futex.c 66.7 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
Eric Dumazet's avatar
Eric Dumazet committed
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
Linus Torvalds's avatar
Linus Torvalds committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
Linus Torvalds's avatar
Linus Torvalds committed
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

Linus Torvalds's avatar
Linus Torvalds committed
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

Linus Torvalds's avatar
Linus Torvalds committed
92 93 94 95 96
/*
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
Pierre Peiffer's avatar
Pierre Peiffer committed
97
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
Linus Torvalds's avatar
Linus Torvalds committed
98
 * The order of wakup is always to make the first condition true, then
99
 * wake up q->waiter, then make the second condition true.
Linus Torvalds's avatar
Linus Torvalds committed
100 101
 */
struct futex_q {
Pierre Peiffer's avatar
Pierre Peiffer committed
102
	struct plist_node list;
103 104
	/* Waiter reference */
	struct task_struct *task;
Linus Torvalds's avatar
Linus Torvalds committed
105

106
	/* Which hash list lock to use: */
Linus Torvalds's avatar
Linus Torvalds committed
107 108
	spinlock_t *lock_ptr;

109
	/* Key which the futex is hashed on: */
Linus Torvalds's avatar
Linus Torvalds committed
110 111
	union futex_key key;

112 113
	/* Optional priority inheritance state: */
	struct futex_pi_state *pi_state;
114

115 116 117
	/* rt_waiter storage for requeue_pi: */
	struct rt_mutex_waiter *rt_waiter;

118 119 120
	/* The expected requeue pi target futex key: */
	union futex_key *requeue_pi_key;

121 122
	/* Bitset for the optional bitmasked wakeup */
	u32 bitset;
Linus Torvalds's avatar
Linus Torvalds committed
123 124 125
};

/*
Darren Hart's avatar
Darren Hart committed
126 127 128
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
Linus Torvalds's avatar
Linus Torvalds committed
129 130
 */
struct futex_hash_bucket {
Pierre Peiffer's avatar
Pierre Peiffer committed
131 132
	spinlock_t lock;
	struct plist_head chain;
Linus Torvalds's avatar
Linus Torvalds committed
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		atomic_inc(&key->shared.inode->i_count);
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
184 185 186
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
187
		return;
188
	}
189 190 191 192 193 194 195 196 197 198 199

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

Eric Dumazet's avatar
Eric Dumazet committed
200 201 202
/**
 * get_futex_key - Get parameters which are the keys for a futex.
 * @uaddr: virtual address of the futex
Darren Hart's avatar
Darren Hart committed
203
 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
Eric Dumazet's avatar
Eric Dumazet committed
204
 * @key: address where result is stored.
205
 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
Eric Dumazet's avatar
Eric Dumazet committed
206 207 208
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
Linus Torvalds's avatar
Linus Torvalds committed
209
 *
210
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
Linus Torvalds's avatar
Linus Torvalds committed
211 212 213
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
Darren Hart's avatar
Darren Hart committed
214
 * lock_page() might sleep, the caller should not hold a spinlock.
Linus Torvalds's avatar
Linus Torvalds committed
215
 */
216 217
static int
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
Linus Torvalds's avatar
Linus Torvalds committed
218
{
219
	unsigned long address = (unsigned long)uaddr;
Linus Torvalds's avatar
Linus Torvalds committed
220 221 222 223 224 225 226
	struct mm_struct *mm = current->mm;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
227
	key->both.offset = address % PAGE_SIZE;
Eric Dumazet's avatar
Eric Dumazet committed
228
	if (unlikely((address % sizeof(u32)) != 0))
Linus Torvalds's avatar
Linus Torvalds committed
229
		return -EINVAL;
230
	address -= key->both.offset;
Linus Torvalds's avatar
Linus Torvalds committed
231

Eric Dumazet's avatar
Eric Dumazet committed
232 233 234 235 236 237 238 239
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
240
		if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
Eric Dumazet's avatar
Eric Dumazet committed
241 242 243
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
244
		get_futex_key_refs(key);
Eric Dumazet's avatar
Eric Dumazet committed
245 246
		return 0;
	}
Linus Torvalds's avatar
Linus Torvalds committed
247

248
again:
249
	err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
250 251 252
	if (err < 0)
		return err;

253
	page = compound_head(page);
254 255 256 257 258 259
	lock_page(page);
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		goto again;
	}
Linus Torvalds's avatar
Linus Torvalds committed
260 261 262 263 264 265

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
266
	 * the object not the particular process.
Linus Torvalds's avatar
Linus Torvalds committed
267
	 */
268 269
	if (PageAnon(page)) {
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
Linus Torvalds's avatar
Linus Torvalds committed
270
		key->private.mm = mm;
271
		key->private.address = address;
272 273 274 275
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.inode = page->mapping->host;
		key->shared.pgoff = page->index;
Linus Torvalds's avatar
Linus Torvalds committed
276 277
	}

278
	get_futex_key_refs(key);
Linus Torvalds's avatar
Linus Torvalds committed
279

280 281 282
	unlock_page(page);
	put_page(page);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
283 284
}

285
static inline
Peter Zijlstra's avatar
Peter Zijlstra committed
286
void put_futex_key(int fshared, union futex_key *key)
Linus Torvalds's avatar
Linus Torvalds committed
287
{
288
	drop_futex_key_refs(key);
Linus Torvalds's avatar
Linus Torvalds committed
289 290
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/*
 * fault_in_user_writeable - fault in user address and verify RW access
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
 * We have no generic implementation of a non destructive write to the
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
	int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
306
				 1, 1, 0, NULL, NULL);
307 308 309
	return ret < 0 ? ret : 0;
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
 * @hb:     the hash bucket the futex_q's reside in
 * @key:    the futex key (to distinguish it from other futex futex_q's)
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

Thomas Gleixner's avatar
Thomas Gleixner committed
329 330 331 332 333 334 335 336 337 338 339 340
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 curval;

	pagefault_disable();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	pagefault_enable();

	return curval;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
Linus Torvalds's avatar
Linus Torvalds committed
341 342 343
{
	int ret;

344
	pagefault_disable();
345
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
346
	pagefault_enable();
Linus Torvalds's avatar
Linus Torvalds committed
347 348 349 350

	return ret ? -EFAULT : 0;
}

351 352 353 354 355 356 357 358 359 360 361

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

362
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
363 364 365 366 367 368 369 370

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
371
	pi_state->key = FUTEX_KEY_INIT;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;
426
	const struct cred *cred = current_cred(), *pcred;
427

428
	rcu_read_lock();
429
	p = find_task_by_vpid(pid);
430
	if (!p) {
431
		p = ERR_PTR(-ESRCH);
432 433 434 435 436 437 438 439
	} else {
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid)
			p = ERR_PTR(-ESRCH);
		else
			get_task_struct(p);
	}
440

441
	rcu_read_unlock();
442 443 444 445 446 447 448 449 450 451 452 453 454

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
455
	struct futex_hash_bucket *hb;
456
	union futex_key key = FUTEX_KEY_INIT;
457

458 459
	if (!futex_cmpxchg_enabled)
		return;
460 461 462
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
463
	 * versus waiters unqueueing themselves:
464 465 466 467 468 469 470
	 */
	spin_lock_irq(&curr->pi_lock);
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
471
		hb = hash_futex(&key);
472 473 474 475 476
		spin_unlock_irq(&curr->pi_lock);

		spin_lock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
477 478 479 480
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
481 482 483 484 485 486
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
487 488
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
489 490 491 492 493 494 495 496 497 498 499 500 501
		pi_state->owner = NULL;
		spin_unlock_irq(&curr->pi_lock);

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
	}
	spin_unlock_irq(&curr->pi_lock);
}

static int
502 503
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
504 505 506
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
Pierre Peiffer's avatar
Pierre Peiffer committed
507
	struct plist_head *head;
508
	struct task_struct *p;
509
	pid_t pid = uval & FUTEX_TID_MASK;
510 511 512

	head = &hb->chain;

Pierre Peiffer's avatar
Pierre Peiffer committed
513
	plist_for_each_entry_safe(this, next, head, list) {
514
		if (match_futex(&this->key, key)) {
515 516 517 518 519
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
520 521 522 523 524 525
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

526
			WARN_ON(!atomic_read(&pi_state->refcount));
527 528
			WARN_ON(pid && pi_state->owner &&
				pi_state->owner->pid != pid);
529

530
			atomic_inc(&pi_state->refcount);
531
			*ps = pi_state;
532 533 534 535 536 537

			return 0;
		}
	}

	/*
538
	 * We are the first waiter - try to look up the real owner and attach
539
	 * the new pi_state to it, but bail out when TID = 0
540
	 */
541
	if (!pid)
542
		return -ESRCH;
543
	p = futex_find_get_task(pid);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	if (IS_ERR(p))
		return PTR_ERR(p);

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
	spin_lock_irq(&p->pi_lock);
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

		spin_unlock_irq(&p->pi_lock);
		put_task_struct(p);
		return ret;
	}
566 567 568 569 570 571 572 573 574 575

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
576
	pi_state->key = *key;
577

578
	WARN_ON(!list_empty(&pi_state->list));
579 580 581 582 583 584
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
	spin_unlock_irq(&p->pi_lock);

	put_task_struct(p);

585
	*ps = pi_state;
586 587 588 589

	return 0;
}

590 591
/**
 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
592 593 594 595 596 597 598 599
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
600 601 602 603 604 605 606 607 608 609 610
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
611
				struct task_struct *task, int set_waiters)
612 613 614 615 616 617 618 619 620 621 622 623 624
{
	int lock_taken, ret, ownerdied = 0;
	u32 uval, newval, curval;

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = task_pid_vnr(task);
625 626
	if (set_waiters)
		newval |= FUTEX_WAITERS;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

	curval = cmpxchg_futex_value_locked(uaddr, 0, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
		newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
		ownerdied = 0;
		lock_taken = 1;
	}

	curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

Linus Torvalds's avatar
Linus Torvalds committed
715 716 717 718 719 720
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
721 722
	struct task_struct *p = q->task;

Linus Torvalds's avatar
Linus Torvalds committed
723
	/*
724 725 726 727 728
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
	 * a non futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non existing task
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
Linus Torvalds's avatar
Linus Torvalds committed
729
	 */
730 731 732
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
Linus Torvalds's avatar
Linus Torvalds committed
733
	/*
734 735 736 737
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
Linus Torvalds's avatar
Linus Torvalds committed
738
	 */
739
	smp_wmb();
Linus Torvalds's avatar
Linus Torvalds committed
740
	q->lock_ptr = NULL;
741 742 743

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
Linus Torvalds's avatar
Linus Torvalds committed
744 745
}

746 747 748 749 750 751 752 753 754
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

755
	spin_lock(&pi_state->pi_mutex.wait_lock);
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
772
	if (!(uval & FUTEX_OWNER_DIED)) {
773 774
		int ret = 0;

775
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
776

Thomas Gleixner's avatar
Thomas Gleixner committed
777
		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778

779
		if (curval == -EFAULT)
780
			ret = -EFAULT;
781
		else if (curval != uval)
782 783 784 785 786
			ret = -EINVAL;
		if (ret) {
			spin_unlock(&pi_state->pi_mutex.wait_lock);
			return ret;
		}
787
	}
788

789 790 791 792 793 794 795
	spin_lock_irq(&pi_state->owner->pi_lock);
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
	spin_unlock_irq(&pi_state->owner->pi_lock);

	spin_lock_irq(&new_owner->pi_lock);
	WARN_ON(!list_empty(&pi_state->list));
796 797
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
798 799
	spin_unlock_irq(&new_owner->pi_lock);

800
	spin_unlock(&pi_state->pi_mutex.wait_lock);
801 802 803 804 805 806 807 808 809 810 811 812 813
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
Thomas Gleixner's avatar
Thomas Gleixner committed
814
	oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
815 816 817 818 819 820 821 822 823

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

Darren Hart's avatar
Darren Hart committed
840 841 842
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
843
	spin_unlock(&hb1->lock);
844 845
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
Darren Hart's avatar
Darren Hart committed
846 847
}

Linus Torvalds's avatar
Linus Torvalds committed
848
/*
Darren Hart's avatar
Darren Hart committed
849
 * Wake up waiters matching bitset queued on this futex (uaddr).
Linus Torvalds's avatar
Linus Torvalds committed
850
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
851
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
Linus Torvalds's avatar
Linus Torvalds committed
852
{
853
	struct futex_hash_bucket *hb;
Linus Torvalds's avatar
Linus Torvalds committed
854
	struct futex_q *this, *next;
Pierre Peiffer's avatar
Pierre Peiffer committed
855
	struct plist_head *head;
856
	union futex_key key = FUTEX_KEY_INIT;
Linus Torvalds's avatar
Linus Torvalds committed
857 858
	int ret;

859 860 861
	if (!bitset)
		return -EINVAL;

862
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
Linus Torvalds's avatar
Linus Torvalds committed
863 864 865
	if (unlikely(ret != 0))
		goto out;

866 867 868
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
Linus Torvalds's avatar
Linus Torvalds committed
869

Pierre Peiffer's avatar
Pierre Peiffer committed
870
	plist_for_each_entry_safe(this, next, head, list) {
Linus Torvalds's avatar
Linus Torvalds committed
871
		if (match_futex (&this->key, &key)) {
872
			if (this->pi_state || this->rt_waiter) {
873 874 875
				ret = -EINVAL;
				break;
			}
876 877 878 879 880

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

Linus Torvalds's avatar
Linus Torvalds committed
881 882 883 884 885 886
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

887
	spin_unlock(&hb->lock);
888
	put_futex_key(fshared, &key);
889
out:
Linus Torvalds's avatar
Linus Torvalds committed
890 891 892
	return ret;
}

893 894 895 896
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
897
static int
Peter Zijlstra's avatar
Peter Zijlstra committed
898
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
899
	      int nr_wake, int nr_wake2, int op)
900
{
901
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
902
	struct futex_hash_bucket *hb1, *hb2;
Pierre Peiffer's avatar
Pierre Peiffer committed
903
	struct plist_head *head;
904
	struct futex_q *this, *next;
Darren Hart's avatar
Darren Hart committed
905
	int ret, op_ret;
906

Darren Hart's avatar
Darren Hart committed
907
retry:
908
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
909 910
	if (unlikely(ret != 0))
		goto out;
911
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
912
	if (unlikely(ret != 0))
913
		goto out_put_key1;
914

915 916
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
917

918
	double_lock_hb(hb1, hb2);
Darren Hart's avatar
Darren Hart committed
919
retry_private:
920
	op_ret = futex_atomic_op_inuser(op, uaddr2);
921 922
	if (unlikely(op_ret < 0)) {

Darren Hart's avatar
Darren Hart committed
923
		double_unlock_hb(hb1, hb2);
924

925
#ifndef CONFIG_MMU
926 927 928 929
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
930
		ret = op_ret;
931
		goto out_put_keys;
932 933
#endif

934 935
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
936
			goto out_put_keys;
937 938
		}

939
		ret = fault_in_user_writeable(uaddr2);
940
		if (ret)
941
			goto out_put_keys;
942

Darren Hart's avatar
Darren Hart committed
943 944 945
		if (!fshared)
			goto retry_private;

946 947
		put_futex_key(fshared, &key2);
		put_futex_key(fshared, &key1);
Darren Hart's avatar
Darren Hart committed
948
		goto retry;
949 950
	}

951
	head = &hb1->chain;
952

Pierre Peiffer's avatar
Pierre Peiffer committed
953
	plist_for_each_entry_safe(this, next, head, list) {
954 955 956 957 958 959 960 961
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
962
		head = &hb2->chain;
963 964

		op_ret = 0;
Pierre Peiffer's avatar
Pierre Peiffer committed
965
		plist_for_each_entry_safe(this, next, head, list) {
966 967 968 969 970 971 972 973 974
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

Darren Hart's avatar
Darren Hart committed
975
	double_unlock_hb(hb1, hb2);
976
out_put_keys:
977
	put_futex_key(fshared, &key2);
978
out_put_key1:
979
	put_futex_key(fshared, &key1);
980
out:
981 982 983
	return ret;
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
		q->list.plist.lock = &hb2->lock;
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1012 1013 1014 1015
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
 * q:	the futex_q
 * key:	the key of the requeue target futex
1016
 * hb:  the hash_bucket of the requeue target futex
1017 1018 1019 1020 1021
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1022 1023 1024
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1025 1026
 */
static inline
1027 1028
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
	drop_futex_key_refs(&q->key);
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1040 1041 1042 1043 1044
	q->lock_ptr = &hb->lock;
#ifdef CONFIG_DEBUG_PI_LIST
	q->list.plist.lock = &hb->lock;
#endif

1045
	wake_up_state(q->task, TASK_NORMAL);
1046 1047 1048 1049
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1050 1051 1052 1053 1054 1055 1056
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1057 1058
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1059 1060 1061
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1072
				 struct futex_pi_state **ps, int set_waiters)
1073
{
1074
	struct futex_q *top_waiter = NULL;
1075 1076 1077 1078 1079 1080
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1081 1082 1083 1084 1085 1086 1087 1088
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1089 1090 1091 1092 1093 1094
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1095 1096 1097 1098
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1099
	/*
1100 1101 1102
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1103
	 */
1104 1105
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1106
	if (ret == 1)
1107
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 * uaddr1:	source futex user address
 * uaddr2:	target futex user address
 * nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * requeue_pi:	if we are attempting to requeue from a non-pi futex to a
 * 		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
Linus Torvalds's avatar
Linus Torvalds committed
1127
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1128
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1129 1130
			 int nr_wake, int nr_requeue, u32 *cmpval,
			 int requeue_pi)
Linus Torvalds's avatar
Linus Torvalds committed
1131
{
1132
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1133 1134
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1135
	struct futex_hash_bucket *hb1, *hb2;
Pierre Peiffer's avatar
Pierre Peiffer committed
1136
	struct plist_head *head1;
Linus Torvalds's avatar
Linus Torvalds committed
1137
	struct futex_q *this, *next;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1160

1161
retry:
1162 1163 1164 1165 1166 1167 1168 1169 1170
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1171
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
Linus Torvalds's avatar
Linus Torvalds committed
1172 1173
	if (unlikely(ret != 0))
		goto out;
1174 1175
	ret = get_futex_key(uaddr2, fshared, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
Linus Torvalds's avatar
Linus Torvalds committed
1176
	if (unlikely(ret != 0))
1177
		goto out_put_key1;
Linus Torvalds's avatar
Linus Torvalds committed
1178

1179 1180
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
Linus Torvalds's avatar
Linus Torvalds committed
1181

Darren Hart's avatar
Darren Hart committed
1182
retry_private:
1183
	double_lock_hb(hb1, hb2);
Linus Torvalds's avatar
Linus Torvalds committed
1184

1185 1186
	if (likely(cmpval != NULL)) {
		u32 curval;
Linus Torvalds's avatar
Linus Torvalds committed
1187

1188
		ret = get_futex_value_locked(&curval, uaddr1);
Linus Torvalds's avatar
Linus Torvalds committed
1189 1190

		if (unlikely(ret)) {
Darren Hart's avatar
Darren Hart committed
1191
			double_unlock_hb(hb1, hb2);
Linus Torvalds's avatar
Linus Torvalds committed
1192

1193
			ret = get_user(curval, uaddr1);
Darren Hart's avatar
Darren Hart committed
1194 1195
			if (ret)
				goto out_put_keys;
Linus Torvalds's avatar
Linus Torvalds committed
1196

Darren Hart's avatar
Darren Hart committed
1197 1198
			if (!fshared)
				goto retry_private;
Linus Torvalds's avatar
Linus Torvalds committed
1199

Darren Hart's avatar
Darren Hart committed
1200 1201 1202
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			goto retry;
Linus Torvalds's avatar
Linus Torvalds committed
1203
		}
1204
		if (curval != *cmpval) {
Linus Torvalds's avatar
Linus Torvalds committed
1205 1206 1207 1208 1209
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1210
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1211 1212 1213 1214 1215 1216
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1217
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1218
						 &key2, &pi_state, nr_requeue);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
1242
			ret = fault_in_user_writeable(uaddr2);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1258
	head1 = &hb1->chain;
Pierre Peiffer's avatar
Pierre Peiffer committed
1259
	plist_for_each_entry_safe(this, next, head1, list) {
1260 1261 1262 1263
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
Linus Torvalds's avatar
Linus Torvalds committed
1264
			continue;
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
		 */
		if ((requeue_pi && !this->rt_waiter) ||
		    (!requeue_pi && this->rt_waiter)) {
			ret = -EINVAL;
			break;
		}
1275 1276 1277 1278 1279 1280 1281

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
Linus Torvalds's avatar
Linus Torvalds committed
1282
			wake_futex(this);
1283 1284
			continue;
		}
Linus Torvalds's avatar
Linus Torvalds committed
1285

1286 1287 1288 1289 1290 1291
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1305
				requeue_pi_wake_futex(this, &key2, hb2);
1306 1307 1308 1309 1310 1311 1312
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
Linus Torvalds's avatar
Linus Torvalds committed
1313
		}
1314 1315
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
Linus Torvalds's avatar
Linus Torvalds committed
1316 1317 1318
	}

out_unlock:
Darren Hart's avatar
Darren Hart committed
1319
	double_unlock_hb(hb1, hb2);
Linus Torvalds's avatar
Linus Torvalds committed
1320

1321 1322 1323 1324 1325 1326
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
1327
	while (--drop_count >= 0)
1328
		drop_futex_key_refs(&key1);
Linus Torvalds's avatar
Linus Torvalds committed
1329

1330
out_put_keys:
1331
	put_futex_key(fshared, &key2);
1332
out_put_key1:
1333
	put_futex_key(fshared, &key1);
1334
out:
1335 1336 1337
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
Linus Torvalds's avatar
Linus Torvalds committed
1338 1339 1340
}

/* The key must be already stored in q->key. */
Eric Sesterhenn's avatar
Eric Sesterhenn committed
1341
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
Linus Torvalds's avatar
Linus Torvalds committed
1342
{
1343
	struct futex_hash_bucket *hb;
Linus Torvalds's avatar
Linus Torvalds committed
1344

1345
	get_futex_key_refs(&q->key);
1346 1347
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
Linus Torvalds's avatar
Linus Torvalds committed
1348

1349 1350
	spin_lock(&hb->lock);
	return hb;
Linus Torvalds's avatar
Linus Torvalds committed
1351 1352
}

Eric Sesterhenn's avatar
Eric Sesterhenn committed
1353
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
Linus Torvalds's avatar
Linus Torvalds committed
1354
{
Pierre Peiffer's avatar
Pierre Peiffer committed
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
	q->list.plist.lock = &hb->lock;
#endif
	plist_add(&q->list, &hb->chain);
1372
	q->task = current;
1373
	spin_unlock(&hb->lock);
Linus Torvalds's avatar
Linus Torvalds committed
1374 1375 1376
}

static inline void
1377
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
Linus Torvalds's avatar
Linus Torvalds committed
1378
{
1379
	spin_unlock(&hb->lock);
1380
	drop_futex_key_refs(&q->key);
Linus Torvalds's avatar
Linus Torvalds committed
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
}

/*
 * queue_me and unqueue_me must be called as a pair, each
 * exactly once.  They are called with the hashed spinlock held.
 */

/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1392
	int ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
1393 1394

	/* In the common case we don't take the spinlock, which is nice. */
1395
retry:
Linus Torvalds's avatar
Linus Torvalds committed
1396
	lock_ptr = q->lock_ptr;
1397
	barrier();
1398
	if (lock_ptr != NULL) {
Linus Torvalds's avatar
Linus Torvalds committed
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
Pierre Peiffer's avatar
Pierre Peiffer committed
1417 1418
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1419 1420 1421

		BUG_ON(q->pi_state);

Linus Torvalds's avatar
Linus Torvalds committed
1422 1423 1424 1425
		spin_unlock(lock_ptr);
		ret = 1;
	}

1426
	drop_futex_key_refs(&q->key);
Linus Torvalds's avatar
Linus Torvalds committed
1427 1428 1429
	return ret;
}

1430 1431
/*
 * PI futexes can not be requeued and must remove themself from the
1432 1433
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1434
 */
1435
static void unqueue_me_pi(struct futex_q *q)
1436
{
Pierre Peiffer's avatar
Pierre Peiffer committed
1437 1438
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1439 1440 1441 1442 1443

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

1444
	spin_unlock(q->lock_ptr);
1445

1446
	drop_futex_key_refs(&q->key);
1447 1448
}

1449
/*
1450
 * Fixup the pi_state owner with the new owner.
1451
 *
1452 1453
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
1454
 */
1455
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
Peter Zijlstra's avatar
Peter Zijlstra committed
1456
				struct task_struct *newowner, int fshared)
1457
{
1458
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1459
	struct futex_pi_state *pi_state = q->pi_state;
1460
	struct task_struct *oldowner = pi_state->owner;
1461
	u32 uval, curval, newval;
Darren Hart's avatar
Darren Hart committed
1462
	int ret;
1463 1464

	/* Owner died? */
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
Darren Hart's avatar
Darren Hart committed
1475 1476 1477
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

		if (curval == -EFAULT)
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
1505 1506 1507 1508 1509
	if (pi_state->owner != NULL) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);
1510
	}
1511

1512
	pi_state->owner = newowner;
1513

1514
	spin_lock_irq(&newowner->pi_lock);
1515
	WARN_ON(!list_empty(&pi_state->list));
1516 1517
	list_add(&pi_state->list, &newowner->pi_state_list);
	spin_unlock_irq(&newowner->pi_lock);
1518
	return 0;
1519 1520

	/*
1521 1522 1523 1524 1525 1526 1527 1528
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
1529
	 */
1530 1531
handle_fault:
	spin_unlock(q->lock_ptr);
1532

1533
	ret = fault_in_user_writeable(uaddr);
1534

1535
	spin_lock(q->lock_ptr);
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
1547 1548
}

Eric Dumazet's avatar
Eric Dumazet committed
1549 1550
/*
 * In case we must use restart_block to restart a futex_wait,
1551
 * we encode in the 'flags' shared capability
Eric Dumazet's avatar
Eric Dumazet committed
1552
 */
1553 1554
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
1555
#define FLAGS_HAS_TIMEOUT	0x04
Eric Dumazet's avatar
Eric Dumazet committed
1556

Nick Piggin's avatar
Nick Piggin committed
1557
static long futex_wait_restart(struct restart_block *restart);
Thomas Gleixner's avatar
Thomas Gleixner committed
1558

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
		       int locked)
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
			ret = fixup_pi_state_owner(uaddr, q, current, fshared);
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
		ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1632 1633 1634 1635 1636 1637 1638
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1639
				struct hrtimer_sleeper *timeout)
1640 1641 1642 1643 1644 1645 1646
{
	queue_me(q, hb);

	/*
	 * There might have been scheduling since the queue_me(), as we
	 * cannot hold a spinlock across the get_user() in case it
	 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1647
	 * queueing ourselves into the futex hash. This code thus has to
1648 1649 1650
	 * rely on the futex_wake() code removing us from hash when it
	 * wakes us up.
	 */
1651
	set_current_state(TASK_INTERRUPTIBLE);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
	 * !plist_node_empty() is safe here without any lock.
	 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
			   struct futex_q *q, struct futex_hash_bucket **hb)
Linus Torvalds's avatar
Linus Torvalds committed
1695
{
1696 1697
	u32 uval;
	int ret;
Linus Torvalds's avatar
Linus Torvalds committed
1698 1699

	/*
Darren Hart's avatar
Darren Hart committed
1700
	 * Access the page AFTER the hash-bucket is locked.
Linus Torvalds's avatar
Linus Torvalds committed
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 */
1716 1717
retry:
	q->key = FUTEX_KEY_INIT;
1718
	ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1719
	if (unlikely(ret != 0))
1720
		return ret;
1721 1722 1723 1724

retry_private:
	*hb = queue_lock(q);

1725
	ret = get_futex_value_locked(&uval, uaddr);
Linus Torvalds's avatar
Linus Torvalds committed
1726

1727 1728
	if (ret) {
		queue_unlock(q, *hb);
Linus Torvalds's avatar
Linus Torvalds committed
1729

1730
		ret = get_user(uval, uaddr);
Darren Hart's avatar
Darren Hart committed
1731
		if (ret)
1732
			goto out;
Linus Torvalds's avatar
Linus Torvalds committed
1733

Darren Hart's avatar
Darren Hart committed
1734 1735 1736
		if (!fshared)
			goto retry_private;

1737
		put_futex_key(fshared, &q->key);
Darren Hart's avatar
Darren Hart committed
1738
		goto retry;
Linus Torvalds's avatar
Linus Torvalds committed
1739
	}
1740

1741 1742 1743
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
Peter Zijlstra's avatar
Peter Zijlstra committed
1744
	}
Linus Torvalds's avatar
Linus Torvalds committed
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
out:
	if (ret)
		put_futex_key(fshared, &q->key);
	return ret;
}

static int futex_wait(u32 __user *uaddr, int fshared,
		      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.pi_state = NULL;
	q.bitset = bitset;
1766
	q.rt_waiter = NULL;
1767
	q.requeue_pi_key = NULL;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

	if (abs_time) {
		to = &timeout;

		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret)
		goto out;

1784
	/* queue_me and wait for wakeup, timeout, or a signal. */
1785
	futex_wait_queue_me(hb, &q, to);
Linus Torvalds's avatar
Linus Torvalds committed
1786 1787

	/* If we were woken (and unqueued), we succeeded, whatever. */
Peter Zijlstra's avatar
Peter Zijlstra committed
1788
	ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
1789
	if (!unqueue_me(&q))
Peter Zijlstra's avatar
Peter Zijlstra committed
1790 1791
		goto out_put_key;
	ret = -ETIMEDOUT;
1792
	if (to && !to->task)
Peter Zijlstra's avatar
Peter Zijlstra committed
1793
		goto out_put_key;
Nick Piggin's avatar
Nick Piggin committed
1794

1795 1796 1797 1798
	/*
	 * We expect signal_pending(current), but another thread may
	 * have handled it for us already.
	 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1799
	ret = -ERESTARTSYS;
1800
	if (!abs_time)
Peter Zijlstra's avatar
Peter Zijlstra committed
1801
		goto out_put_key;
Linus Torvalds's avatar
Linus Torvalds committed
1802

Peter Zijlstra's avatar
Peter Zijlstra committed
1803 1804 1805 1806 1807 1808
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
	restart->futex.uaddr = (u32 *)uaddr;
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1809
	restart->futex.flags = FLAGS_HAS_TIMEOUT;
Peter Zijlstra's avatar
Peter Zijlstra committed
1810 1811 1812 1813 1814

	if (fshared)
		restart->futex.flags |= FLAGS_SHARED;
	if (clockrt)
		restart->futex.flags |= FLAGS_CLOCKRT;
1815

Peter Zijlstra's avatar
Peter Zijlstra committed
1816 1817 1818 1819
	ret = -ERESTART_RESTARTBLOCK;

out_put_key:
	put_futex_key(fshared, &q.key);
1820
out:
1821 1822 1823 1824
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1825 1826 1827
	return ret;
}

Nick Piggin's avatar
Nick Piggin committed
1828 1829 1830

static long futex_wait_restart(struct restart_block *restart)
{
1831
	u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
Peter Zijlstra's avatar
Peter Zijlstra committed
1832
	int fshared = 0;
1833
	ktime_t t, *tp = NULL;
Nick Piggin's avatar
Nick Piggin committed
1834

1835 1836 1837 1838
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
Nick Piggin's avatar
Nick Piggin committed
1839
	restart->fn = do_no_restart_syscall;
1840
	if (restart->futex.flags & FLAGS_SHARED)
Peter Zijlstra's avatar
Peter Zijlstra committed
1841
		fshared = 1;
1842
	return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1843 1844
				restart->futex.bitset,
				restart->futex.flags & FLAGS_CLOCKRT);
Nick Piggin's avatar
Nick Piggin committed
1845 1846 1847
}


1848 1849 1850 1851 1852 1853
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1854
static int futex_lock_pi(u32 __user *uaddr, int fshared,
Eric Dumazet's avatar
Eric Dumazet committed
1855
			 int detect, ktime_t *time, int trylock)
1856
{
1857
	struct hrtimer_sleeper timeout, *to = NULL;
1858 1859
	struct futex_hash_bucket *hb;
	struct futex_q q;
1860
	int res, ret;
1861 1862 1863 1864

	if (refill_pi_state_cache())
		return -ENOMEM;

1865
	if (time) {
1866
		to = &timeout;
1867 1868
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1869
		hrtimer_init_sleeper(to, current);
1870
		hrtimer_set_expires(&to->timer, *time);
1871 1872
	}

1873
	q.pi_state = NULL;
1874
	q.rt_waiter = NULL;
1875
	q.requeue_pi_key = NULL;
1876
retry:
1877
	q.key = FUTEX_KEY_INIT;
1878
	ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1879
	if (unlikely(ret != 0))
1880
		goto out;
1881

Darren Hart's avatar
Darren Hart committed
1882
retry_private:
Eric Sesterhenn's avatar
Eric Sesterhenn committed
1883
	hb = queue_lock(&q);
1884

1885
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1886
	if (unlikely(ret)) {
1887
		switch (ret) {
1888 1889 1890 1891 1892 1893
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1894 1895 1896 1897 1898 1899
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1900
			put_futex_key(fshared, &q.key);
1901 1902 1903
			cond_resched();
			goto retry;
		default:
1904
			goto out_unlock_put_key;
1905 1906 1907 1908 1909 1910
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
Eric Sesterhenn's avatar
Eric Sesterhenn committed
1911
	queue_me(&q, hb);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1925
	spin_lock(q.lock_ptr);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, fshared, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1937

1938
	/*
1939 1940
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1941 1942 1943 1944
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

1945 1946
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
1947

1948
	goto out;
1949

1950
out_unlock_put_key:
1951 1952
	queue_unlock(&q, hb);

1953
out_put_key:
1954
	put_futex_key(fshared, &q.key);
1955
out:
1956 1957
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
1958
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
1959

1960
uaddr_faulted:
1961 1962
	queue_unlock(&q, hb);

1963
	ret = fault_in_user_writeable(uaddr);
Darren Hart's avatar
Darren Hart committed
1964 1965
	if (ret)
		goto out_put_key;
1966

Darren Hart's avatar
Darren Hart committed
1967 1968 1969 1970 1971
	if (!fshared)
		goto retry_private;

	put_futex_key(fshared, &q.key);
	goto retry;
1972 1973 1974 1975 1976 1977 1978
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1979
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1980 1981 1982 1983
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
Pierre Peiffer's avatar
Pierre Peiffer committed
1984
	struct plist_head *head;
1985
	union futex_key key = FUTEX_KEY_INIT;
Darren Hart's avatar
Darren Hart committed
1986
	int ret;
1987 1988 1989 1990 1991 1992 1993

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
1994
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1995 1996
		return -EPERM;

1997
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
Thomas Gleixner's avatar
Thomas Gleixner committed
2009
	if (!(uval & FUTEX_OWNER_DIED))
2010
		uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
Thomas Gleixner's avatar
Thomas Gleixner committed
2011

2012 2013 2014 2015 2016 2017 2018

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2019
	if (unlikely(uval == task_pid_vnr(current)))
2020 2021 2022 2023 2024 2025 2026 2027
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

Pierre Peiffer's avatar
Pierre Peiffer committed
2028
	plist_for_each_entry_safe(this, next, head, list) {
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2044 2045 2046 2047 2048
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2049 2050 2051

out_unlock:
	spin_unlock(&hb->lock);
2052
	put_futex_key(fshared, &key);
2053

2054
out:
2055 2056 2057
	return ret;

pi_faulted:
2058
	spin_unlock(&hb->lock);
Darren Hart's avatar
Darren Hart committed
2059
	put_futex_key(fshared, &key);
2060

2061
	ret = fault_in_user_writeable(uaddr);
2062
	if (!ret)
2063 2064
		goto retry;

Linus Torvalds's avatar
Linus Torvalds committed
2065 2066 2067
	return ret;
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2082
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);
		drop_futex_key_refs(&q->key);

		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
2109 2110
		else
			ret = -ERESTARTNOINTR;
2111 2112 2113 2114 2115 2116
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2117
 * @uaddr:	the futex we initially wait on (non-pi)
2118 2119 2120 2121
 * @fshared:	whether the futexes are shared (1) or not (0).  They must be
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2122
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2136 2137 2138
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2139
 *
2140
 * If 3, cleanup and return -ERESTARTNOINTR.
2141 2142 2143 2144 2145 2146 2147
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2148
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 int clockrt, u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
	union futex_key key2;
	struct futex_q q;
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

	key2 = FUTEX_KEY_INIT;
2188
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2189 2190 2191
	if (unlikely(ret != 0))
		goto out;

2192 2193 2194 2195 2196
	q.pi_state = NULL;
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2197 2198
	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
Thomas Gleixner's avatar
Thomas Gleixner committed
2199 2200
	if (ret)
		goto out_key2;
2201 2202

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2203
	futex_wait_queue_me(hb, &q, to);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
	 * race with the atomic proxy lock acquition by the requeue code.
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_pi_state_owner(uaddr2, &q, current,
						   fshared);
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, fshared, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2249
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2267 2268 2269 2270 2271
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2272
		 */
2273
		ret = -EWOULDBLOCK;
2274 2275 2276 2277
	}

out_put_keys:
	put_futex_key(fshared, &q.key);
Thomas Gleixner's avatar
Thomas Gleixner committed
2278
out_key2:
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	put_futex_key(fshared, &key2);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2289 2290 2291 2292 2293 2294 2295
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2296
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
 * sys_set_robust_list - set the robust-futex list head of a task
 * @head: pointer to the list-head
 * @len: length of the list-head, as userspace expects
 */
2309 2310
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2311
{
2312 2313
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
 * sys_get_robust_list - get the robust-futex list head of a task
 * @pid: pid of the process [zero for current task]
 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
 * @len_ptr: pointer to a length field, the kernel fills in the header size
 */
2331 2332 2333
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2334
{
Al Viro's avatar
Al Viro committed
2335
	struct robust_list_head __user *head;
2336
	unsigned long ret;
2337
	const struct cred *cred = current_cred(), *pcred;
2338

2339 2340 2341
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2342 2343 2344 2345 2346 2347
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2348
		rcu_read_lock();
2349
		p = find_task_by_vpid(pid);
2350 2351 2352
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2353 2354 2355
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2356
		    !capable(CAP_SYS_PTRACE))
2357 2358
			goto err_unlock;
		head = p->robust_list;
2359
		rcu_read_unlock();
2360 2361 2362 2363 2364 2365 2366
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2367
	rcu_read_unlock();
2368 2369 2370 2371 2372 2373 2374 2375

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2376
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2377
{
2378
	u32 uval, nval, mval;
2379

2380 2381
retry:
	if (get_user(uval, uaddr))
2382 2383
		return -1;

2384
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2395 2396 2397
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

2398 2399 2400 2401
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
2402
			goto retry;
2403

2404 2405 2406 2407
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
Thomas Gleixner's avatar
Thomas Gleixner committed
2408
		if (!pi && (uval & FUTEX_WAITERS))
Peter Zijlstra's avatar
Peter Zijlstra committed
2409
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2410 2411 2412 2413
	}
	return 0;
}

2414 2415 2416 2417
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
Al Viro's avatar
Al Viro committed
2418 2419
				     struct robust_list __user * __user *head,
				     int *pi)
2420 2421 2422
{
	unsigned long uentry;

Al Viro's avatar
Al Viro committed
2423
	if (get_user(uentry, (unsigned long __user *)head))
2424 2425
		return -EFAULT;

Al Viro's avatar
Al Viro committed
2426
	*entry = (void __user *)(uentry & ~1UL);
2427 2428 2429 2430 2431
	*pi = uentry & 1;

	return 0;
}

2432 2433 2434 2435 2436 2437 2438 2439 2440
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
2441 2442
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2443
	unsigned long futex_offset;
2444
	int rc;
2445

2446 2447 2448
	if (!futex_cmpxchg_enabled)
		return;

2449 2450 2451 2452
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2453
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2464
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2465
		return;
2466

2467
	next_entry = NULL;	/* avoid warning with gcc */
2468
	while (entry != &head->list) {
2469 2470 2471 2472 2473
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2474 2475
		/*
		 * A pending lock might already be on the list, so
2476
		 * don't process it twice:
2477 2478
		 */
		if (entry != pending)
Al Viro's avatar
Al Viro committed
2479
			if (handle_futex_death((void __user *)entry + futex_offset,
2480
						curr, pi))
2481
				return;
2482
		if (rc)
2483
			return;
2484 2485
		entry = next_entry;
		pi = next_pi;
2486 2487 2488 2489 2490 2491 2492 2493
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
2494 2495 2496 2497

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2498 2499
}

2500
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2501
		u32 __user *uaddr2, u32 val2, u32 val3)
Linus Torvalds's avatar
Linus Torvalds committed
2502
{
2503
	int clockrt, ret = -ENOSYS;
Eric Dumazet's avatar
Eric Dumazet committed
2504
	int cmd = op & FUTEX_CMD_MASK;
Peter Zijlstra's avatar
Peter Zijlstra committed
2505
	int fshared = 0;
Eric Dumazet's avatar
Eric Dumazet committed
2506 2507

	if (!(op & FUTEX_PRIVATE_FLAG))
Peter Zijlstra's avatar
Peter Zijlstra committed
2508
		fshared = 1;
Linus Torvalds's avatar
Linus Torvalds committed
2509

2510
	clockrt = op & FUTEX_CLOCK_REALTIME;
2511
	if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2512
		return -ENOSYS;
Linus Torvalds's avatar
Linus Torvalds committed
2513

Eric Dumazet's avatar
Eric Dumazet committed
2514
	switch (cmd) {
Linus Torvalds's avatar
Linus Torvalds committed
2515
	case FUTEX_WAIT:
2516 2517
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2518
		ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
Linus Torvalds's avatar
Linus Torvalds committed
2519 2520
		break;
	case FUTEX_WAKE:
2521 2522 2523
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
		ret = futex_wake(uaddr, fshared, val, val3);
Linus Torvalds's avatar
Linus Torvalds committed
2524 2525
		break;
	case FUTEX_REQUEUE:
2526
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
Linus Torvalds's avatar
Linus Torvalds committed
2527 2528
		break;
	case FUTEX_CMP_REQUEUE:
2529 2530
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    0);
Linus Torvalds's avatar
Linus Torvalds committed
2531
		break;
2532
	case FUTEX_WAKE_OP:
Eric Dumazet's avatar
Eric Dumazet committed
2533
		ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2534
		break;
2535
	case FUTEX_LOCK_PI:
2536 2537
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2538 2539
		break;
	case FUTEX_UNLOCK_PI:
2540 2541
		if (futex_cmpxchg_enabled)
			ret = futex_unlock_pi(uaddr, fshared);
2542 2543
		break;
	case FUTEX_TRYLOCK_PI:
2544 2545
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2546
		break;
2547 2548 2549 2550 2551 2552 2553 2554 2555
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
					    clockrt, uaddr2);
		break;
	case FUTEX_CMP_REQUEUE_PI:
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    1);
		break;
Linus Torvalds's avatar
Linus Torvalds committed
2556 2557 2558 2559 2560 2561 2562
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2563 2564 2565
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
Linus Torvalds's avatar
Linus Torvalds committed
2566
{
2567 2568
	struct timespec ts;
	ktime_t t, *tp = NULL;
2569
	u32 val2 = 0;
Eric Dumazet's avatar
Eric Dumazet committed
2570
	int cmd = op & FUTEX_CMD_MASK;
Linus Torvalds's avatar
Linus Torvalds committed
2571

2572
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2573 2574
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2575
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
Linus Torvalds's avatar
Linus Torvalds committed
2576
			return -EFAULT;
2577
		if (!timespec_valid(&ts))
2578
			return -EINVAL;
2579 2580

		t = timespec_to_ktime(ts);
Eric Dumazet's avatar
Eric Dumazet committed
2581
		if (cmd == FUTEX_WAIT)
2582
			t = ktime_add_safe(ktime_get(), t);
2583
		tp = &t;
Linus Torvalds's avatar
Linus Torvalds committed
2584 2585
	}
	/*
2586
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2587
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
Linus Torvalds's avatar
Linus Torvalds committed
2588
	 */
2589
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2590
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2591
		val2 = (u32) (unsigned long) utime;
Linus Torvalds's avatar
Linus Torvalds committed
2592

2593
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
Linus Torvalds's avatar
Linus Torvalds committed
2594 2595
}

2596
static int __init futex_init(void)
Linus Torvalds's avatar
Linus Torvalds committed
2597
{
2598
	u32 curval;
Thomas Gleixner's avatar
Thomas Gleixner committed
2599
	int i;
2600

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non functional ones will return
	 * -ENOSYS.
	 */
	curval = cmpxchg_futex_value_locked(NULL, 0, 0);
	if (curval == -EFAULT)
		futex_cmpxchg_enabled = 1;

Thomas Gleixner's avatar
Thomas Gleixner committed
2615 2616 2617 2618 2619
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

Linus Torvalds's avatar
Linus Torvalds committed
2620 2621
	return 0;
}
2622
__initcall(futex_init);