumes that bulk bus read operations will read a
 * range of registers. Some devices have certain registers for which a read
 * operation read will read from an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple reads as required to read val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_read(struct regmap *map, unsigned int reg,
		      void *val, size_t val_len)
{
	size_t read_len;
	int ret;

	if (!map->bus)
		return -EINVAL;
	if (!map->bus->read)
		return -ENOTSUPP;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_read && map->max_raw_read < val_len)
			read_len = map->max_raw_read;
		else
			read_len = val_len;
		ret = _regmap_raw_read(map, reg, val, read_len);
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + read_len;
		val_len -= read_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_read);

/**
 * regmap_field_read(): Read a value to a single register field
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2663
/**
2664
 * regmap_fields_read() - Read a value to a single register field with port ID
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2696
/**
2697
 * regmap_bulk_read() - Read multiple registers from the device
2698
 *
2699
 * @map: Register map to read from
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2712
	bool vol = regmap_volatile_range(map, reg, val_count);
2713

2714
	if (!IS_ALIGNED(reg, map->reg_stride))
2715
		return -EINVAL;
2716 2717
	if (val_count == 0)
		return -EINVAL;
2718

2719
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2720 2721 2722
		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
		if (ret != 0)
			return ret;
2723 2724

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2725
			map->format.parse_inplace(val + i);
2726
	} else {
2727 2728 2729 2730 2731 2732 2733
#ifdef CONFIG_64BIT
		u64 *u64 = val;
#endif
		u32 *u32 = val;
		u16 *u16 = val;
		u8 *u8 = val;

2734 2735
		map->lock(map->lock_arg);

2736
		for (i = 0; i < val_count; i++) {
2737
			unsigned int ival;
2738

2739 2740
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
					   &ival);
2741
			if (ret != 0)
2742
				goto out;
2743

2744
			switch (map->format.val_bytes) {
Xiubo Li's avatar
Xiubo Li committed
2745
#ifdef CONFIG_64BIT
2746 2747 2748
			case 8:
				u64[i] = ival;
				break;
Xiubo Li's avatar
Xiubo Li committed
2749
#endif
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
			case 4:
				u32[i] = ival;
				break;
			case 2:
				u16[i] = ival;
				break;
			case 1:
				u8[i] = ival;
				break;
			default:
2760 2761
				ret = -EINVAL;
				goto out;
2762
			}
2763
		}
2764 2765 2766

out:
		map->unlock(map->lock_arg);
2767
	}
2768

2769
	return ret;
2770 2771 2772
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2773 2774
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2775
			       bool *change, bool force_write)
2776 2777
{
	int ret;
2778
	unsigned int tmp, orig;
2779

2780 2781
	if (change)
		*change = false;
2782

2783 2784 2785
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
2786
			*change = true;
2787
	} else {
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
2800
	}
2801 2802 2803

	return ret;
}
2804 2805

/**
2806
 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2807 2808 2809 2810 2811 2812
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
2813 2814
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2815
 *
2816 2817 2818 2819 2820 2821 2822 2823
 * Perform a read/modify/write cycle on a register map with change, async, force
 * options.
 *
 * If async is true:
 *
 * With most buses the read must be done synchronously so this is most useful
 * for devices with a cache which do not need to interact with the hardware to
 * determine the current register value.
2824 2825 2826
 *
 * Returns zero for success, a negative number on error.
 */
2827 2828 2829
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
2830 2831 2832 2833 2834
{
	int ret;

	map->lock(map->lock_arg);

2835
	map->async = async;
2836

2837
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2838 2839 2840 2841 2842 2843 2844

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
2845
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2846

2847 2848 2849 2850 2851
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2852
	trace_regmap_async_io_complete(map);
2853

2854
	spin_lock(&map->async_lock);
2855
	list_move(&async->list, &map->async_free);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2866
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
2881
 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2894
	if (!map->bus || !map->bus->async_write)
2895 2896
		return 0;

2897
	trace_regmap_async_complete_start(map);
2898

2899 2900 2901 2902 2903 2904 2905
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2906
	trace_regmap_async_complete_done(map);
2907

2908 2909
	return ret;
}
2910
EXPORT_SYMBOL_GPL(regmap_async_complete);
2911

2912
/**
2913 2914
 * regmap_register_patch - Register and apply register updates to be applied
 *                         on device initialistion
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2925 2926 2927
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
2928
 */
2929
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2930 2931
			  int num_regs)
{
2932
	struct reg_sequence *p;
2933
	int ret;
2934 2935
	bool bypass;

2936 2937 2938 2939
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2940
	p = krealloc(map->patch,
2941
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2942 2943 2944 2945 2946
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
2947
	} else {
2948
		return -ENOMEM;
2949 2950
	}

2951
	map->lock(map->lock_arg);
2952 2953 2954 2955

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2956
	map->async = true;
2957

2958
	ret = _regmap_multi_reg_write(map, regs, num_regs);
2959

2960
	map->async = false;
2961 2962
	map->cache_bypass = bypass;

2963
	map->unlock(map->lock_arg);
2964

2965 2966
	regmap_async_complete(map);

2967 2968 2969 2970
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2971 2972 2973 2974
/**
 * regmap_get_val_bytes() - Report the size of a register value
 *
 * @map: Register map to operate on.
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2988
/**
2989 2990 2991
 * regmap_get_max_register() - Report the max register value
 *
 * @map: Register map to operate on.
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

3002
/**
3003 3004 3005
 * regmap_get_reg_stride() - Report the register address stride
 *
 * @map: Register map to operate on.
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

3028 3029 3030 3031 3032 3033 3034
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);