ksz8795.c 47 KB
Newer Older
1 2 3 4 5 6 7 8
// SPDX-License-Identifier: GPL-2.0
/*
 * Microchip KSZ8795 switch driver
 *
 * Copyright (C) 2017 Microchip Technology Inc.
 *	Tristram Ha <Tristram.Ha@microchip.com>
 */

9
#include <linux/bitfield.h>
10 11 12
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
13
#include <linux/if_vlan.h>
14 15 16 17 18 19
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
20
#include <linux/micrel_phy.h>
21 22
#include <net/dsa.h>
#include <net/switchdev.h>
23
#include <linux/phylink.h>
24 25 26

#include "ksz_common.h"
#include "ksz8795_reg.h"
27 28
#include "ksz8.h"

29 30
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
31
	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
32 33 34 35 36
}

static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
			 bool set)
{
37
	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
38 39 40
			   bits, set ? bits : 0);
}

41 42
static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
{
43
	const u16 *regs;
44 45 46
	u16 ctrl_addr;
	int ret = 0;

47 48
	regs = dev->info->regs;

49 50 51
	mutex_lock(&dev->alu_mutex);

	ctrl_addr = IND_ACC_TABLE(table) | addr;
52
	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
53
	if (!ret)
54
		ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
55 56 57 58 59 60

	mutex_unlock(&dev->alu_mutex);

	return ret;
}

61
int ksz8_reset_switch(struct ksz_device *dev)
62
{
63 64 65 66 67 68 69 70 71 72 73 74
	if (ksz_is_ksz88x3(dev)) {
		/* reset switch */
		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
	} else {
		/* reset switch */
		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
	}
75 76 77 78

	return 0;
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
{
	u8 ctrl2 = 0;

	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;

	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
}

static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
{
	u8 ctrl1 = 0, ctrl2 = 0;
	int ret;

	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99
	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
		ctrl1 |= SW_HUGE_PACKET;

	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
	if (ret)
		return ret;

	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
}

int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
{
	u16 frame_size;

	if (!dsa_is_cpu_port(dev->ds, port))
		return 0;

	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;

	switch (dev->chip_id) {
	case KSZ8795_CHIP_ID:
	case KSZ8794_CHIP_ID:
	case KSZ8765_CHIP_ID:
		return ksz8795_change_mtu(dev, frame_size);
	case KSZ8830_CHIP_ID:
		return ksz8863_change_mtu(dev, frame_size);
	}

	return -EOPNOTSUPP;
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
{
	u8 hi, lo;

	/* Number of queues can only be 1, 2, or 4. */
	switch (queue) {
	case 4:
	case 3:
		queue = PORT_QUEUE_SPLIT_4;
		break;
	case 2:
		queue = PORT_QUEUE_SPLIT_2;
		break;
	default:
		queue = PORT_QUEUE_SPLIT_1;
	}
	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
	lo &= ~PORT_QUEUE_SPLIT_L;
	if (queue & PORT_QUEUE_SPLIT_2)
		lo |= PORT_QUEUE_SPLIT_L;
	hi &= ~PORT_QUEUE_SPLIT_H;
	if (queue & PORT_QUEUE_SPLIT_4)
		hi |= PORT_QUEUE_SPLIT_H;
	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);

	/* Default is port based for egress rate limit. */
	if (queue != PORT_QUEUE_SPLIT_1)
		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
			true);
}

163
void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164
{
165
	const u32 *masks;
166
	const u16 *regs;
167 168 169 170 171
	u16 ctrl_addr;
	u32 data;
	u8 check;
	int loop;

172
	masks = dev->info->masks;
173
	regs = dev->info->regs;
174

175
	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176 177 178
	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);

	mutex_lock(&dev->alu_mutex);
179
	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
180 181 182 183 184

	/* It is almost guaranteed to always read the valid bit because of
	 * slow SPI speed.
	 */
	for (loop = 2; loop > 0; loop--) {
185
		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
186

187 188 189
		if (check & masks[MIB_COUNTER_VALID]) {
			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
			if (check & masks[MIB_COUNTER_OVERFLOW])
190 191 192 193 194 195 196 197
				*cnt += MIB_COUNTER_VALUE + 1;
			*cnt += data & MIB_COUNTER_VALUE;
			break;
		}
	}
	mutex_unlock(&dev->alu_mutex);
}

198 199
static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
			      u64 *dropped, u64 *cnt)
200
{
201
	const u32 *masks;
202
	const u16 *regs;
203 204 205 206 207
	u16 ctrl_addr;
	u32 data;
	u8 check;
	int loop;

208
	masks = dev->info->masks;
209
	regs = dev->info->regs;
210

211
	addr -= dev->info->reg_mib_cnt;
212 213
	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214 215 216
	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);

	mutex_lock(&dev->alu_mutex);
217
	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 219 220 221 222

	/* It is almost guaranteed to always read the valid bit because of
	 * slow SPI speed.
	 */
	for (loop = 2; loop > 0; loop--) {
223
		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
224

225 226
		if (check & masks[MIB_COUNTER_VALID]) {
			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
227 228 229 230 231 232 233
			if (addr < 2) {
				u64 total;

				total = check & MIB_TOTAL_BYTES_H;
				total <<= 32;
				*cnt += total;
				*cnt += data;
234
				if (check & masks[MIB_COUNTER_OVERFLOW]) {
235 236 237 238 239
					total = MIB_TOTAL_BYTES_H + 1;
					total <<= 32;
					*cnt += total;
				}
			} else {
240
				if (check & masks[MIB_COUNTER_OVERFLOW])
241 242 243 244 245 246 247 248 249
					*cnt += MIB_PACKET_DROPPED + 1;
				*cnt += data & MIB_PACKET_DROPPED;
			}
			break;
		}
	}
	mutex_unlock(&dev->alu_mutex);
}

250 251 252 253
static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
			      u64 *dropped, u64 *cnt)
{
	u32 *last = (u32 *)dropped;
254
	const u16 *regs;
255 256 257 258
	u16 ctrl_addr;
	u32 data;
	u32 cur;

259 260
	regs = dev->info->regs;

261
	addr -= dev->info->reg_mib_cnt;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
	ctrl_addr += port;
	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);

	mutex_lock(&dev->alu_mutex);
	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
	mutex_unlock(&dev->alu_mutex);

	data &= MIB_PACKET_DROPPED;
	cur = last[addr];
	if (data != cur) {
		last[addr] = data;
		if (data < cur)
			data += MIB_PACKET_DROPPED + 1;
		data -= cur;
		*cnt += data;
	}
}

283 284
void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
		    u64 *dropped, u64 *cnt)
285 286 287 288 289 290 291
{
	if (ksz_is_ksz88x3(dev))
		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
	else
		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
}

292
void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293
{
294 295 296
	if (ksz_is_ksz88x3(dev))
		return;

297 298 299 300 301 302 303 304 305 306
	/* enable the port for flush/freeze function */
	if (freeze)
		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);

	/* disable the port after freeze is done */
	if (!freeze)
		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
}

307
void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308 309
{
	struct ksz_port_mib *mib = &dev->ports[port].mib;
310
	u64 *dropped;
311

312 313 314 315 316 317
	if (!ksz_is_ksz88x3(dev)) {
		/* flush all enabled port MIB counters */
		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
	}
318 319 320 321

	mib->cnt_ptr = 0;

	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322
	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323 324 325 326 327
		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
					&mib->counters[mib->cnt_ptr]);
		++mib->cnt_ptr;
	}

328
	/* last one in storage */
329
	dropped = &mib->counters[dev->info->mib_cnt];
330

331
	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332
	while (mib->cnt_ptr < dev->info->mib_cnt) {
333
		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334
					dropped, &mib->counters[mib->cnt_ptr]);
335 336 337 338
		++mib->cnt_ptr;
	}
}

339
static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340
{
341
	const u16 *regs;
342
	u16 ctrl_addr;
343
	int ret;
344

345 346
	regs = dev->info->regs;

347 348 349
	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;

	mutex_lock(&dev->alu_mutex);
350 351 352 353 354 355
	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
	if (ret)
		goto unlock_alu;

	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
unlock_alu:
356
	mutex_unlock(&dev->alu_mutex);
357 358

	return ret;
359 360
}

361
static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
362
{
363
	const u16 *regs;
364
	u16 ctrl_addr;
365
	int ret;
366

367 368
	regs = dev->info->regs;

369 370 371
	ctrl_addr = IND_ACC_TABLE(table) | addr;

	mutex_lock(&dev->alu_mutex);
372 373 374 375 376 377
	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
	if (ret)
		goto unlock_alu;

	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
unlock_alu:
378
	mutex_unlock(&dev->alu_mutex);
379 380

	return ret;
381 382
}

383
static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
384 385
{
	int timeout = 100;
386
	const u32 *masks;
387
	const u16 *regs;
388

389
	masks = dev->info->masks;
390
	regs = dev->info->regs;
391 392

	do {
393
		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
394
		timeout--;
395
	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
396 397

	/* Entry is not ready for accessing. */
398
	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
399 400 401
		return -EAGAIN;
	/* Entry is ready for accessing. */
	} else {
402
		ksz_read8(dev, regs[REG_IND_DATA_8], data);
403 404

		/* There is no valid entry in the table. */
405
		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
406 407 408 409 410
			return -ENXIO;
	}
	return 0;
}

411 412
static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
				u8 *fid, u8 *src_port, u16 *entries)
413 414
{
	u32 data_hi, data_lo;
415 416
	const u8 *shifts;
	const u32 *masks;
417
	const u16 *regs;
418
	u16 ctrl_addr;
419
	u64 buf = 0;
420
	u8 data;
421
	int cnt;
422 423
	int rc;

424
	shifts = dev->info->shifts;
425
	masks = dev->info->masks;
426
	regs = dev->info->regs;
427

428 429 430
	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;

	mutex_lock(&dev->alu_mutex);
431
	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
432

433
	rc = ksz8_valid_dyn_entry(dev, &data);
434 435 436
	if (rc == -EAGAIN) {
		if (addr == 0)
			*entries = 0;
437
		goto unlock_alu;
438 439
	} else if (rc == -ENXIO) {
		*entries = 0;
440
		goto unlock_alu;
441
	}
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

	ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
	data_hi = (u32)(buf >> 32);
	data_lo = (u32)buf;

	/* Check out how many valid entry in the table. */
	cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
	cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
	cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
		shifts[DYNAMIC_MAC_ENTRIES];
	*entries = cnt + 1;

	*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
		shifts[DYNAMIC_MAC_FID];
	*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
		shifts[DYNAMIC_MAC_SRC_PORT];

	mac_addr[5] = (u8)data_lo;
	mac_addr[4] = (u8)(data_lo >> 8);
	mac_addr[3] = (u8)(data_lo >> 16);
	mac_addr[2] = (u8)(data_lo >> 24);

	mac_addr[1] = (u8)data_hi;
	mac_addr[0] = (u8)(data_hi >> 8);
	rc = 0;

unlock_alu:
469 470 471 472 473
	mutex_unlock(&dev->alu_mutex);

	return rc;
}

474
static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
475
				struct alu_struct *alu, bool *valid)
476 477
{
	u32 data_hi, data_lo;
478 479
	const u8 *shifts;
	const u32 *masks;
480
	u64 data;
481
	int ret;
482

483
	shifts = dev->info->shifts;
484
	masks = dev->info->masks;
485

486 487 488 489
	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
	if (ret)
		return ret;

490 491
	data_hi = data >> 32;
	data_lo = (u32)data;
492 493 494 495

	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
		*valid = false;
496 497
		return 0;
	}
498 499 500 501 502 503 504 505 506 507 508

	alu->mac[5] = (u8)data_lo;
	alu->mac[4] = (u8)(data_lo >> 8);
	alu->mac[3] = (u8)(data_lo >> 16);
	alu->mac[2] = (u8)(data_lo >> 24);
	alu->mac[1] = (u8)data_hi;
	alu->mac[0] = (u8)(data_hi >> 8);
	alu->port_forward =
		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
			shifts[STATIC_MAC_FWD_PORTS];
	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
509 510 511 512 513 514 515

	/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
	 * static MAC table compared to doing write.
	 */
	if (ksz_is_ksz87xx(dev))
		data_hi >>= 1;
516 517 518 519 520 521 522 523
	alu->is_static = true;
	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
		shifts[STATIC_MAC_FID];

	*valid = true;

	return 0;
524 525
}

526 527
static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
				struct alu_struct *alu)
528 529
{
	u32 data_hi, data_lo;
530 531
	const u8 *shifts;
	const u32 *masks;
532 533
	u64 data;

534
	shifts = dev->info->shifts;
535
	masks = dev->info->masks;
536

537 538 539 540
	data_lo = ((u32)alu->mac[2] << 24) |
		((u32)alu->mac[3] << 16) |
		((u32)alu->mac[4] << 8) | alu->mac[5];
	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
541
	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
542 543

	if (alu->is_override)
544
		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
545
	if (alu->is_use_fid) {
546 547
		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
548 549
	}
	if (alu->is_static)
550
		data_hi |= masks[STATIC_MAC_TABLE_VALID];
551
	else
552
		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
553 554

	data = (u64)data_hi << 32 | data_lo;
555 556

	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
557 558
}

559 560
static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
			   u8 *member, u8 *valid)
561
{
562 563 564
	const u8 *shifts;
	const u32 *masks;

565
	shifts = dev->info->shifts;
566
	masks = dev->info->masks;
567 568 569 570 571

	*fid = vlan & masks[VLAN_TABLE_FID];
	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
			shifts[VLAN_TABLE_MEMBERSHIP_S];
	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
572 573
}

574 575
static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
			 u16 *vlan)
576
{
577 578 579
	const u8 *shifts;
	const u32 *masks;

580
	shifts = dev->info->shifts;
581
	masks = dev->info->masks;
582

583
	*vlan = fid;
584
	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
585
	if (valid)
586
		*vlan |= masks[VLAN_TABLE_VALID];
587 588
}

589
static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
590
{
591
	const u8 *shifts;
592 593 594
	u64 data;
	int i;

595
	shifts = dev->info->shifts;
596

597
	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
598 599
	addr *= 4;
	for (i = 0; i < 4; i++) {
600
		dev->vlan_cache[addr + i].table[0] = (u16)data;
601
		data >>= shifts[VLAN_TABLE];
602 603 604
	}
}

605
static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
606 607 608 609 610 611 612
{
	int index;
	u16 *data;
	u16 addr;
	u64 buf;

	data = (u16 *)&buf;
613
	addr = vid / 4;
614
	index = vid & 3;
615
	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
616 617 618
	*vlan = data[index];
}

619
static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
620 621 622 623 624 625 626
{
	int index;
	u16 *data;
	u16 addr;
	u64 buf;

	data = (u16 *)&buf;
627
	addr = vid / 4;
628
	index = vid & 3;
629
	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
630 631
	data[index] = vlan;
	dev->vlan_cache[vid].table[0] = vlan;
632
	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
/**
 * ksz879x_get_loopback - KSZ879x specific function to get loopback
 *                        configuration status for a specific port
 * @dev: Pointer to the device structure
 * @port: Port number to query
 * @val: Pointer to store the result
 *
 * This function reads the SMI registers to determine whether loopback mode
 * is enabled for a specific port.
 *
 * Return: 0 on success, error code on failure.
 */
static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
				u16 *val)
{
	u8 stat3;
	int ret;

	ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
	if (ret)
		return ret;

	if (stat3 & PORT_PHY_LOOPBACK)
		*val |= BMCR_LOOPBACK;

	return 0;
}

/**
 * ksz879x_set_loopback - KSZ879x specific function  to set loopback mode for
 *			  a specific port
 * @dev: Pointer to the device structure.
 * @port: Port number to modify.
 * @val: Value indicating whether to enable or disable loopback mode.
 *
 * This function translates loopback bit of the BMCR register into the
 * corresponding hardware register bit value and writes it to the SMI interface.
 *
 * Return: 0 on success, error code on failure.
 */
static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
{
	u8 stat3 = 0;

	if (val & BMCR_LOOPBACK)
		stat3 |= PORT_PHY_LOOPBACK;

	return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
			 stat3);
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/**
 * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
 *		     Control register (Reg. 31).
 * @dev: The KSZ device instance.
 * @port: The port number to be read.
 * @val: The value read from the SMI interface.
 *
 * This function reads the SMI interface and translates the hardware register
 * bit values into their corresponding control settings for a MIIM PHY Control
 * register.
 *
 * Return: 0 on success, error code on failure.
 */
static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
{
	const u16 *regs = dev->info->regs;
	u8 reg_val;
	int ret;

	*val = 0;

	ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], &reg_val);
	if (ret < 0)
		return ret;

	if (reg_val & PORT_MDIX_STATUS)
		*val |= KSZ886X_CTRL_MDIX_STAT;

	ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, &reg_val);
	if (ret < 0)
		return ret;

	if (reg_val & PORT_FORCE_LINK)
		*val |= KSZ886X_CTRL_FORCE_LINK;

	if (reg_val & PORT_POWER_SAVING)
		*val |= KSZ886X_CTRL_PWRSAVE;

	if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
		*val |= KSZ886X_CTRL_REMOTE_LOOPBACK;

	return 0;
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/**
 * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
 *		     Basic mode control register (Reg. 0).
 * @dev: The KSZ device instance.
 * @port: The port number to be read.
 * @val: The value read from the SMI interface.
 *
 * This function reads the SMI interface and translates the hardware register
 * bit values into their corresponding control settings for a MIIM PHY Basic
 * mode control register.
 *
 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
 * -------------------------------------------------------------------
 * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
 * ----------------------------+-----------------------------+----------------
 * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
 * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
 * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
 * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
 * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
 * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
 * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
 * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
 * Bit 7 - Collision Test/Res. | Not supported               | Not supported
 * Bit 6 - Reserved            | Not supported               | Not supported
 * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
 * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
 * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
 * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
 * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
 * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
 * -------------------------------------------------------------------
 *
 * Return: 0 on success, error code on failure.
 */
static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
{
	const u16 *regs = dev->info->regs;
	u8 restart, speed, ctrl;
	int ret;

	*val = 0;

	ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
	if (ret)
		return ret;

	ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
	if (ret)
		return ret;

	ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
	if (ret)
		return ret;

	if (ctrl & PORT_FORCE_100_MBIT)
		*val |= BMCR_SPEED100;

	if (ksz_is_ksz88x3(dev)) {
789 790 791
		if (restart & KSZ8873_PORT_PHY_LOOPBACK)
			*val |= BMCR_LOOPBACK;

792 793 794
		if ((ctrl & PORT_AUTO_NEG_ENABLE))
			*val |= BMCR_ANENABLE;
	} else {
795 796 797 798
		ret = ksz879x_get_loopback(dev, port, val);
		if (ret)
			return ret;

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		if (!(ctrl & PORT_AUTO_NEG_DISABLE))
			*val |= BMCR_ANENABLE;
	}

	if (restart & PORT_POWER_DOWN)
		*val |= BMCR_PDOWN;

	if (restart & PORT_AUTO_NEG_RESTART)
		*val |= BMCR_ANRESTART;

	if (ctrl & PORT_FORCE_FULL_DUPLEX)
		*val |= BMCR_FULLDPLX;

	if (speed & PORT_HP_MDIX)
		*val |= KSZ886X_BMCR_HP_MDIX;

	if (restart & PORT_FORCE_MDIX)
		*val |= KSZ886X_BMCR_FORCE_MDI;

	if (restart & PORT_AUTO_MDIX_DISABLE)
		*val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;

	if (restart & PORT_TX_DISABLE)
		*val |= KSZ886X_BMCR_DISABLE_TRANSMIT;

	if (restart & PORT_LED_OFF)
		*val |= KSZ886X_BMCR_DISABLE_LED;

	return 0;
}

830
int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
831
{
832
	u8 ctrl, link, val1, val2;
833
	int processed = true;
834
	const u16 *regs;
835
	u16 data = 0;
836
	u16 p = phy;
837
	int ret;
838

839 840
	regs = dev->info->regs;

841
	switch (reg) {
842
	case MII_BMCR:
843
		ret = ksz8_r_phy_bmcr(dev, p, &data);
844 845
		if (ret)
			return ret;
846
		break;
847
	case MII_BMSR:
848 849 850 851
		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
		if (ret)
			return ret;

852 853 854 855 856
		data = BMSR_100FULL |
		       BMSR_100HALF |
		       BMSR_10FULL |
		       BMSR_10HALF |
		       BMSR_ANEGCAPABLE;
857
		if (link & PORT_AUTO_NEG_COMPLETE)
858
			data |= BMSR_ANEGCOMPLETE;
859
		if (link & PORT_STAT_LINK_GOOD)
860
			data |= BMSR_LSTATUS;
861
		break;
862
	case MII_PHYSID1:
863 864
		data = KSZ8795_ID_HI;
		break;
865
	case MII_PHYSID2:
866 867 868 869
		if (ksz_is_ksz88x3(dev))
			data = KSZ8863_ID_LO;
		else
			data = KSZ8795_ID_LO;
870
		break;
871
	case MII_ADVERTISE:
872 873 874 875
		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
		if (ret)
			return ret;

876
		data = ADVERTISE_CSMA;
877
		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
878
			data |= ADVERTISE_PAUSE_CAP;
879
		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
880
			data |= ADVERTISE_100FULL;
881
		if (ctrl & PORT_AUTO_NEG_100BTX)
882
			data |= ADVERTISE_100HALF;
883
		if (ctrl & PORT_AUTO_NEG_10BT_FD)
884
			data |= ADVERTISE_10FULL;
885
		if (ctrl & PORT_AUTO_NEG_10BT)
886
			data |= ADVERTISE_10HALF;
887
		break;
888
	case MII_LPA:
889 890 891 892
		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
		if (ret)
			return ret;

893
		data = LPA_SLCT;
894
		if (link & PORT_REMOTE_SYM_PAUSE)
895
			data |= LPA_PAUSE_CAP;
896
		if (link & PORT_REMOTE_100BTX_FD)
897
			data |= LPA_100FULL;
898
		if (link & PORT_REMOTE_100BTX)
899
			data |= LPA_100HALF;
900
		if (link & PORT_REMOTE_10BT_FD)
901
			data |= LPA_10FULL;
902
		if (link & PORT_REMOTE_10BT)
903 904 905
			data |= LPA_10HALF;
		if (data & ~LPA_SLCT)
			data |= LPA_LPACK;
906
		break;
907
	case PHY_REG_LINK_MD:
908 909 910 911 912 913 914 915
		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
		if (ret)
			return ret;

		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
		if (ret)
			return ret;

916 917 918 919 920 921 922 923 924 925 926 927 928
		if (val1 & PORT_START_CABLE_DIAG)
			data |= PHY_START_CABLE_DIAG;

		if (val1 & PORT_CABLE_10M_SHORT)
			data |= PHY_CABLE_10M_SHORT;

		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));

		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
		break;
929
	case PHY_REG_PHY_CTRL:
930
		ret = ksz8_r_phy_ctrl(dev, p, &data);
931 932 933
		if (ret)
			return ret;

934
		break;
935 936 937 938 939 940
	default:
		processed = false;
		break;
	}
	if (processed)
		*val = data;
941 942

	return 0;
943 944
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/**
 * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
 *		     Control register (Reg. 31).
 * @dev: The KSZ device instance.
 * @port: The port number to be configured.
 * @val: The register value to be written.
 *
 * This function translates control settings from a MIIM PHY Control register
 * into their corresponding hardware register bit values for the SMI
 * interface.
 *
 * Return: 0 on success, error code on failure.
 */
static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
{
	u8 reg_val = 0;
	int ret;

	if (val & KSZ886X_CTRL_FORCE_LINK)
		reg_val |= PORT_FORCE_LINK;

	if (val & KSZ886X_CTRL_PWRSAVE)
		reg_val |= PORT_POWER_SAVING;

	if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
		reg_val |= PORT_PHY_REMOTE_LOOPBACK;

	ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
			PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
	return ret;
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
 *		     Basic mode control register (Reg. 0).
 * @dev: The KSZ device instance.
 * @port: The port number to be configured.
 * @val: The register value to be written.
 *
 * This function translates control settings from a MIIM PHY Basic mode control
 * register into their corresponding hardware register bit values for the SMI
 * interface.
 *
 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
 * -------------------------------------------------------------------
 * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
 * ----------------------------+-----------------------------+----------------
 * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
 * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
 * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
 * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
 * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
 * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
 * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
 * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
 * Bit 7 - Collision Test/Res. | Not supported               | Not supported
 * Bit 6 - Reserved            | Not supported               | Not supported
 * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
 * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
 * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
 * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
 * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
 * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
 * -------------------------------------------------------------------
 *
 * Return: 0 on success, error code on failure.
 */
static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1013
{
1014
	u8 restart, speed, ctrl, restart_mask;
1015
	const u16 *regs = dev->info->regs;
1016
	int ret;
1017

1018 1019 1020
	/* Do not support PHY reset function. */
	if (val & BMCR_RESET)
		return 0;
1021

1022
	speed = 0;
1023
	if (val & KSZ886X_BMCR_HP_MDIX)
1024
		speed |= PORT_HP_MDIX;
1025

1026
	ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
1027 1028
	if (ret)
		return ret;
1029

1030
	ctrl = 0;
1031 1032
	if (ksz_is_ksz88x3(dev)) {
		if ((val & BMCR_ANENABLE))
1033
			ctrl |= PORT_AUTO_NEG_ENABLE;
1034 1035
	} else {
		if (!(val & BMCR_ANENABLE))
1036
			ctrl |= PORT_AUTO_NEG_DISABLE;
1037

1038 1039
		/* Fiber port does not support auto-negotiation. */
		if (dev->ports[port].fiber)
1040
			ctrl |= PORT_AUTO_NEG_DISABLE;
1041 1042 1043
	}

	if (val & BMCR_SPEED100)
1044
		ctrl |= PORT_FORCE_100_MBIT;
1045 1046

	if (val & BMCR_FULLDPLX)
1047
		ctrl |= PORT_FORCE_FULL_DUPLEX;
1048

1049 1050 1051 1052 1053
	ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
		 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
		  * bits
		  */
		 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
1054 1055
	if (ret)
		return ret;
1056

1057 1058
	restart = 0;
	restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1059
		PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1060

1061
	if (val & KSZ886X_BMCR_DISABLE_LED)
1062
		restart |= PORT_LED_OFF;
1063

1064
	if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1065
		restart |= PORT_TX_DISABLE;
1066

1067
	if (val & BMCR_ANRESTART)
1068
		restart |= PORT_AUTO_NEG_RESTART;
1069 1070

	if (val & BMCR_PDOWN)
1071
		restart |= PORT_POWER_DOWN;
1072 1073

	if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1074
		restart |= PORT_AUTO_MDIX_DISABLE;
1075 1076

	if (val & KSZ886X_BMCR_FORCE_MDI)
1077
		restart |= PORT_FORCE_MDIX;
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	if (ksz_is_ksz88x3(dev)) {
		restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;

		if (val & BMCR_LOOPBACK)
			restart |= KSZ8873_PORT_PHY_LOOPBACK;
	} else {
		ret = ksz879x_set_loopback(dev, port, val);
		if (ret)
			return ret;
	}
1089

1090 1091
	return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
			 restart);
1092
}
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
{
	const u16 *regs;
	u8 ctrl, data;
	u16 p = phy;
	int ret;

	regs = dev->info->regs;

	switch (reg) {
	case MII_BMCR:
		ret = ksz8_w_phy_bmcr(dev, p, val);
		if (ret)
			return ret;
1108
		break;
1109
	case MII_ADVERTISE:
1110 1111 1112 1113
		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
		if (ret)
			return ret;

1114 1115 1116 1117 1118 1119
		data = ctrl;
		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
			  PORT_AUTO_NEG_100BTX_FD |
			  PORT_AUTO_NEG_100BTX |
			  PORT_AUTO_NEG_10BT_FD |
			  PORT_AUTO_NEG_10BT);
1120
		if (val & ADVERTISE_PAUSE_CAP)
1121
			data |= PORT_AUTO_NEG_SYM_PAUSE;
1122
		if (val & ADVERTISE_100FULL)
1123
			data |= PORT_AUTO_NEG_100BTX_FD;
1124
		if (val & ADVERTISE_100HALF)
1125
			data |= PORT_AUTO_NEG_100BTX;
1126
		if (val & ADVERTISE_10FULL)
1127
			data |= PORT_AUTO_NEG_10BT_FD;
1128
		if (val & ADVERTISE_10HALF)
1129
			data |= PORT_AUTO_NEG_10BT;
1130 1131 1132 1133 1134 1135

		if (data != ctrl) {
			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
			if (ret)
				return ret;
		}
1136
		break;
1137 1138 1139 1140
	case PHY_REG_LINK_MD:
		if (val & PHY_START_CABLE_DIAG)
			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
		break;
1141 1142 1143 1144 1145 1146

	case PHY_REG_PHY_CTRL:
		ret = ksz8_w_phy_ctrl(dev, p, val);
		if (ret)
			return ret;
		break;
1147 1148 1149
	default:
		break;
	}
1150 1151

	return 0;
1152 1153
}

1154
void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1155 1156 1157 1158 1159 1160 1161 1162 1163
{
	u8 data;

	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
	data &= ~PORT_VLAN_MEMBERSHIP;
	data |= (member & dev->port_mask);
	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
}

1164
void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1165
{
1166
	u8 learn[DSA_MAX_PORTS];
1167
	int first, index, cnt;
1168 1169 1170
	const u16 *regs;

	regs = dev->info->regs;
1171

1172
	if ((uint)port < dev->info->port_cnt) {
1173 1174 1175 1176 1177
		first = port;
		cnt = port + 1;
	} else {
		/* Flush all ports. */
		first = 0;
1178
		cnt = dev->info->port_cnt;
1179 1180
	}
	for (index = first; index < cnt; index++) {
1181
		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1182
		if (!(learn[index] & PORT_LEARN_DISABLE))
1183
			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1184 1185 1186 1187 1188
				    learn[index] | PORT_LEARN_DISABLE);
	}
	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
	for (index = first; index < cnt; index++) {
		if (!(learn[index] & PORT_LEARN_DISABLE))
1189
			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1190 1191 1192
	}
}

1193 1194
int ksz8_fdb_dump(struct ksz_device *dev, int port,
		  dsa_fdb_dump_cb_t *cb, void *data)
1195
{
1196
	u8 mac[ETH_ALEN];
1197 1198 1199
	u8 src_port, fid;
	u16 entries = 0;
	int ret, i;
1200

1201
	for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) {
1202
		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1203
					   &entries);
1204 1205 1206 1207 1208 1209 1210 1211 1212
		if (ret == -ENXIO)
			return 0;
		if (ret)
			return ret;

		if (i >= entries)
			return 0;

		if (port == src_port) {
1213
			ret = cb(mac, fid, false, data);
1214
			if (ret)
1215
				return ret;
1216
		}
1217
	}
1218

1219
	return 0;
1220 1221
}

1222 1223
static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
			    const unsigned char *addr, u16 vid)
1224 1225
{
	struct alu_struct alu;
1226
	int index, ret;
1227 1228 1229 1230
	int empty = 0;

	alu.port_forward = 0;
	for (index = 0; index < dev->info->num_statics; index++) {
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		bool valid;

		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
		if (ret)
			return ret;
		if (!valid) {
			/* Remember the first empty entry. */
			if (!empty)
				empty = index + 1;
			continue;
1241
		}
1242 1243 1244

		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
			break;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	}

	/* no available entry */
	if (index == dev->info->num_statics && !empty)
		return -ENOSPC;

	/* add entry */
	if (index == dev->info->num_statics) {
		index = empty - 1;
		memset(&alu, 0, sizeof(alu));
1255
		memcpy(alu.mac, addr, ETH_ALEN);
1256 1257 1258
		alu.is_static = true;
	}
	alu.port_forward |= BIT(port);
1259
	if (vid) {
1260 1261 1262
		alu.is_use_fid = true;

		/* Need a way to map VID to FID. */
1263
		alu.fid = vid;
1264 1265
	}

1266
	return ksz8_w_sta_mac_table(dev, index, &alu);
1267 1268
}

1269 1270
static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
			    const unsigned char *addr, u16 vid)
1271 1272
{
	struct alu_struct alu;
1273
	int index, ret;
1274 1275

	for (index = 0; index < dev->info->num_statics; index++) {
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		bool valid;

		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
		if (ret)
			return ret;
		if (!valid)
			continue;

		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
			break;
1286 1287 1288 1289
	}

	/* no available entry */
	if (index == dev->info->num_statics)
1290
		return 0;
1291 1292 1293 1294 1295 1296

	/* clear port */
	alu.port_forward &= ~BIT(port);
	if (!alu.port_forward)
		alu.is_static = false;

1297
	return ksz8_w_sta_mac_table(dev, index, &alu);
1298 1299
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
int ksz8_mdb_add(struct ksz_device *dev, int port,
		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
{
	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
}

int ksz8_mdb_del(struct ksz_device *dev, int port,
		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
{
	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
		 u16 vid, struct dsa_db db)
{
	return ksz8_add_sta_mac(dev, port, addr, vid);
}

int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
		 u16 vid, struct dsa_db db)
{
	return ksz8_del_sta_mac(dev, port, addr, vid);
}

1324 1325
int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
			     struct netlink_ext_ack *extack)
1326
{
1327 1328 1329
	if (ksz_is_ksz88x3(dev))
		return -ENOTSUPP;

1330
	/* Discard packets with VID not enabled on the switch */
1331 1332
	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);

1333 1334 1335 1336 1337
	/* Discard packets with VID not enabled on the ingress port */
	for (port = 0; port < dev->phy_port_cnt; ++port)
		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
			     flag);

1338 1339 1340
	return 0;
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
{
	if (ksz_is_ksz88x3(dev)) {
		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
			0x03 << (4 - 2 * port), state);
	} else {
		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
	}
}

1351 1352 1353
int ksz8_port_vlan_add(struct ksz_device *dev, int port,
		       const struct switchdev_obj_port_vlan *vlan,
		       struct netlink_ext_ack *extack)
1354 1355
{
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1356
	struct ksz_port *p = &dev->ports[port];
1357
	u16 data, new_pvid = 0;
1358 1359
	u8 fid, member, valid;

1360 1361 1362
	if (ksz_is_ksz88x3(dev))
		return -ENOTSUPP;

1363 1364 1365
	/* If a VLAN is added with untagged flag different from the
	 * port's Remove Tag flag, we need to change the latter.
	 * Ignore VID 0, which is always untagged.
1366
	 * Ignore CPU port, which will always be tagged.
1367
	 */
1368 1369
	if (untagged != p->remove_tag && vlan->vid != 0 &&
	    port != dev->cpu_port) {
1370 1371 1372 1373 1374 1375
		unsigned int vid;

		/* Reject attempts to add a VLAN that requires the
		 * Remove Tag flag to be changed, unless there are no
		 * other VLANs currently configured.
		 */
1376
		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
			/* Skip the VID we are going to add or reconfigure */
			if (vid == vlan->vid)
				continue;

			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
				       &fid, &member, &valid);
			if (valid && (member & BIT(port)))
				return -EINVAL;
		}

		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
		p->remove_tag = untagged;
	}
1390

1391
	ksz8_r_vlan_table(dev, vlan->vid, &data);
1392
	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1393

1394 1395 1396 1397 1398 1399 1400
	/* First time to setup the VLAN entry. */
	if (!valid) {
		/* Need to find a way to map VID to FID. */
		fid = 1;
		valid = 1;
	}
	member |= BIT(port);
1401

1402
	ksz8_to_vlan(dev, fid, member, valid, &data);
1403
	ksz8_w_vlan_table(dev, vlan->vid, data);
1404

1405 1406 1407
	/* change PVID */
	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
		new_pvid = vlan->vid;
1408 1409

	if (new_pvid) {
1410 1411
		u16 vid;

1412
		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1413
		vid &= ~VLAN_VID_MASK;
1414 1415
		vid |= new_pvid;
		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1416 1417

		ksz8_port_enable_pvid(dev, port, true);
1418
	}
1419 1420

	return 0;
1421 1422
}

1423 1424
int ksz8_port_vlan_del(struct ksz_device *dev, int port,
		       const struct switchdev_obj_port_vlan *vlan)
1425
{
1426
	u16 data, pvid;
1427 1428
	u8 fid, member, valid;

1429 1430 1431
	if (ksz_is_ksz88x3(dev))
		return -ENOTSUPP;

1432 1433 1434
	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
	pvid = pvid & 0xFFF;

1435
	ksz8_r_vlan_table(dev, vlan->vid, &data);
1436
	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1437

1438
	member &= ~BIT(port);
1439

1440 1441 1442 1443 1444
	/* Invalidate the entry if no more member. */
	if (!member) {
		fid = 0;
		valid = 0;
	}
1445

1446
	ksz8_to_vlan(dev, fid, member, valid, &data);
1447
	ksz8_w_vlan_table(dev, vlan->vid, data);
1448

1449 1450
	if (pvid == vlan->vid)
		ksz8_port_enable_pvid(dev, port, false);
1451 1452 1453 1454

	return 0;
}

1455 1456 1457
int ksz8_port_mirror_add(struct ksz_device *dev, int port,
			 struct dsa_mall_mirror_tc_entry *mirror,
			 bool ingress, struct netlink_ext_ack *extack)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
{
	if (ingress) {
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
		dev->mirror_rx |= BIT(port);
	} else {
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
		dev->mirror_tx |= BIT(port);
	}

	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);

	/* configure mirror port */
	if (dev->mirror_rx || dev->mirror_tx)
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, true);

	return 0;
}

1477 1478
void ksz8_port_mirror_del(struct ksz_device *dev, int port,
			  struct dsa_mall_mirror_tc_entry *mirror)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
{
	u8 data;

	if (mirror->ingress) {
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
		dev->mirror_rx &= ~BIT(port);
	} else {
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
		dev->mirror_tx &= ~BIT(port);
	}

	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);

	if (!dev->mirror_rx && !dev->mirror_tx)
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, false);
}

1497 1498 1499 1500
static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
{
	struct ksz_port *p = &dev->ports[port];

1501 1502 1503
	if (!ksz_is_ksz87xx(dev))
		return;

1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (!p->interface && dev->compat_interface) {
		dev_warn(dev->dev,
			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
			 "Please update your device tree.\n",
			 port);
		p->interface = dev->compat_interface;
	}
}

1513
void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1514
{
1515
	struct dsa_switch *ds = dev->ds;
1516
	const u32 *masks;
1517
	u8 member;
1518

1519
	masks = dev->info->masks;
1520

1521 1522 1523
	/* enable broadcast storm limit */
	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);

1524 1525
	if (!ksz_is_ksz88x3(dev))
		ksz8795_set_prio_queue(dev, port, 4);
1526 1527 1528 1529 1530

	/* disable DiffServ priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);

	/* replace priority */
1531 1532
	ksz_port_cfg(dev, port, P_802_1P_CTRL,
		     masks[PORT_802_1P_REMAPPING], false);
1533 1534 1535 1536

	/* enable 802.1p priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);

1537
	if (cpu_port)
1538
		member = dsa_user_ports(ds);
1539
	else
1540 1541
		member = BIT(dsa_upstream_port(ds, port));

1542
	ksz8_cfg_port_member(dev, port, member);
1543 1544
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
{
	struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
	bool rmii_clk_internal;

	if (!ksz_is_ksz88x3(dev))
		return;

	rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
						  "microchip,rmii-clk-internal");

	ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
		KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
}

1560
void ksz8_config_cpu_port(struct dsa_switch *ds)
1561 1562 1563
{
	struct ksz_device *dev = ds->priv;
	struct ksz_port *p;
1564
	const u32 *masks;
1565
	const u16 *regs;
1566 1567 1568
	u8 remote;
	int i;

1569
	masks = dev->info->masks;
1570
	regs = dev->info->regs;
1571 1572

	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1573

1574
	ksz8_port_setup(dev, dev->cpu_port, true);
1575

1576 1577 1578
	ksz8795_cpu_interface_select(dev, dev->cpu_port);
	ksz88x3_config_rmii_clk(dev);

1579
	for (i = 0; i < dev->phy_port_cnt; i++) {
1580
		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1581 1582 1583
	}
	for (i = 0; i < dev->phy_port_cnt; i++) {
		p = &dev->ports[i];
1584

1585 1586
		if (!ksz_is_ksz88x3(dev)) {
			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1587
			if (remote & KSZ8_PORT_FIBER_MODE)
1588 1589
				p->fiber = 1;
		}
1590
		if (p->fiber)
1591 1592
			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
				     PORT_FORCE_FLOW_CTRL, true);
1593
		else
1594 1595
			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
				     PORT_FORCE_FLOW_CTRL, false);
1596 1597 1598
	}
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * ksz8_phy_port_link_up - Configures ports with integrated PHYs
 * @dev: The KSZ device instance.
 * @port: The port number to configure.
 * @duplex: The desired duplex mode.
 * @tx_pause: If true, enables transmit pause.
 * @rx_pause: If true, enables receive pause.
 *
 * Description:
 * The function configures flow control settings for a given port based on the
 * desired settings and current duplex mode.
 *
 * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
 * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
 * determines how flow control is handled on the port:
 *    "1 = will always enable full-duplex flow control on the port, regardless
 *         of AN result.
 *     0 = full-duplex flow control is enabled based on AN result."
 *
 * This means that the flow control behavior depends on the state of this bit:
 * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
 *   force flow control on the port.
 * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
 *   flow control based on the AN results.
 *
 * However, there is a potential limitation in this configuration. It is
 * currently not possible to force disable flow control on a port if we still
 * advertise pause support. While such a configuration is not currently
 * supported by Linux, and may not make practical sense, it's important to be
 * aware of this limitation when working with the KSZ8873 and similar devices.
 */
static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
				  bool tx_pause, bool rx_pause)
{
	const u16 *regs = dev->info->regs;
	u8 sctrl = 0;

	/* The KSZ8795 switch differs from the KSZ8873 by supporting
	 * asymmetric pause control. However, since a single bit is used to
	 * control both RX and TX pause, we can't enforce asymmetric pause
	 * control - both TX and RX pause will be either enabled or disabled
	 * together.
	 *
	 * If auto-negotiation is enabled, we usually allow the flow control to
	 * be determined by the auto-negotiation process based on the
	 * capabilities of both link partners. However, for KSZ8873, the
	 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
	 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
	 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
	 * properly cleared.
	 *
	 * In the absence of pause auto-negotiation, we will enforce symmetric
	 * pause control for both variants of switches - KSZ8873 and KSZ8795.
	 *
	 * Autoneg Pause Autoneg      rx,tx	PORT_FORCE_FLOW_CTRL
	 * 1		1		x	0
	 * 0		1		x	0 (flow control probably disabled)
	 * x		0		1	1 (flow control force enabled)
	 * 1		0		0	0 (flow control still depends on
	 *					   aneg result due to hardware)
	 * 0		0		0	0 (flow control probably disabled)
	 */
	if (dev->ports[port].manual_flow && tx_pause)
		sctrl |= PORT_FORCE_FLOW_CTRL;

	ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
/**
 * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
 * @dev: The KSZ device instance.
 * @speed: The desired link speed.
 * @duplex: The desired duplex mode.
 * @tx_pause: If true, enables transmit pause.
 * @rx_pause: If true, enables receive pause.
 *
 * Description:
 * The function configures flow control and speed settings for the CPU
 * port of the switch based on the desired settings, current duplex mode, and
 * speed.
 */
static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
				  bool tx_pause, bool rx_pause)
{
	const u16 *regs = dev->info->regs;
	u8 ctrl = 0;

	/* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
	 * at least on KSZ8873. They can have different values depending on your
	 * board setup.
	 */
	if (tx_pause || rx_pause)
		ctrl |= SW_FLOW_CTRL;

	if (duplex == DUPLEX_HALF)
		ctrl |= SW_HALF_DUPLEX;

	/* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
	 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
	 */
	if (speed == SPEED_10)
		ctrl |= SW_10_MBIT;

	ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
		 SW_10_MBIT, ctrl);
}

void ksz8_phylink_mac_link_up(struct ksz_device *dev, int port,
			      unsigned int mode, phy_interface_t interface,
			      struct phy_device *phydev, int speed, int duplex,
			      bool tx_pause, bool rx_pause)
{
	/* If the port is the CPU port, apply special handling. Only the CPU
	 * port is configured via global registers.
	 */
	if (dev->cpu_port == port)
		ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1716 1717
	else if (dev->info->internal_phy[port])
		ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static int ksz8_handle_global_errata(struct dsa_switch *ds)
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;

	/* KSZ87xx Errata DS80000687C.
	 * Module 2: Link drops with some EEE link partners.
	 *   An issue with the EEE next page exchange between the
	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
	 *   the link dropping.
	 */
1731
	if (dev->info->ksz87xx_eee_link_erratum)
1732 1733 1734 1735 1736
		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);

	return ret;
}

1737
int ksz8_enable_stp_addr(struct ksz_device *dev)
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
{
	struct alu_struct alu;

	/* Setup STP address for STP operation. */
	memset(&alu, 0, sizeof(alu));
	ether_addr_copy(alu.mac, eth_stp_addr);
	alu.is_static = true;
	alu.is_override = true;
	alu.port_forward = dev->info->cpu_ports;

1748
	return ksz8_w_sta_mac_table(dev, 0, &alu);
1749 1750
}

1751
int ksz8_setup(struct dsa_switch *ds)
1752 1753
{
	struct ksz_device *dev = ds->priv;
1754
	int i;
1755

1756 1757
	ds->mtu_enforcement_ingress = true;

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	/* We rely on software untagging on the CPU port, so that we
	 * can support both tagged and untagged VLANs
	 */
	ds->untag_bridge_pvid = true;

	/* VLAN filtering is partly controlled by the global VLAN
	 * Enable flag
	 */
	ds->vlan_filtering_is_global = true;

1768 1769 1770 1771
	/* Enable automatic fast aging when link changed detected. */
	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);

	/* Enable aggressive back off algorithm in half duplex mode. */
1772
	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1773 1774 1775 1776 1777 1778
			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);

	/*
	 * Make sure unicast VLAN boundary is set as default and
	 * enable no excessive collision drop.
	 */
1779
	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1780 1781 1782 1783 1784 1785 1786
			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);

	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);

	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);

1787 1788 1789
	if (!ksz_is_ksz88x3(dev))
		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);

1790
	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1791
		ksz8_r_vlan_entries(dev, i);
1792

1793
	return ksz8_handle_global_errata(ds);
1794 1795
}

1796 1797
void ksz8_get_caps(struct ksz_device *dev, int port,
		   struct phylink_config *config)
1798
{
1799
	config->mac_capabilities = MAC_10 | MAC_100;
1800 1801 1802 1803 1804 1805 1806

	/* Silicon Errata Sheet (DS80000830A):
	 * "Port 1 does not respond to received flow control PAUSE frames"
	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
	 * switches.
	 */
	if (!ksz_is_ksz88x3(dev) || port)
1807
		config->mac_capabilities |= MAC_SYM_PAUSE;
1808 1809 1810

	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
	if (!ksz_is_ksz88x3(dev))
1811
		config->mac_capabilities |= MAC_ASYM_PAUSE;
1812 1813
}

1814
u32 ksz8_get_port_addr(int port, int offset)
1815 1816 1817 1818
{
	return PORT_CTRL_ADDR(port, offset);
}

1819
int ksz8_switch_init(struct ksz_device *dev)
1820
{
1821 1822 1823
	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
	dev->phy_port_cnt = dev->info->port_cnt - 1;
	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1824 1825 1826 1827

	return 0;
}

1828
void ksz8_switch_exit(struct ksz_device *dev)
1829
{
1830
	ksz8_reset_switch(dev);
1831 1832 1833 1834 1835
}

MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
MODULE_LICENSE("GPL");