memcontrol.c 28.9 KB
Newer Older
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/smp.h>
25
#include <linux/page-flags.h>
26
#include <linux/backing-dev.h>
27 28
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
29 30 31
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
32
#include <linux/seq_file.h>
33

34 35
#include <asm/uaccess.h>

36
struct cgroup_subsys mem_cgroup_subsys;
37
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx, int val)
{
	int cpu = smp_processor_id();
	stat->cpustat[cpu].count[idx] += val;
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

80 81 82 83 84 85 86 87 88 89 90 91
/*
 * per-zone information in memory controller.
 */

enum mem_cgroup_zstat_index {
	MEM_CGROUP_ZSTAT_ACTIVE,
	MEM_CGROUP_ZSTAT_INACTIVE,

	NR_MEM_CGROUP_ZSTAT,
};

struct mem_cgroup_per_zone {
92 93 94 95
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
	spinlock_t		lru_lock;
96 97
	struct list_head	active_list;
	struct list_head	inactive_list;
98 99 100 101 102 103 104 105 106 107 108 109 110
	unsigned long count[NR_MEM_CGROUP_ZSTAT];
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

111 112 113 114 115 116 117
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 119 120
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
121 122 123 124 125 126 127
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
128 129 130 131
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
132
	struct mem_cgroup_lru_info info;
133

134
	int	prev_priority;	/* for recording reclaim priority */
135 136 137 138
	/*
	 * statistics.
	 */
	struct mem_cgroup_stat stat;
139 140
};

141 142 143 144 145 146 147 148
/*
 * We use the lower bit of the page->page_cgroup pointer as a bit spin
 * lock. We need to ensure that page->page_cgroup is atleast two
 * byte aligned (based on comments from Nick Piggin)
 */
#define PAGE_CGROUP_LOCK_BIT 	0x0
#define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)

149 150 151 152 153 154 155 156
/*
 * A page_cgroup page is associated with every page descriptor. The
 * page_cgroup helps us identify information about the cgroup
 */
struct page_cgroup {
	struct list_head lru;		/* per cgroup LRU list */
	struct page *page;
	struct mem_cgroup *mem_cgroup;
157 158
	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
					/* mapped and cached states     */
159
	int	 flags;
160
};
161
#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
162
#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
163

164 165 166 167 168 169 170 171 172 173
static inline int page_cgroup_nid(struct page_cgroup *pc)
{
	return page_to_nid(pc->page);
}

static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
{
	return page_zonenum(pc->page);
}

174 175 176 177 178 179 180 181
enum {
	MEM_CGROUP_TYPE_UNSPEC = 0,
	MEM_CGROUP_TYPE_MAPPED,
	MEM_CGROUP_TYPE_CACHED,
	MEM_CGROUP_TYPE_ALL,
	MEM_CGROUP_TYPE_MAX,
};

182 183 184 185 186
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
};

187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Always modified under lru lock. Then, not necessary to preempt_disable()
 */
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
					bool charge)
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	VM_BUG_ON(!irqs_disabled());

	if (flags & PAGE_CGROUP_FLAG_CACHE)
		__mem_cgroup_stat_add_safe(stat,
					MEM_CGROUP_STAT_CACHE, val);
	else
		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
}

static inline struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	BUG_ON(!mem->info.nodeinfo[nid]);
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static inline struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
					enum mem_cgroup_zstat_index idx)
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
235 236
}

237
static struct mem_cgroup init_mem_cgroup;
238 239 240 241 242 243 244 245 246

static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_task(p);
	css_get(&mem->css);
	mm->mem_cgroup = mem;
}

void mm_free_cgroup(struct mm_struct *mm)
{
	css_put(&mm->mem_cgroup->css);
}

268 269 270 271 272 273
static inline int page_cgroup_locked(struct page *page)
{
	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
					&page->page_cgroup);
}

274 275
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
276 277 278 279 280 281 282 283 284 285 286
	int locked;

	/*
	 * While resetting the page_cgroup we might not hold the
	 * page_cgroup lock. free_hot_cold_page() is an example
	 * of such a scenario
	 */
	if (pc)
		VM_BUG_ON(!page_cgroup_locked(page));
	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
	page->page_cgroup = ((unsigned long)pc | locked);
287 288 289 290
}

struct page_cgroup *page_get_page_cgroup(struct page *page)
{
291 292 293 294
	return (struct page_cgroup *)
		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}

295
static void __always_inline lock_page_cgroup(struct page *page)
296 297 298 299 300
{
	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
	VM_BUG_ON(!page_cgroup_locked(page));
}

301
static void __always_inline unlock_page_cgroup(struct page *page)
302 303 304 305
{
	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}

306 307 308 309 310
/*
 * Tie new page_cgroup to struct page under lock_page_cgroup()
 * This can fail if the page has been tied to a page_cgroup.
 * If success, returns 0.
 */
311 312
static int page_cgroup_assign_new_page_cgroup(struct page *page,
						struct page_cgroup *pc)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
{
	int ret = 0;

	lock_page_cgroup(page);
	if (!page_get_page_cgroup(page))
		page_assign_page_cgroup(page, pc);
	else /* A page is tied to other pc. */
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

/*
 * Clear page->page_cgroup member under lock_page_cgroup().
 * If given "pc" value is different from one page->page_cgroup,
 * page->cgroup is not cleared.
 * Returns a value of page->page_cgroup at lock taken.
 * A can can detect failure of clearing by following
 *  clear_page_cgroup(page, pc) == pc
 */

334 335
static struct page_cgroup *clear_page_cgroup(struct page *page,
						struct page_cgroup *pc)
336 337 338 339 340 341 342 343 344 345 346
{
	struct page_cgroup *ret;
	/* lock and clear */
	lock_page_cgroup(page);
	ret = page_get_page_cgroup(page);
	if (likely(ret == pc))
		page_assign_page_cgroup(page, NULL);
	unlock_page_cgroup(page);
	return ret;
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static void __mem_cgroup_remove_list(struct page_cgroup *pc)
{
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
	list_del_init(&pc->lru);
}

static void __mem_cgroup_add_list(struct page_cgroup *pc)
{
	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (!to) {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
368
		list_add(&pc->lru, &mz->inactive_list);
369 370
	} else {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
371
		list_add(&pc->lru, &mz->active_list);
372 373 374 375
	}
	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
}

376
static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
377
{
378 379 380 381 382 383 384 385
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

386
	if (active) {
387
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
388
		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
389
		list_move(&pc->lru, &mz->active_list);
390
	} else {
391
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
392
		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
393
		list_move(&pc->lru, &mz->inactive_list);
394
	}
395 396
}

397 398 399 400 401
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
402
	ret = task->mm && vm_match_cgroup(task->mm, mem);
403 404 405 406
	task_unlock(task);
	return ret;
}

407 408 409 410 411
/*
 * This routine assumes that the appropriate zone's lru lock is already held
 */
void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
{
412 413 414
	struct mem_cgroup_per_zone *mz;
	unsigned long flags;

415 416 417
	if (!pc)
		return;

418 419
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
420
	__mem_cgroup_move_lists(pc, active);
421
	spin_unlock_irqrestore(&mz->lru_lock, flags);
422 423
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * This function is called from vmscan.c. In page reclaiming loop. balance
 * between active and inactive list is calculated. For memory controller
 * page reclaiming, we should use using mem_cgroup's imbalance rather than
 * zone's global lru imbalance.
 */
long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
{
	unsigned long active, inactive;
	/* active and inactive are the number of pages. 'long' is ok.*/
	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
	return (long) (active / (inactive + 1));
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
	return mem->prev_priority;
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	mem->prev_priority = priority;
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/*
 * Calculate # of pages to be scanned in this priority/zone.
 * See also vmscan.c
 *
 * priority starts from "DEF_PRIORITY" and decremented in each loop.
 * (see include/linux/mmzone.h)
 */

long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
				   struct zone *zone, int priority)
{
	long nr_active;
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);

	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
	return (nr_active >> priority);
}

long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
					struct zone *zone, int priority)
{
	long nr_inactive;
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);

	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);

	return (nr_inactive >> priority);
}

507 508 509 510 511 512 513 514 515 516 517 518
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
519
	struct page_cgroup *pc, *tmp;
520 521 522
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
523

524
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
525
	if (active)
526
		src = &mz->active_list;
527
	else
528 529
		src = &mz->inactive_list;

530

531
	spin_lock(&mz->lru_lock);
532 533
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
534
		if (scan >= nr_to_scan)
535
			break;
536 537 538
		page = pc->page;
		VM_BUG_ON(!pc);

539
		if (unlikely(!PageLRU(page)))
540 541
			continue;

542 543 544 545 546 547 548 549 550
		if (PageActive(page) && !active) {
			__mem_cgroup_move_lists(pc, true);
			continue;
		}
		if (!PageActive(page) && active) {
			__mem_cgroup_move_lists(pc, false);
			continue;
		}

551 552
		scan++;
		list_move(&pc->lru, &pc_list);
553 554 555 556 557 558 559 560

		if (__isolate_lru_page(page, mode) == 0) {
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	list_splice(&pc_list, src);
561
	spin_unlock(&mz->lru_lock);
562 563 564 565 566

	*scanned = scan;
	return nr_taken;
}

567 568 569 570 571 572
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
573 574
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype)
575 576
{
	struct mem_cgroup *mem;
577
	struct page_cgroup *pc;
578 579
	unsigned long flags;
	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
580
	struct mem_cgroup_per_zone *mz;
581 582 583 584 585 586 587 588

	/*
	 * Should page_cgroup's go to their own slab?
	 * One could optimize the performance of the charging routine
	 * by saving a bit in the page_flags and using it as a lock
	 * to see if the cgroup page already has a page_cgroup associated
	 * with it
	 */
589
retry:
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	if (page) {
		lock_page_cgroup(page);
		pc = page_get_page_cgroup(page);
		/*
		 * The page_cgroup exists and
		 * the page has already been accounted.
		 */
		if (pc) {
			if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
				/* this page is under being uncharged ? */
				unlock_page_cgroup(page);
				cpu_relax();
				goto retry;
			} else {
				unlock_page_cgroup(page);
				goto done;
			}
607
		}
608
		unlock_page_cgroup(page);
609 610
	}

611
	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
612 613 614 615
	if (pc == NULL)
		goto err;

	/*
616 617
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
618 619 620 621 622 623
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
	if (!mm)
		mm = &init_mm;

624
	rcu_read_lock();
625 626 627 628 629 630 631 632 633 634 635 636
	mem = rcu_dereference(mm->mem_cgroup);
	/*
	 * For every charge from the cgroup, increment reference
	 * count
	 */
	css_get(&mem->css);
	rcu_read_unlock();

	/*
	 * If we created the page_cgroup, we should free it on exceeding
	 * the cgroup limit.
	 */
637
	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
638 639
		if (!(gfp_mask & __GFP_WAIT))
			goto out;
640 641

		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
642 643 644 645 646 647 648 649 650 651 652
			continue;

		/*
 		 * try_to_free_mem_cgroup_pages() might not give us a full
 		 * picture of reclaim. Some pages are reclaimed and might be
 		 * moved to swap cache or just unmapped from the cgroup.
 		 * Check the limit again to see if the reclaim reduced the
 		 * current usage of the cgroup before giving up
 		 */
		if (res_counter_check_under_limit(&mem->res))
			continue;
653 654 655 656

		if (!nr_retries--) {
			mem_cgroup_out_of_memory(mem, gfp_mask);
			goto out;
657
		}
658
		congestion_wait(WRITE, HZ/10);
659 660 661 662 663
	}

	atomic_set(&pc->ref_cnt, 1);
	pc->mem_cgroup = mem;
	pc->page = page;
664
	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
665 666
	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
667

668
	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
669
		/*
670 671
		 * Another charge has been added to this page already.
		 * We take lock_page_cgroup(page) again and read
672 673 674 675 676
		 * page->cgroup, increment refcnt.... just retry is OK.
		 */
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		css_put(&mem->css);
		kfree(pc);
677 678
		if (!page)
			goto done;
679 680
		goto retry;
	}
681

682 683
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
684
	/* Update statistics vector */
685
	__mem_cgroup_add_list(pc);
686
	spin_unlock_irqrestore(&mz->lru_lock, flags);
687

688 689
done:
	return 0;
690 691
out:
	css_put(&mem->css);
692 693 694 695 696
	kfree(pc);
err:
	return -ENOMEM;
}

697 698 699 700 701 702 703
int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
{
	return mem_cgroup_charge_common(page, mm, gfp_mask,
			MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

704 705 706
/*
 * See if the cached pages should be charged at all?
 */
707 708
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
709
{
710
	int ret = 0;
711 712 713
	if (!mm)
		mm = &init_mm;

714
	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
715
				MEM_CGROUP_CHARGE_TYPE_CACHE);
716
	return ret;
717 718
}

719 720
/*
 * Uncharging is always a welcome operation, we never complain, simply
721
 * uncharge. This routine should be called with lock_page_cgroup held
722 723 724 725
 */
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
	struct mem_cgroup *mem;
726
	struct mem_cgroup_per_zone *mz;
727
	struct page *page;
728
	unsigned long flags;
729

730
	/*
731
	 * Check if our page_cgroup is valid
732
	 */
733 734 735 736 737
	if (!pc)
		return;

	if (atomic_dec_and_test(&pc->ref_cnt)) {
		page = pc->page;
738
		mz = page_cgroup_zoneinfo(pc);
739 740
		/*
		 * get page->cgroup and clear it under lock.
741
		 * force_empty can drop page->cgroup without checking refcnt.
742
		 */
743
		unlock_page_cgroup(page);
744 745 746 747
		if (clear_page_cgroup(page, pc) == pc) {
			mem = pc->mem_cgroup;
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
748
			spin_lock_irqsave(&mz->lru_lock, flags);
749
			__mem_cgroup_remove_list(pc);
750
			spin_unlock_irqrestore(&mz->lru_lock, flags);
751 752
			kfree(pc);
		}
753
		lock_page_cgroup(page);
754
	}
755
}
756

757 758 759 760 761 762 763
void mem_cgroup_uncharge_page(struct page *page)
{
	lock_page_cgroup(page);
	mem_cgroup_uncharge(page_get_page_cgroup(page));
	unlock_page_cgroup(page);
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
/*
 * Returns non-zero if a page (under migration) has valid page_cgroup member.
 * Refcnt of page_cgroup is incremented.
 */

int mem_cgroup_prepare_migration(struct page *page)
{
	struct page_cgroup *pc;
	int ret = 0;
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

void mem_cgroup_end_migration(struct page *page)
{
783 784 785 786
	struct page_cgroup *pc;

	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
787
	mem_cgroup_uncharge(pc);
788
	unlock_page_cgroup(page);
789 790 791 792 793 794 795 796 797 798
}
/*
 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
 * And no race with uncharge() routines because page_cgroup for *page*
 * has extra one reference by mem_cgroup_prepare_migration.
 */

void mem_cgroup_page_migration(struct page *page, struct page *newpage)
{
	struct page_cgroup *pc;
799 800
	struct mem_cgroup *mem;
	unsigned long flags;
801
	struct mem_cgroup_per_zone *mz;
802 803 804 805
retry:
	pc = page_get_page_cgroup(page);
	if (!pc)
		return;
806
	mem = pc->mem_cgroup;
807
	mz = page_cgroup_zoneinfo(pc);
808 809
	if (clear_page_cgroup(page, pc) != pc)
		goto retry;
810
	spin_lock_irqsave(&mz->lru_lock, flags);
811 812

	__mem_cgroup_remove_list(pc);
813 814
	spin_unlock_irqrestore(&mz->lru_lock, flags);

815 816 817 818
	pc->page = newpage;
	lock_page_cgroup(newpage);
	page_assign_page_cgroup(newpage, pc);
	unlock_page_cgroup(newpage);
819

820 821 822 823
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
	__mem_cgroup_add_list(pc);
	spin_unlock_irqrestore(&mz->lru_lock, flags);
824 825
	return;
}
826

827 828 829 830 831 832 833
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * This routine ignores page_cgroup->ref_cnt.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
#define FORCE_UNCHARGE_BATCH	(128)
static void
834 835 836
mem_cgroup_force_empty_list(struct mem_cgroup *mem,
			    struct mem_cgroup_per_zone *mz,
			    int active)
837 838 839 840 841
{
	struct page_cgroup *pc;
	struct page *page;
	int count;
	unsigned long flags;
842 843 844 845 846 847
	struct list_head *list;

	if (active)
		list = &mz->active_list;
	else
		list = &mz->inactive_list;
848

849 850
	if (list_empty(list))
		return;
851 852
retry:
	count = FORCE_UNCHARGE_BATCH;
853
	spin_lock_irqsave(&mz->lru_lock, flags);
854 855 856 857 858 859 860 861 862

	while (--count && !list_empty(list)) {
		pc = list_entry(list->prev, struct page_cgroup, lru);
		page = pc->page;
		/* Avoid race with charge */
		atomic_set(&pc->ref_cnt, 0);
		if (clear_page_cgroup(page, pc) == pc) {
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
863
			__mem_cgroup_remove_list(pc);
864 865 866 867
			kfree(pc);
		} else 	/* being uncharged ? ...do relax */
			break;
	}
868
	spin_unlock_irqrestore(&mz->lru_lock, flags);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
	if (!list_empty(list)) {
		cond_resched();
		goto retry;
	}
	return;
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */

int mem_cgroup_force_empty(struct mem_cgroup *mem)
{
	int ret = -EBUSY;
884
	int node, zid;
885 886 887 888 889 890
	css_get(&mem->css);
	/*
	 * page reclaim code (kswapd etc..) will move pages between
`	 * active_list <-> inactive_list while we don't take a lock.
	 * So, we have to do loop here until all lists are empty.
	 */
891
	while (mem->res.usage > 0) {
892 893
		if (atomic_read(&mem->css.cgroup->count) > 0)
			goto out;
894 895 896 897 898
		for_each_node_state(node, N_POSSIBLE)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				struct mem_cgroup_per_zone *mz;
				mz = mem_cgroup_zoneinfo(mem, node, zid);
				/* drop all page_cgroup in active_list */
899
				mem_cgroup_force_empty_list(mem, mz, 1);
900
				/* drop all page_cgroup in inactive_list */
901
				mem_cgroup_force_empty_list(mem, mz, 0);
902
			}
903 904 905 906 907 908 909 910 911
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
}



912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
	*tmp = memparse(buf, &buf);
	if (*buf != '\0')
		return -EINVAL;

	/*
	 * Round up the value to the closest page size
	 */
	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
	return 0;
}

static ssize_t mem_cgroup_read(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			char __user *userbuf, size_t nbytes, loff_t *ppos)
928 929
{
	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
930 931
				cft->private, userbuf, nbytes, ppos,
				NULL);
932 933 934 935 936 937 938
}

static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
939 940
				cft->private, userbuf, nbytes, ppos,
				mem_cgroup_write_strategy);
941 942
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static ssize_t mem_force_empty_write(struct cgroup *cont,
				struct cftype *cft, struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	int ret;
	ret = mem_cgroup_force_empty(mem);
	if (!ret)
		ret = nbytes;
	return ret;
}

/*
 * Note: This should be removed if cgroup supports write-only file.
 */

static ssize_t mem_force_empty_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return -EINVAL;
}


969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
};

static int mem_control_stat_show(struct seq_file *m, void *arg)
{
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
				(long long)val);
	}
992 993 994 995 996 997 998 999 1000 1001 1002
	/* showing # of active pages */
	{
		unsigned long active, inactive;

		inactive = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_INACTIVE);
		active = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_ACTIVE);
		seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
		seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	return 0;
}

static const struct file_operations mem_control_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_stat_open(struct inode *unused, struct file *file)
{
	/* XXX __d_cont */
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_stat_file_operations;
	return single_open(file, mem_control_stat_show, cont);
}



1023 1024
static struct cftype mem_cgroup_files[] = {
	{
1025
		.name = "usage_in_bytes",
1026 1027 1028 1029
		.private = RES_USAGE,
		.read = mem_cgroup_read,
	},
	{
1030
		.name = "limit_in_bytes",
1031 1032 1033 1034 1035 1036 1037 1038 1039
		.private = RES_LIMIT,
		.write = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "failcnt",
		.private = RES_FAILCNT,
		.read = mem_cgroup_read,
	},
1040 1041 1042 1043 1044
	{
		.name = "force_empty",
		.write = mem_force_empty_write,
		.read = mem_force_empty_read,
	},
1045 1046 1047 1048
	{
		.name = "stat",
		.open = mem_control_stat_open,
	},
1049 1050
};

1051 1052 1053
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	struct mem_cgroup_per_zone *mz;
	int zone;
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
	if (node_state(node, N_HIGH_MEMORY))
		pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
	else
		pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1068 1069
	if (!pn)
		return 1;
1070

1071 1072
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
1073 1074 1075 1076 1077

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
		INIT_LIST_HEAD(&mz->active_list);
		INIT_LIST_HEAD(&mz->inactive_list);
1078
		spin_lock_init(&mz->lru_lock);
1079
	}
1080 1081 1082
	return 0;
}

1083 1084 1085 1086 1087 1088
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}


1089 1090
static struct mem_cgroup init_mem_cgroup;

1091 1092 1093 1094
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct mem_cgroup *mem;
1095
	int node;
1096

1097 1098 1099 1100 1101 1102 1103 1104
	if (unlikely((cont->parent) == NULL)) {
		mem = &init_mem_cgroup;
		init_mm.mem_cgroup = mem;
	} else
		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

	if (mem == NULL)
		return NULL;
1105 1106

	res_counter_init(&mem->res);
1107

1108 1109 1110 1111 1112 1113
	memset(&mem->info, 0, sizeof(mem->info));

	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;

1114
	return &mem->css;
1115 1116
free_out:
	for_each_node_state(node, N_POSSIBLE)
1117
		free_mem_cgroup_per_zone_info(mem, node);
1118 1119 1120
	if (cont->parent != NULL)
		kfree(mem);
	return NULL;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	mem_cgroup_force_empty(mem);
}

1130 1131 1132
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
1133 1134 1135 1136
	int node;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	for_each_node_state(node, N_POSSIBLE)
1137
		free_mem_cgroup_per_zone_info(mem, node);
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	kfree(mem_cgroup_from_cont(cont));
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, mem_cgroup_files,
					ARRAY_SIZE(mem_cgroup_files));
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	struct mm_struct *mm;
	struct mem_cgroup *mem, *old_mem;

	mm = get_task_mm(p);
	if (mm == NULL)
		return;

	mem = mem_cgroup_from_cont(cont);
	old_mem = mem_cgroup_from_cont(old_cont);

	if (mem == old_mem)
		goto out;

	/*
	 * Only thread group leaders are allowed to migrate, the mm_struct is
	 * in effect owned by the leader
	 */
	if (p->tgid != p->pid)
		goto out;

	css_get(&mem->css);
	rcu_assign_pointer(mm->mem_cgroup, mem);
	css_put(&old_mem->css);

out:
	mmput(mm);
	return;
}

1183 1184 1185 1186
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
1187
	.pre_destroy = mem_cgroup_pre_destroy,
1188 1189
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
1190
	.attach = mem_cgroup_move_task,
1191
	.early_init = 0,
1192
};