gaudi2.c 342 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2020-2022 HabanaLabs, Ltd.
 * All Rights Reserved.
 */

#include "gaudi2P.h"
#include "gaudi2_masks.h"
#include "../include/hw_ip/mmu/mmu_general.h"
#include "../include/hw_ip/mmu/mmu_v2_0.h"
#include "../include/gaudi2/gaudi2_packets.h"
#include "../include/gaudi2/gaudi2_reg_map.h"
#include "../include/gaudi2/gaudi2_async_ids_map_extended.h"
#include "../include/gaudi2/arc/gaudi2_arc_common_packets.h"

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/hwmon.h>
#include <linux/iommu.h>

#define GAUDI2_DMA_POOL_BLK_SIZE		SZ_256		/* 256 bytes */

24
#define GAUDI2_RESET_TIMEOUT_MSEC		2000		/* 2000ms */
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#define GAUDI2_RESET_POLL_TIMEOUT_USEC		50000		/* 50ms */
#define GAUDI2_PLDM_HRESET_TIMEOUT_MSEC		25000		/* 25s */
#define GAUDI2_PLDM_SRESET_TIMEOUT_MSEC		25000		/* 25s */
#define GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC	3000000		/* 3s */
#define GAUDI2_RESET_POLL_CNT			3
#define GAUDI2_RESET_WAIT_MSEC			1		/* 1ms */
#define GAUDI2_CPU_RESET_WAIT_MSEC		100		/* 100ms */
#define GAUDI2_PLDM_RESET_WAIT_MSEC		1000		/* 1s */
#define GAUDI2_CB_POOL_CB_CNT			512
#define GAUDI2_CB_POOL_CB_SIZE			SZ_128K		/* 128KB */
#define GAUDI2_MSG_TO_CPU_TIMEOUT_USEC		4000000		/* 4s */
#define GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC		25000000	/* 25s */
#define GAUDI2_TEST_QUEUE_WAIT_USEC		100000		/* 100ms */
#define GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC	1000000		/* 1s */

#define GAUDI2_ALLOC_CPU_MEM_RETRY_CNT		3

/*
 * since the code already has built-in support for binning of up to MAX_FAULTY_TPCS TPCs
 * and the code relies on that value (for array size etc..) we define another value
 * for MAX faulty TPCs which reflects the cluster binning requirements
 */
#define MAX_CLUSTER_BINNING_FAULTY_TPCS		1
#define MAX_FAULTY_XBARS			1
#define MAX_FAULTY_EDMAS			1
#define MAX_FAULTY_DECODERS			1

#define GAUDI2_TPC_FULL_MASK			0x1FFFFFF
#define GAUDI2_HIF_HMMU_FULL_MASK		0xFFFF
#define GAUDI2_DECODER_FULL_MASK		0x3FF

#define GAUDI2_NUM_OF_QM_ERR_CAUSE		18
#define GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE		25
#define GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE		3
#define GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE		14
#define GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE		3
#define GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE		2
#define GAUDI2_NUM_OF_ROT_ERR_CAUSE		22
#define GAUDI2_NUM_OF_TPC_INTR_CAUSE		30
#define GAUDI2_NUM_OF_DEC_ERR_CAUSE		25
#define GAUDI2_NUM_OF_MME_ERR_CAUSE		16
#define GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE	5
#define GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE		7
#define GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE	8
#define GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE		19
#define GAUDI2_NUM_OF_HBM_SEI_CAUSE		9
#define GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE		3
#define GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE	3
#define GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE	2
#define GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE	2
#define GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE	2
#define GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE		5

#define GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC	(MMU_CONFIG_TIMEOUT_USEC * 10)
#define GAUDI2_PLDM_MMU_TIMEOUT_USEC		(MMU_CONFIG_TIMEOUT_USEC * 200)
#define GAUDI2_ARB_WDT_TIMEOUT			(0x1000000)

#define GAUDI2_VDEC_TIMEOUT_USEC		10000		/* 10ms */
#define GAUDI2_PLDM_VDEC_TIMEOUT_USEC		(GAUDI2_VDEC_TIMEOUT_USEC * 100)

#define KDMA_TIMEOUT_USEC			USEC_PER_SEC

#define IS_DMA_IDLE(dma_core_idle_ind_mask)	\
	(!((dma_core_idle_ind_mask) &		\
	((DCORE0_EDMA0_CORE_IDLE_IND_MASK_DESC_CNT_STS_MASK) | \
	(DCORE0_EDMA0_CORE_IDLE_IND_MASK_COMP_MASK))))

#define IS_MME_IDLE(mme_arch_sts) (((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK)

#define IS_TPC_IDLE(tpc_cfg_sts) (((tpc_cfg_sts) & (TPC_IDLE_MASK)) == (TPC_IDLE_MASK))

#define IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) \
	((((qm_glbl_sts0) & (QM_IDLE_MASK)) == (QM_IDLE_MASK)) && \
	(((qm_glbl_sts1) & (QM_ARC_IDLE_MASK)) == (QM_ARC_IDLE_MASK)) && \
	(((qm_cgm_sts) & (CGM_IDLE_MASK)) == (CGM_IDLE_MASK)))

#define PCIE_DEC_EN_MASK			0x300
#define DEC_WORK_STATE_IDLE			0
#define DEC_WORK_STATE_PEND			3
#define IS_DEC_IDLE(dec_swreg15) \
	(((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_IDLE || \
	((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) ==  DEC_WORK_STATE_PEND)

/* HBM MMU address scrambling parameters */
#define GAUDI2_HBM_MMU_SCRM_MEM_SIZE		SZ_8M
#define GAUDI2_HBM_MMU_SCRM_DIV_SHIFT		26
#define GAUDI2_HBM_MMU_SCRM_MOD_SHIFT		0
#define GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK	DRAM_VA_HINT_MASK
#define GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR	16
#define MMU_RANGE_INV_VA_LSB_SHIFT		12
#define MMU_RANGE_INV_VA_MSB_SHIFT		44
#define MMU_RANGE_INV_EN_SHIFT			0
#define MMU_RANGE_INV_ASID_EN_SHIFT		1
#define MMU_RANGE_INV_ASID_SHIFT		2

120 121 122 123 124 125
/* The last SPI_SEI cause bit, "burst_fifo_full", is expected to be triggered in PMMU because it has
 * a 2 entries FIFO, and hence it is not enabled for it.
 */
#define GAUDI2_PMMU_SPI_SEI_ENABLE_MASK		GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 2, 0)
#define GAUDI2_HMMU_SPI_SEI_ENABLE_MASK		GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 1, 0)

126 127 128 129 130
#define GAUDI2_MAX_STRING_LEN			64

#define GAUDI2_VDEC_MSIX_ENTRIES		(GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM - \
							GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 1)

131 132
#define ENGINE_ID_DCORE_OFFSET (GAUDI2_DCORE1_ENGINE_ID_EDMA_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0)

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
enum hl_pmmu_fatal_cause {
	LATENCY_RD_OUT_FIFO_OVERRUN,
	LATENCY_WR_OUT_FIFO_OVERRUN,
};

enum hl_pcie_drain_ind_cause {
	LBW_AXI_DRAIN_IND,
	HBW_AXI_DRAIN_IND
};

static const u32 cluster_hmmu_hif_enabled_mask[GAUDI2_HBM_NUM] = {
	[HBM_ID0] = 0xFFFC,
	[HBM_ID1] = 0xFFCF,
	[HBM_ID2] = 0xF7F7,
	[HBM_ID3] = 0x7F7F,
	[HBM_ID4] = 0xFCFF,
	[HBM_ID5] = 0xCFFF,
};

static const u8 xbar_edge_to_hbm_cluster[EDMA_ID_SIZE] = {
	[0] = HBM_ID0,
	[1] = HBM_ID1,
	[2] = HBM_ID4,
	[3] = HBM_ID5,
};

static const u8 edma_to_hbm_cluster[EDMA_ID_SIZE] = {
	[EDMA_ID_DCORE0_INSTANCE0] = HBM_ID0,
	[EDMA_ID_DCORE0_INSTANCE1] = HBM_ID2,
	[EDMA_ID_DCORE1_INSTANCE0] = HBM_ID1,
	[EDMA_ID_DCORE1_INSTANCE1] = HBM_ID3,
	[EDMA_ID_DCORE2_INSTANCE0] = HBM_ID2,
	[EDMA_ID_DCORE2_INSTANCE1] = HBM_ID4,
	[EDMA_ID_DCORE3_INSTANCE0] = HBM_ID3,
	[EDMA_ID_DCORE3_INSTANCE1] = HBM_ID5,
};

static const int gaudi2_qman_async_event_id[] = {
	[GAUDI2_QUEUE_ID_PDMA_0_0] = GAUDI2_EVENT_PDMA0_QM,
	[GAUDI2_QUEUE_ID_PDMA_0_1] = GAUDI2_EVENT_PDMA0_QM,
	[GAUDI2_QUEUE_ID_PDMA_0_2] = GAUDI2_EVENT_PDMA0_QM,
	[GAUDI2_QUEUE_ID_PDMA_0_3] = GAUDI2_EVENT_PDMA0_QM,
	[GAUDI2_QUEUE_ID_PDMA_1_0] = GAUDI2_EVENT_PDMA1_QM,
	[GAUDI2_QUEUE_ID_PDMA_1_1] = GAUDI2_EVENT_PDMA1_QM,
	[GAUDI2_QUEUE_ID_PDMA_1_2] = GAUDI2_EVENT_PDMA1_QM,
	[GAUDI2_QUEUE_ID_PDMA_1_3] = GAUDI2_EVENT_PDMA1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = GAUDI2_EVENT_HDMA0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = GAUDI2_EVENT_HDMA0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = GAUDI2_EVENT_HDMA0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = GAUDI2_EVENT_HDMA0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = GAUDI2_EVENT_HDMA1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = GAUDI2_EVENT_HDMA1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = GAUDI2_EVENT_HDMA1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = GAUDI2_EVENT_HDMA1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = GAUDI2_EVENT_MME0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = GAUDI2_EVENT_MME0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = GAUDI2_EVENT_MME0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = GAUDI2_EVENT_MME0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = GAUDI2_EVENT_TPC0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = GAUDI2_EVENT_TPC0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = GAUDI2_EVENT_TPC0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = GAUDI2_EVENT_TPC0_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = GAUDI2_EVENT_TPC1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = GAUDI2_EVENT_TPC1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = GAUDI2_EVENT_TPC1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = GAUDI2_EVENT_TPC1_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = GAUDI2_EVENT_TPC2_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = GAUDI2_EVENT_TPC2_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = GAUDI2_EVENT_TPC2_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = GAUDI2_EVENT_TPC2_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = GAUDI2_EVENT_TPC3_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = GAUDI2_EVENT_TPC3_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = GAUDI2_EVENT_TPC3_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = GAUDI2_EVENT_TPC3_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = GAUDI2_EVENT_TPC4_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = GAUDI2_EVENT_TPC4_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = GAUDI2_EVENT_TPC4_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = GAUDI2_EVENT_TPC4_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = GAUDI2_EVENT_TPC5_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = GAUDI2_EVENT_TPC5_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = GAUDI2_EVENT_TPC5_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = GAUDI2_EVENT_TPC5_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = GAUDI2_EVENT_TPC24_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = GAUDI2_EVENT_TPC24_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = GAUDI2_EVENT_TPC24_QM,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = GAUDI2_EVENT_TPC24_QM,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = GAUDI2_EVENT_HDMA2_QM,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = GAUDI2_EVENT_HDMA2_QM,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = GAUDI2_EVENT_HDMA2_QM,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = GAUDI2_EVENT_HDMA2_QM,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = GAUDI2_EVENT_HDMA3_QM,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = GAUDI2_EVENT_HDMA3_QM,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = GAUDI2_EVENT_HDMA3_QM,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = GAUDI2_EVENT_HDMA3_QM,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = GAUDI2_EVENT_MME1_QM,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = GAUDI2_EVENT_MME1_QM,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = GAUDI2_EVENT_MME1_QM,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = GAUDI2_EVENT_MME1_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = GAUDI2_EVENT_TPC6_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = GAUDI2_EVENT_TPC6_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = GAUDI2_EVENT_TPC6_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = GAUDI2_EVENT_TPC6_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = GAUDI2_EVENT_TPC7_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = GAUDI2_EVENT_TPC7_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = GAUDI2_EVENT_TPC7_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = GAUDI2_EVENT_TPC7_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = GAUDI2_EVENT_TPC8_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = GAUDI2_EVENT_TPC8_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = GAUDI2_EVENT_TPC8_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = GAUDI2_EVENT_TPC8_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = GAUDI2_EVENT_TPC9_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = GAUDI2_EVENT_TPC9_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = GAUDI2_EVENT_TPC9_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = GAUDI2_EVENT_TPC9_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = GAUDI2_EVENT_TPC10_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = GAUDI2_EVENT_TPC10_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = GAUDI2_EVENT_TPC10_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = GAUDI2_EVENT_TPC10_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = GAUDI2_EVENT_TPC11_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = GAUDI2_EVENT_TPC11_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = GAUDI2_EVENT_TPC11_QM,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = GAUDI2_EVENT_TPC11_QM,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = GAUDI2_EVENT_HDMA4_QM,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = GAUDI2_EVENT_HDMA4_QM,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = GAUDI2_EVENT_HDMA4_QM,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = GAUDI2_EVENT_HDMA4_QM,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = GAUDI2_EVENT_HDMA5_QM,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = GAUDI2_EVENT_HDMA5_QM,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = GAUDI2_EVENT_HDMA5_QM,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = GAUDI2_EVENT_HDMA5_QM,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = GAUDI2_EVENT_MME2_QM,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = GAUDI2_EVENT_MME2_QM,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = GAUDI2_EVENT_MME2_QM,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = GAUDI2_EVENT_MME2_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = GAUDI2_EVENT_TPC12_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = GAUDI2_EVENT_TPC12_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = GAUDI2_EVENT_TPC12_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = GAUDI2_EVENT_TPC12_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = GAUDI2_EVENT_TPC13_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = GAUDI2_EVENT_TPC13_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = GAUDI2_EVENT_TPC13_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = GAUDI2_EVENT_TPC13_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = GAUDI2_EVENT_TPC14_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = GAUDI2_EVENT_TPC14_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = GAUDI2_EVENT_TPC14_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = GAUDI2_EVENT_TPC14_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = GAUDI2_EVENT_TPC15_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = GAUDI2_EVENT_TPC15_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = GAUDI2_EVENT_TPC15_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = GAUDI2_EVENT_TPC15_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = GAUDI2_EVENT_TPC16_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = GAUDI2_EVENT_TPC16_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = GAUDI2_EVENT_TPC16_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = GAUDI2_EVENT_TPC16_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = GAUDI2_EVENT_TPC17_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = GAUDI2_EVENT_TPC17_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = GAUDI2_EVENT_TPC17_QM,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = GAUDI2_EVENT_TPC17_QM,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = GAUDI2_EVENT_HDMA6_QM,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = GAUDI2_EVENT_HDMA6_QM,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = GAUDI2_EVENT_HDMA6_QM,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = GAUDI2_EVENT_HDMA6_QM,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = GAUDI2_EVENT_HDMA7_QM,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = GAUDI2_EVENT_HDMA7_QM,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = GAUDI2_EVENT_HDMA7_QM,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = GAUDI2_EVENT_HDMA7_QM,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = GAUDI2_EVENT_MME3_QM,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = GAUDI2_EVENT_MME3_QM,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = GAUDI2_EVENT_MME3_QM,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = GAUDI2_EVENT_MME3_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = GAUDI2_EVENT_TPC18_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = GAUDI2_EVENT_TPC18_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = GAUDI2_EVENT_TPC18_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = GAUDI2_EVENT_TPC18_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = GAUDI2_EVENT_TPC19_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = GAUDI2_EVENT_TPC19_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = GAUDI2_EVENT_TPC19_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = GAUDI2_EVENT_TPC19_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = GAUDI2_EVENT_TPC20_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = GAUDI2_EVENT_TPC20_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = GAUDI2_EVENT_TPC20_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = GAUDI2_EVENT_TPC20_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = GAUDI2_EVENT_TPC21_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = GAUDI2_EVENT_TPC21_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = GAUDI2_EVENT_TPC21_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = GAUDI2_EVENT_TPC21_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = GAUDI2_EVENT_TPC22_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = GAUDI2_EVENT_TPC22_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = GAUDI2_EVENT_TPC22_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = GAUDI2_EVENT_TPC22_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = GAUDI2_EVENT_TPC23_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = GAUDI2_EVENT_TPC23_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = GAUDI2_EVENT_TPC23_QM,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = GAUDI2_EVENT_TPC23_QM,
	[GAUDI2_QUEUE_ID_NIC_0_0] = GAUDI2_EVENT_NIC0_QM0,
	[GAUDI2_QUEUE_ID_NIC_0_1] = GAUDI2_EVENT_NIC0_QM0,
	[GAUDI2_QUEUE_ID_NIC_0_2] = GAUDI2_EVENT_NIC0_QM0,
	[GAUDI2_QUEUE_ID_NIC_0_3] = GAUDI2_EVENT_NIC0_QM0,
	[GAUDI2_QUEUE_ID_NIC_1_0] = GAUDI2_EVENT_NIC0_QM1,
	[GAUDI2_QUEUE_ID_NIC_1_1] = GAUDI2_EVENT_NIC0_QM1,
	[GAUDI2_QUEUE_ID_NIC_1_2] = GAUDI2_EVENT_NIC0_QM1,
	[GAUDI2_QUEUE_ID_NIC_1_3] = GAUDI2_EVENT_NIC0_QM1,
	[GAUDI2_QUEUE_ID_NIC_2_0] = GAUDI2_EVENT_NIC1_QM0,
	[GAUDI2_QUEUE_ID_NIC_2_1] = GAUDI2_EVENT_NIC1_QM0,
	[GAUDI2_QUEUE_ID_NIC_2_2] = GAUDI2_EVENT_NIC1_QM0,
	[GAUDI2_QUEUE_ID_NIC_2_3] = GAUDI2_EVENT_NIC1_QM0,
	[GAUDI2_QUEUE_ID_NIC_3_0] = GAUDI2_EVENT_NIC1_QM1,
	[GAUDI2_QUEUE_ID_NIC_3_1] = GAUDI2_EVENT_NIC1_QM1,
	[GAUDI2_QUEUE_ID_NIC_3_2] = GAUDI2_EVENT_NIC1_QM1,
	[GAUDI2_QUEUE_ID_NIC_3_3] = GAUDI2_EVENT_NIC1_QM1,
	[GAUDI2_QUEUE_ID_NIC_4_0] = GAUDI2_EVENT_NIC2_QM0,
	[GAUDI2_QUEUE_ID_NIC_4_1] = GAUDI2_EVENT_NIC2_QM0,
	[GAUDI2_QUEUE_ID_NIC_4_2] = GAUDI2_EVENT_NIC2_QM0,
	[GAUDI2_QUEUE_ID_NIC_4_3] = GAUDI2_EVENT_NIC2_QM0,
	[GAUDI2_QUEUE_ID_NIC_5_0] = GAUDI2_EVENT_NIC2_QM1,
	[GAUDI2_QUEUE_ID_NIC_5_1] = GAUDI2_EVENT_NIC2_QM1,
	[GAUDI2_QUEUE_ID_NIC_5_2] = GAUDI2_EVENT_NIC2_QM1,
	[GAUDI2_QUEUE_ID_NIC_5_3] = GAUDI2_EVENT_NIC2_QM1,
	[GAUDI2_QUEUE_ID_NIC_6_0] = GAUDI2_EVENT_NIC3_QM0,
	[GAUDI2_QUEUE_ID_NIC_6_1] = GAUDI2_EVENT_NIC3_QM0,
	[GAUDI2_QUEUE_ID_NIC_6_2] = GAUDI2_EVENT_NIC3_QM0,
	[GAUDI2_QUEUE_ID_NIC_6_3] = GAUDI2_EVENT_NIC3_QM0,
	[GAUDI2_QUEUE_ID_NIC_7_0] = GAUDI2_EVENT_NIC3_QM1,
	[GAUDI2_QUEUE_ID_NIC_7_1] = GAUDI2_EVENT_NIC3_QM1,
	[GAUDI2_QUEUE_ID_NIC_7_2] = GAUDI2_EVENT_NIC3_QM1,
	[GAUDI2_QUEUE_ID_NIC_7_3] = GAUDI2_EVENT_NIC3_QM1,
	[GAUDI2_QUEUE_ID_NIC_8_0] = GAUDI2_EVENT_NIC4_QM0,
	[GAUDI2_QUEUE_ID_NIC_8_1] = GAUDI2_EVENT_NIC4_QM0,
	[GAUDI2_QUEUE_ID_NIC_8_2] = GAUDI2_EVENT_NIC4_QM0,
	[GAUDI2_QUEUE_ID_NIC_8_3] = GAUDI2_EVENT_NIC4_QM0,
	[GAUDI2_QUEUE_ID_NIC_9_0] = GAUDI2_EVENT_NIC4_QM1,
	[GAUDI2_QUEUE_ID_NIC_9_1] = GAUDI2_EVENT_NIC4_QM1,
	[GAUDI2_QUEUE_ID_NIC_9_2] = GAUDI2_EVENT_NIC4_QM1,
	[GAUDI2_QUEUE_ID_NIC_9_3] = GAUDI2_EVENT_NIC4_QM1,
	[GAUDI2_QUEUE_ID_NIC_10_0] = GAUDI2_EVENT_NIC5_QM0,
	[GAUDI2_QUEUE_ID_NIC_10_1] = GAUDI2_EVENT_NIC5_QM0,
	[GAUDI2_QUEUE_ID_NIC_10_2] = GAUDI2_EVENT_NIC5_QM0,
	[GAUDI2_QUEUE_ID_NIC_10_3] = GAUDI2_EVENT_NIC5_QM0,
	[GAUDI2_QUEUE_ID_NIC_11_0] = GAUDI2_EVENT_NIC5_QM1,
	[GAUDI2_QUEUE_ID_NIC_11_1] = GAUDI2_EVENT_NIC5_QM1,
	[GAUDI2_QUEUE_ID_NIC_11_2] = GAUDI2_EVENT_NIC5_QM1,
	[GAUDI2_QUEUE_ID_NIC_11_3] = GAUDI2_EVENT_NIC5_QM1,
	[GAUDI2_QUEUE_ID_NIC_12_0] = GAUDI2_EVENT_NIC6_QM0,
	[GAUDI2_QUEUE_ID_NIC_12_1] = GAUDI2_EVENT_NIC6_QM0,
	[GAUDI2_QUEUE_ID_NIC_12_2] = GAUDI2_EVENT_NIC6_QM0,
	[GAUDI2_QUEUE_ID_NIC_12_3] = GAUDI2_EVENT_NIC6_QM0,
	[GAUDI2_QUEUE_ID_NIC_13_0] = GAUDI2_EVENT_NIC6_QM1,
	[GAUDI2_QUEUE_ID_NIC_13_1] = GAUDI2_EVENT_NIC6_QM1,
	[GAUDI2_QUEUE_ID_NIC_13_2] = GAUDI2_EVENT_NIC6_QM1,
	[GAUDI2_QUEUE_ID_NIC_13_3] = GAUDI2_EVENT_NIC6_QM1,
	[GAUDI2_QUEUE_ID_NIC_14_0] = GAUDI2_EVENT_NIC7_QM0,
	[GAUDI2_QUEUE_ID_NIC_14_1] = GAUDI2_EVENT_NIC7_QM0,
	[GAUDI2_QUEUE_ID_NIC_14_2] = GAUDI2_EVENT_NIC7_QM0,
	[GAUDI2_QUEUE_ID_NIC_14_3] = GAUDI2_EVENT_NIC7_QM0,
	[GAUDI2_QUEUE_ID_NIC_15_0] = GAUDI2_EVENT_NIC7_QM1,
	[GAUDI2_QUEUE_ID_NIC_15_1] = GAUDI2_EVENT_NIC7_QM1,
	[GAUDI2_QUEUE_ID_NIC_15_2] = GAUDI2_EVENT_NIC7_QM1,
	[GAUDI2_QUEUE_ID_NIC_15_3] = GAUDI2_EVENT_NIC7_QM1,
	[GAUDI2_QUEUE_ID_NIC_16_0] = GAUDI2_EVENT_NIC8_QM0,
	[GAUDI2_QUEUE_ID_NIC_16_1] = GAUDI2_EVENT_NIC8_QM0,
	[GAUDI2_QUEUE_ID_NIC_16_2] = GAUDI2_EVENT_NIC8_QM0,
	[GAUDI2_QUEUE_ID_NIC_16_3] = GAUDI2_EVENT_NIC8_QM0,
	[GAUDI2_QUEUE_ID_NIC_17_0] = GAUDI2_EVENT_NIC8_QM1,
	[GAUDI2_QUEUE_ID_NIC_17_1] = GAUDI2_EVENT_NIC8_QM1,
	[GAUDI2_QUEUE_ID_NIC_17_2] = GAUDI2_EVENT_NIC8_QM1,
	[GAUDI2_QUEUE_ID_NIC_17_3] = GAUDI2_EVENT_NIC8_QM1,
	[GAUDI2_QUEUE_ID_NIC_18_0] = GAUDI2_EVENT_NIC9_QM0,
	[GAUDI2_QUEUE_ID_NIC_18_1] = GAUDI2_EVENT_NIC9_QM0,
	[GAUDI2_QUEUE_ID_NIC_18_2] = GAUDI2_EVENT_NIC9_QM0,
	[GAUDI2_QUEUE_ID_NIC_18_3] = GAUDI2_EVENT_NIC9_QM0,
	[GAUDI2_QUEUE_ID_NIC_19_0] = GAUDI2_EVENT_NIC9_QM1,
	[GAUDI2_QUEUE_ID_NIC_19_1] = GAUDI2_EVENT_NIC9_QM1,
	[GAUDI2_QUEUE_ID_NIC_19_2] = GAUDI2_EVENT_NIC9_QM1,
	[GAUDI2_QUEUE_ID_NIC_19_3] = GAUDI2_EVENT_NIC9_QM1,
	[GAUDI2_QUEUE_ID_NIC_20_0] = GAUDI2_EVENT_NIC10_QM0,
	[GAUDI2_QUEUE_ID_NIC_20_1] = GAUDI2_EVENT_NIC10_QM0,
	[GAUDI2_QUEUE_ID_NIC_20_2] = GAUDI2_EVENT_NIC10_QM0,
	[GAUDI2_QUEUE_ID_NIC_20_3] = GAUDI2_EVENT_NIC10_QM0,
	[GAUDI2_QUEUE_ID_NIC_21_0] = GAUDI2_EVENT_NIC10_QM1,
	[GAUDI2_QUEUE_ID_NIC_21_1] = GAUDI2_EVENT_NIC10_QM1,
	[GAUDI2_QUEUE_ID_NIC_21_2] = GAUDI2_EVENT_NIC10_QM1,
	[GAUDI2_QUEUE_ID_NIC_21_3] = GAUDI2_EVENT_NIC10_QM1,
	[GAUDI2_QUEUE_ID_NIC_22_0] = GAUDI2_EVENT_NIC11_QM0,
	[GAUDI2_QUEUE_ID_NIC_22_1] = GAUDI2_EVENT_NIC11_QM0,
	[GAUDI2_QUEUE_ID_NIC_22_2] = GAUDI2_EVENT_NIC11_QM0,
	[GAUDI2_QUEUE_ID_NIC_22_3] = GAUDI2_EVENT_NIC11_QM0,
	[GAUDI2_QUEUE_ID_NIC_23_0] = GAUDI2_EVENT_NIC11_QM1,
	[GAUDI2_QUEUE_ID_NIC_23_1] = GAUDI2_EVENT_NIC11_QM1,
	[GAUDI2_QUEUE_ID_NIC_23_2] = GAUDI2_EVENT_NIC11_QM1,
	[GAUDI2_QUEUE_ID_NIC_23_3] = GAUDI2_EVENT_NIC11_QM1,
	[GAUDI2_QUEUE_ID_ROT_0_0] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
	[GAUDI2_QUEUE_ID_ROT_0_1] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
	[GAUDI2_QUEUE_ID_ROT_0_2] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
	[GAUDI2_QUEUE_ID_ROT_0_3] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
	[GAUDI2_QUEUE_ID_ROT_1_0] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
	[GAUDI2_QUEUE_ID_ROT_1_1] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
	[GAUDI2_QUEUE_ID_ROT_1_2] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
	[GAUDI2_QUEUE_ID_ROT_1_3] = GAUDI2_EVENT_ROTATOR1_ROT1_QM
};

static const int gaudi2_dma_core_async_event_id[] = {
	[DMA_CORE_ID_EDMA0] = GAUDI2_EVENT_HDMA0_CORE,
	[DMA_CORE_ID_EDMA1] = GAUDI2_EVENT_HDMA1_CORE,
	[DMA_CORE_ID_EDMA2] = GAUDI2_EVENT_HDMA2_CORE,
	[DMA_CORE_ID_EDMA3] = GAUDI2_EVENT_HDMA3_CORE,
	[DMA_CORE_ID_EDMA4] = GAUDI2_EVENT_HDMA4_CORE,
	[DMA_CORE_ID_EDMA5] = GAUDI2_EVENT_HDMA5_CORE,
	[DMA_CORE_ID_EDMA6] = GAUDI2_EVENT_HDMA6_CORE,
	[DMA_CORE_ID_EDMA7] = GAUDI2_EVENT_HDMA7_CORE,
	[DMA_CORE_ID_PDMA0] = GAUDI2_EVENT_PDMA0_CORE,
	[DMA_CORE_ID_PDMA1] = GAUDI2_EVENT_PDMA1_CORE,
	[DMA_CORE_ID_KDMA] = GAUDI2_EVENT_KDMA0_CORE,
};

static const char * const gaudi2_qm_sei_error_cause[GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE] = {
	"qman sei intr",
	"arc sei intr"
};

static const char * const gaudi2_cpu_sei_error_cause[GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE] = {
	"AXI_TERMINATOR WR",
	"AXI_TERMINATOR RD",
	"AXI SPLIT SEI Status"
};

static const char * const gaudi2_arc_sei_error_cause[GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE] = {
	"cbu_bresp_sei_intr_cause",
	"cbu_rresp_sei_intr_cause",
	"lbu_bresp_sei_intr_cause",
	"lbu_rresp_sei_intr_cause",
	"cbu_axi_split_intr_cause",
	"lbu_axi_split_intr_cause",
	"arc_ip_excptn_sei_intr_cause",
	"dmi_bresp_sei_intr_cause",
	"aux2apb_err_sei_intr_cause",
	"cfg_lbw_wr_terminated_intr_cause",
	"cfg_lbw_rd_terminated_intr_cause",
	"cfg_dccm_wr_terminated_intr_cause",
	"cfg_dccm_rd_terminated_intr_cause",
	"cfg_hbw_rd_terminated_intr_cause"
};

static const char * const gaudi2_dec_error_cause[GAUDI2_NUM_OF_DEC_ERR_CAUSE] = {
	"msix_vcd_hbw_sei",
	"msix_l2c_hbw_sei",
	"msix_nrm_hbw_sei",
	"msix_abnrm_hbw_sei",
	"msix_vcd_lbw_sei",
	"msix_l2c_lbw_sei",
	"msix_nrm_lbw_sei",
	"msix_abnrm_lbw_sei",
	"apb_vcd_lbw_sei",
	"apb_l2c_lbw_sei",
	"apb_nrm_lbw_sei",
	"apb_abnrm_lbw_sei",
	"dec_sei",
	"dec_apb_sei",
	"trc_apb_sei",
	"lbw_mstr_if_sei",
	"axi_split_bresp_err_sei",
	"hbw_axi_wr_viol_sei",
	"hbw_axi_rd_viol_sei",
	"lbw_axi_wr_viol_sei",
	"lbw_axi_rd_viol_sei",
	"vcd_spi",
	"l2c_spi",
	"nrm_spi",
	"abnrm_spi",
};

static const char * const gaudi2_qman_error_cause[GAUDI2_NUM_OF_QM_ERR_CAUSE] = {
	"PQ AXI HBW error",
	"CQ AXI HBW error",
	"CP AXI HBW error",
	"CP error due to undefined OPCODE",
	"CP encountered STOP OPCODE",
	"CP AXI LBW error",
	"CP WRREG32 or WRBULK returned error",
	"N/A",
	"FENCE 0 inc over max value and clipped",
	"FENCE 1 inc over max value and clipped",
	"FENCE 2 inc over max value and clipped",
	"FENCE 3 inc over max value and clipped",
	"FENCE 0 dec under min value and clipped",
	"FENCE 1 dec under min value and clipped",
	"FENCE 2 dec under min value and clipped",
	"FENCE 3 dec under min value and clipped",
	"CPDMA Up overflow",
	"PQC L2H error"
};

static const char * const gaudi2_qman_lower_cp_error_cause[GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE] = {
	"RSVD0",
	"CQ AXI HBW error",
	"CP AXI HBW error",
	"CP error due to undefined OPCODE",
	"CP encountered STOP OPCODE",
	"CP AXI LBW error",
	"CP WRREG32 or WRBULK returned error",
	"N/A",
	"FENCE 0 inc over max value and clipped",
	"FENCE 1 inc over max value and clipped",
	"FENCE 2 inc over max value and clipped",
	"FENCE 3 inc over max value and clipped",
	"FENCE 0 dec under min value and clipped",
	"FENCE 1 dec under min value and clipped",
	"FENCE 2 dec under min value and clipped",
	"FENCE 3 dec under min value and clipped",
	"CPDMA Up overflow",
	"RSVD17",
	"CQ_WR_IFIFO_CI_ERR",
	"CQ_WR_CTL_CI_ERR",
	"ARC_CQF_RD_ERR",
	"ARC_CQ_WR_IFIFO_CI_ERR",
	"ARC_CQ_WR_CTL_CI_ERR",
	"ARC_AXI_ERR",
	"CP_SWITCH_WDT_ERR"
};

static const char * const gaudi2_qman_arb_error_cause[GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE] = {
	"Choice push while full error",
	"Choice Q watchdog error",
	"MSG AXI LBW returned with error"
};

static const char * const guadi2_rot_error_cause[GAUDI2_NUM_OF_ROT_ERR_CAUSE] = {
	"qm_axi_err",
	"qm_trace_fence_events",
	"qm_sw_err",
	"qm_cp_sw_stop",
	"lbw_mstr_rresp_err",
	"lbw_mstr_bresp_err",
	"lbw_msg_slverr",
	"hbw_msg_slverr",
	"wbc_slverr",
	"hbw_mstr_rresp_err",
	"hbw_mstr_bresp_err",
	"sb_resp_intr",
	"mrsb_resp_intr",
	"core_dw_status_0",
	"core_dw_status_1",
	"core_dw_status_2",
	"core_dw_status_3",
	"core_dw_status_4",
	"core_dw_status_5",
	"core_dw_status_6",
	"core_dw_status_7",
	"async_arc2cpu_sei_intr",
};

static const char * const gaudi2_tpc_interrupts_cause[GAUDI2_NUM_OF_TPC_INTR_CAUSE] = {
	"tpc_address_exceed_slm",
	"tpc_div_by_0",
	"tpc_spu_mac_overflow",
	"tpc_spu_addsub_overflow",
	"tpc_spu_abs_overflow",
	"tpc_spu_fma_fp_dst_nan",
	"tpc_spu_fma_fp_dst_inf",
	"tpc_spu_convert_fp_dst_nan",
	"tpc_spu_convert_fp_dst_inf",
	"tpc_spu_fp_dst_denorm",
	"tpc_vpu_mac_overflow",
	"tpc_vpu_addsub_overflow",
	"tpc_vpu_abs_overflow",
	"tpc_vpu_convert_fp_dst_nan",
	"tpc_vpu_convert_fp_dst_inf",
	"tpc_vpu_fma_fp_dst_nan",
	"tpc_vpu_fma_fp_dst_inf",
	"tpc_vpu_fp_dst_denorm",
	"tpc_assertions",
	"tpc_illegal_instruction",
	"tpc_pc_wrap_around",
	"tpc_qm_sw_err",
	"tpc_hbw_rresp_err",
	"tpc_hbw_bresp_err",
	"tpc_lbw_rresp_err",
	"tpc_lbw_bresp_err",
	"st_unlock_already_locked",
	"invalid_lock_access",
	"LD_L protection violation",
	"ST_L protection violation",
};

static const char * const guadi2_mme_error_cause[GAUDI2_NUM_OF_MME_ERR_CAUSE] = {
	"agu_resp_intr",
	"qman_axi_err",
	"wap sei (wbc axi err)",
	"arc sei",
621
	"cfg access error",
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	"qm_sw_err",
	"sbte_dbg_intr_0",
	"sbte_dbg_intr_1",
	"sbte_dbg_intr_2",
	"sbte_dbg_intr_3",
	"sbte_dbg_intr_4",
	"sbte_prtn_intr_0",
	"sbte_prtn_intr_1",
	"sbte_prtn_intr_2",
	"sbte_prtn_intr_3",
	"sbte_prtn_intr_4",
};

static const char * const guadi2_mme_sbte_error_cause[GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE] = {
	"i0",
	"i1",
	"i2",
	"i3",
	"i4",
};

static const char * const guadi2_mme_wap_error_cause[GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE] = {
	"WBC ERR RESP_0",
	"WBC ERR RESP_1",
	"AP SOURCE POS INF",
	"AP SOURCE NEG INF",
	"AP SOURCE NAN",
	"AP RESULT POS INF",
	"AP RESULT NEG INF",
};

static const char * const gaudi2_dma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = {
	"HBW Read returned with error RRESP",
	"HBW write returned with error BRESP",
	"LBW write returned with error BRESP",
	"descriptor_fifo_overflow",
	"KDMA SB LBW Read returned with error",
	"KDMA WBC LBW Write returned with error",
	"TRANSPOSE ENGINE DESC FIFO OVERFLOW",
	"WRONG CFG FOR COMMIT IN LIN DMA"
};

static const char * const gaudi2_kdma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = {
	"HBW/LBW Read returned with error RRESP",
	"HBW/LBW write returned with error BRESP",
	"LBW write returned with error BRESP",
	"descriptor_fifo_overflow",
	"KDMA SB LBW Read returned with error",
	"KDMA WBC LBW Write returned with error",
	"TRANSPOSE ENGINE DESC FIFO OVERFLOW",
	"WRONG CFG FOR COMMIT IN LIN DMA"
};

struct gaudi2_sm_sei_cause_data {
	const char *cause_name;
	const char *log_name;
	u32 log_mask;
};

static const struct gaudi2_sm_sei_cause_data
gaudi2_sm_sei_cause[GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE] = {
	{"calculated SO value overflow/underflow", "SOB group ID", 0x7FF},
	{"payload address of monitor is not aligned to 4B", "monitor addr", 0xFFFF},
	{"armed monitor write got BRESP (SLVERR or DECERR)", "AXI id", 0xFFFF},
};

static const char * const
gaudi2_pmmu_fatal_interrupts_cause[GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE] = {
	"LATENCY_RD_OUT_FIFO_OVERRUN",
	"LATENCY_WR_OUT_FIFO_OVERRUN",
};

static const char * const
gaudi2_hif_fatal_interrupts_cause[GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE] = {
	"LATENCY_RD_OUT_FIFO_OVERRUN",
	"LATENCY_WR_OUT_FIFO_OVERRUN",
};

static const char * const
gaudi2_psoc_axi_drain_interrupts_cause[GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE] = {
	"AXI drain HBW",
	"AXI drain LBW",
};

static const char * const
gaudi2_pcie_addr_dec_error_cause[GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE] = {
	"HBW error response",
	"LBW error response",
	"TLP is blocked by RR"
};

const u32 gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_SIZE] = {
	[GAUDI2_QUEUE_ID_PDMA_0_0] = mmPDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_PDMA_0_1] = mmPDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_PDMA_0_2] = mmPDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_PDMA_0_3] = mmPDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_PDMA_1_0] = mmPDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_PDMA_1_1] = mmPDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_PDMA_1_2] = mmPDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_PDMA_1_3] = mmPDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = mmDCORE0_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = mmDCORE0_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = mmDCORE0_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = mmDCORE0_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = mmDCORE0_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = mmDCORE0_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = mmDCORE0_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = mmDCORE0_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = mmDCORE0_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = mmDCORE0_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = mmDCORE0_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = mmDCORE0_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = mmDCORE0_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = mmDCORE0_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = mmDCORE0_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = mmDCORE0_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = mmDCORE0_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = mmDCORE0_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = mmDCORE0_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = mmDCORE0_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = mmDCORE0_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = mmDCORE0_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = mmDCORE0_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = mmDCORE0_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = mmDCORE0_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = mmDCORE0_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = mmDCORE0_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = mmDCORE0_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = mmDCORE0_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = mmDCORE0_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = mmDCORE0_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = mmDCORE0_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = mmDCORE0_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = mmDCORE0_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = mmDCORE0_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = mmDCORE0_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = mmDCORE0_TPC6_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = mmDCORE0_TPC6_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = mmDCORE0_TPC6_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = mmDCORE0_TPC6_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = mmDCORE1_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = mmDCORE1_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = mmDCORE1_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = mmDCORE1_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = mmDCORE1_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = mmDCORE1_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = mmDCORE1_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = mmDCORE1_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = mmDCORE1_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = mmDCORE1_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = mmDCORE1_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = mmDCORE1_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = mmDCORE1_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = mmDCORE1_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = mmDCORE1_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = mmDCORE1_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = mmDCORE1_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = mmDCORE1_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = mmDCORE1_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = mmDCORE1_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = mmDCORE1_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = mmDCORE1_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = mmDCORE1_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = mmDCORE1_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = mmDCORE1_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = mmDCORE1_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = mmDCORE1_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = mmDCORE1_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = mmDCORE1_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = mmDCORE1_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = mmDCORE1_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = mmDCORE1_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = mmDCORE1_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = mmDCORE1_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = mmDCORE1_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = mmDCORE1_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = mmDCORE2_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = mmDCORE2_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = mmDCORE2_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = mmDCORE2_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = mmDCORE2_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = mmDCORE2_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = mmDCORE2_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = mmDCORE2_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = mmDCORE2_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = mmDCORE2_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = mmDCORE2_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = mmDCORE2_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = mmDCORE2_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = mmDCORE2_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = mmDCORE2_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = mmDCORE2_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = mmDCORE2_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = mmDCORE2_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = mmDCORE2_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = mmDCORE2_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = mmDCORE2_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = mmDCORE2_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = mmDCORE2_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = mmDCORE2_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = mmDCORE2_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = mmDCORE2_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = mmDCORE2_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = mmDCORE2_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = mmDCORE2_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = mmDCORE2_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = mmDCORE2_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = mmDCORE2_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = mmDCORE2_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = mmDCORE2_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = mmDCORE2_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = mmDCORE2_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = mmDCORE3_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = mmDCORE3_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = mmDCORE3_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = mmDCORE3_EDMA0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = mmDCORE3_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = mmDCORE3_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = mmDCORE3_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = mmDCORE3_EDMA1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = mmDCORE3_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = mmDCORE3_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = mmDCORE3_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = mmDCORE3_MME_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = mmDCORE3_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = mmDCORE3_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = mmDCORE3_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = mmDCORE3_TPC0_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = mmDCORE3_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = mmDCORE3_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = mmDCORE3_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = mmDCORE3_TPC1_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = mmDCORE3_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = mmDCORE3_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = mmDCORE3_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = mmDCORE3_TPC2_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = mmDCORE3_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = mmDCORE3_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = mmDCORE3_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = mmDCORE3_TPC3_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = mmDCORE3_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = mmDCORE3_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = mmDCORE3_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = mmDCORE3_TPC4_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = mmDCORE3_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = mmDCORE3_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = mmDCORE3_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = mmDCORE3_TPC5_QM_BASE,
	[GAUDI2_QUEUE_ID_NIC_0_0] = mmNIC0_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_0_1] = mmNIC0_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_0_2] = mmNIC0_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_0_3] = mmNIC0_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_1_0] = mmNIC0_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_1_1] = mmNIC0_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_1_2] = mmNIC0_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_1_3] = mmNIC0_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_2_0] = mmNIC1_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_2_1] = mmNIC1_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_2_2] = mmNIC1_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_2_3] = mmNIC1_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_3_0] = mmNIC1_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_3_1] = mmNIC1_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_3_2] = mmNIC1_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_3_3] = mmNIC1_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_4_0] = mmNIC2_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_4_1] = mmNIC2_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_4_2] = mmNIC2_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_4_3] = mmNIC2_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_5_0] = mmNIC2_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_5_1] = mmNIC2_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_5_2] = mmNIC2_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_5_3] = mmNIC2_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_6_0] = mmNIC3_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_6_1] = mmNIC3_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_6_2] = mmNIC3_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_6_3] = mmNIC3_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_7_0] = mmNIC3_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_7_1] = mmNIC3_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_7_2] = mmNIC3_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_7_3] = mmNIC3_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_8_0] = mmNIC4_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_8_1] = mmNIC4_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_8_2] = mmNIC4_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_8_3] = mmNIC4_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_9_0] = mmNIC4_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_9_1] = mmNIC4_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_9_2] = mmNIC4_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_9_3] = mmNIC4_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_10_0] = mmNIC5_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_10_1] = mmNIC5_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_10_2] = mmNIC5_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_10_3] = mmNIC5_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_11_0] = mmNIC5_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_11_1] = mmNIC5_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_11_2] = mmNIC5_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_11_3] = mmNIC5_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_12_0] = mmNIC6_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_12_1] = mmNIC6_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_12_2] = mmNIC6_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_12_3] = mmNIC6_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_13_0] = mmNIC6_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_13_1] = mmNIC6_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_13_2] = mmNIC6_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_13_3] = mmNIC6_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_14_0] = mmNIC7_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_14_1] = mmNIC7_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_14_2] = mmNIC7_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_14_3] = mmNIC7_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_15_0] = mmNIC7_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_15_1] = mmNIC7_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_15_2] = mmNIC7_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_15_3] = mmNIC7_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_16_0] = mmNIC8_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_16_1] = mmNIC8_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_16_2] = mmNIC8_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_16_3] = mmNIC8_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_17_0] = mmNIC8_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_17_1] = mmNIC8_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_17_2] = mmNIC8_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_17_3] = mmNIC8_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_18_0] = mmNIC9_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_18_1] = mmNIC9_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_18_2] = mmNIC9_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_18_3] = mmNIC9_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_19_0] = mmNIC9_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_19_1] = mmNIC9_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_19_2] = mmNIC9_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_19_3] = mmNIC9_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_20_0] = mmNIC10_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_20_1] = mmNIC10_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_20_2] = mmNIC10_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_20_3] = mmNIC10_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_21_0] = mmNIC10_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_21_1] = mmNIC10_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_21_2] = mmNIC10_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_21_3] = mmNIC10_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_22_0] = mmNIC11_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_22_1] = mmNIC11_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_22_2] = mmNIC11_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_22_3] = mmNIC11_QM0_BASE,
	[GAUDI2_QUEUE_ID_NIC_23_0] = mmNIC11_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_23_1] = mmNIC11_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_23_2] = mmNIC11_QM1_BASE,
	[GAUDI2_QUEUE_ID_NIC_23_3] = mmNIC11_QM1_BASE,
	[GAUDI2_QUEUE_ID_ROT_0_0] = mmROT0_QM_BASE,
	[GAUDI2_QUEUE_ID_ROT_0_1] = mmROT0_QM_BASE,
	[GAUDI2_QUEUE_ID_ROT_0_2] = mmROT0_QM_BASE,
	[GAUDI2_QUEUE_ID_ROT_0_3] = mmROT0_QM_BASE,
	[GAUDI2_QUEUE_ID_ROT_1_0] = mmROT1_QM_BASE,
	[GAUDI2_QUEUE_ID_ROT_1_1] = mmROT1_QM_BASE,
	[GAUDI2_QUEUE_ID_ROT_1_2] = mmROT1_QM_BASE,
	[GAUDI2_QUEUE_ID_ROT_1_3] = mmROT1_QM_BASE
};

static const u32 gaudi2_arc_blocks_bases[NUM_ARC_CPUS] = {
	[CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_AUX_BASE,
	[CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_AUX_BASE,
	[CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_AUX_BASE,
	[CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_AUX_BASE,
	[CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_AUX_BASE,
	[CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_ARC_AUX_BASE,
	[CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_ARC_AUX_BASE,
	[CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_AUX_BASE,
	[CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_AUX_BASE,
	[CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_ARC_AUX_BASE,
	[CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_ARC_AUX_BASE,
	[CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_ARC_AUX_BASE,
	[CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_ARC_AUX_BASE,
	[CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_ARC_AUX_BASE,
	[CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_ARC_AUX_BASE,
	[CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_ARC_AUX_BASE,
	[CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_ARC_AUX_BASE,
	[CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_AUX_BASE,
	[CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_AUX_BASE,
	[CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_AUX_BASE,
	[CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_AUX_BASE,
	[CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_ARC_AUX1_BASE,
	[CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_ARC_AUX0_BASE,
	[CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_ARC_AUX1_BASE,
};

static const u32 gaudi2_arc_dccm_bases[NUM_ARC_CPUS] = {
	[CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_DCCM0_BASE,
	[CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_DCCM0_BASE,
	[CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_DCCM0_BASE,
	[CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_DCCM0_BASE,
	[CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_DCCM_BASE,
	[CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_DCCM_BASE,
	[CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_DCCM_BASE,
	[CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_DCCM_BASE,
	[CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_DCCM_BASE,
	[CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_DCCM_BASE,
	[CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_DCCM_BASE,
	[CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_DCCM_BASE,
	[CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_DCCM_BASE,
	[CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_DCCM_BASE,
	[CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_DCCM_BASE,
	[CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_DCCM_BASE,
	[CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_DCCM_BASE,
	[CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_DCCM_BASE,
	[CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_DCCM_BASE,
	[CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_DCCM_BASE,
	[CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_DCCM_BASE,
	[CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_DCCM1_BASE,
	[CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_DCCM0_BASE,
	[CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_DCCM1_BASE,
};

const u32 gaudi2_mme_ctrl_lo_blocks_bases[MME_ID_SIZE] = {
	[MME_ID_DCORE0] = mmDCORE0_MME_CTRL_LO_BASE,
	[MME_ID_DCORE1] = mmDCORE1_MME_CTRL_LO_BASE,
	[MME_ID_DCORE2] = mmDCORE2_MME_CTRL_LO_BASE,
	[MME_ID_DCORE3] = mmDCORE3_MME_CTRL_LO_BASE,
};

static const u32 gaudi2_queue_id_to_arc_id[GAUDI2_QUEUE_ID_SIZE] = {
	[GAUDI2_QUEUE_ID_PDMA_0_0] = CPU_ID_PDMA_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_PDMA_0_1] = CPU_ID_PDMA_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_PDMA_0_2] = CPU_ID_PDMA_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_PDMA_0_3] = CPU_ID_PDMA_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_PDMA_1_0] = CPU_ID_PDMA_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_PDMA_1_1] = CPU_ID_PDMA_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_PDMA_1_2] = CPU_ID_PDMA_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_PDMA_1_3] = CPU_ID_PDMA_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = CPU_ID_MME_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = CPU_ID_MME_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = CPU_ID_MME_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = CPU_ID_MME_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = CPU_ID_TPC_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = CPU_ID_TPC_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = CPU_ID_TPC_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = CPU_ID_TPC_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = CPU_ID_TPC_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = CPU_ID_TPC_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = CPU_ID_TPC_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = CPU_ID_TPC_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = CPU_ID_TPC_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = CPU_ID_TPC_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = CPU_ID_TPC_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = CPU_ID_TPC_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = CPU_ID_TPC_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = CPU_ID_TPC_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = CPU_ID_TPC_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = CPU_ID_TPC_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = CPU_ID_TPC_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = CPU_ID_TPC_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = CPU_ID_TPC_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = CPU_ID_TPC_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = CPU_ID_TPC_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = CPU_ID_TPC_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = CPU_ID_TPC_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = CPU_ID_TPC_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = CPU_ID_TPC_QMAN_ARC24,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = CPU_ID_TPC_QMAN_ARC24,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = CPU_ID_TPC_QMAN_ARC24,
	[GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = CPU_ID_TPC_QMAN_ARC24,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = CPU_ID_SCHED_ARC4,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = CPU_ID_SCHED_ARC4,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = CPU_ID_SCHED_ARC4,
	[GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = CPU_ID_SCHED_ARC4,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = CPU_ID_TPC_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = CPU_ID_TPC_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = CPU_ID_TPC_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = CPU_ID_TPC_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = CPU_ID_TPC_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = CPU_ID_TPC_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = CPU_ID_TPC_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = CPU_ID_TPC_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = CPU_ID_TPC_QMAN_ARC8,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = CPU_ID_TPC_QMAN_ARC8,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = CPU_ID_TPC_QMAN_ARC8,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = CPU_ID_TPC_QMAN_ARC8,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = CPU_ID_TPC_QMAN_ARC9,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = CPU_ID_TPC_QMAN_ARC9,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = CPU_ID_TPC_QMAN_ARC9,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = CPU_ID_TPC_QMAN_ARC9,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = CPU_ID_TPC_QMAN_ARC10,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = CPU_ID_TPC_QMAN_ARC10,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = CPU_ID_TPC_QMAN_ARC10,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = CPU_ID_TPC_QMAN_ARC10,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = CPU_ID_TPC_QMAN_ARC11,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = CPU_ID_TPC_QMAN_ARC11,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = CPU_ID_TPC_QMAN_ARC11,
	[GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = CPU_ID_TPC_QMAN_ARC11,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = CPU_ID_MME_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = CPU_ID_MME_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = CPU_ID_MME_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = CPU_ID_MME_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = CPU_ID_TPC_QMAN_ARC12,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = CPU_ID_TPC_QMAN_ARC12,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = CPU_ID_TPC_QMAN_ARC12,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = CPU_ID_TPC_QMAN_ARC12,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = CPU_ID_TPC_QMAN_ARC13,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = CPU_ID_TPC_QMAN_ARC13,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = CPU_ID_TPC_QMAN_ARC13,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = CPU_ID_TPC_QMAN_ARC13,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = CPU_ID_TPC_QMAN_ARC14,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = CPU_ID_TPC_QMAN_ARC14,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = CPU_ID_TPC_QMAN_ARC14,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = CPU_ID_TPC_QMAN_ARC14,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = CPU_ID_TPC_QMAN_ARC15,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = CPU_ID_TPC_QMAN_ARC15,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = CPU_ID_TPC_QMAN_ARC15,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = CPU_ID_TPC_QMAN_ARC15,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = CPU_ID_TPC_QMAN_ARC16,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = CPU_ID_TPC_QMAN_ARC16,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = CPU_ID_TPC_QMAN_ARC16,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = CPU_ID_TPC_QMAN_ARC16,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = CPU_ID_TPC_QMAN_ARC17,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = CPU_ID_TPC_QMAN_ARC17,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = CPU_ID_TPC_QMAN_ARC17,
	[GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = CPU_ID_TPC_QMAN_ARC17,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = CPU_ID_SCHED_ARC5,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = CPU_ID_SCHED_ARC5,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = CPU_ID_SCHED_ARC5,
	[GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = CPU_ID_SCHED_ARC5,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = CPU_ID_TPC_QMAN_ARC18,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = CPU_ID_TPC_QMAN_ARC18,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = CPU_ID_TPC_QMAN_ARC18,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = CPU_ID_TPC_QMAN_ARC18,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = CPU_ID_TPC_QMAN_ARC19,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = CPU_ID_TPC_QMAN_ARC19,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = CPU_ID_TPC_QMAN_ARC19,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = CPU_ID_TPC_QMAN_ARC19,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = CPU_ID_TPC_QMAN_ARC20,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = CPU_ID_TPC_QMAN_ARC20,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = CPU_ID_TPC_QMAN_ARC20,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = CPU_ID_TPC_QMAN_ARC20,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = CPU_ID_TPC_QMAN_ARC21,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = CPU_ID_TPC_QMAN_ARC21,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = CPU_ID_TPC_QMAN_ARC21,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = CPU_ID_TPC_QMAN_ARC21,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = CPU_ID_TPC_QMAN_ARC22,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = CPU_ID_TPC_QMAN_ARC22,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = CPU_ID_TPC_QMAN_ARC22,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = CPU_ID_TPC_QMAN_ARC22,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = CPU_ID_TPC_QMAN_ARC23,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = CPU_ID_TPC_QMAN_ARC23,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = CPU_ID_TPC_QMAN_ARC23,
	[GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = CPU_ID_TPC_QMAN_ARC23,
	[GAUDI2_QUEUE_ID_NIC_0_0] = CPU_ID_NIC_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_NIC_0_1] = CPU_ID_NIC_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_NIC_0_2] = CPU_ID_NIC_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_NIC_0_3] = CPU_ID_NIC_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_NIC_1_0] = CPU_ID_NIC_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_NIC_1_1] = CPU_ID_NIC_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_NIC_1_2] = CPU_ID_NIC_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_NIC_1_3] = CPU_ID_NIC_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_NIC_2_0] = CPU_ID_NIC_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_NIC_2_1] = CPU_ID_NIC_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_NIC_2_2] = CPU_ID_NIC_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_NIC_2_3] = CPU_ID_NIC_QMAN_ARC2,
	[GAUDI2_QUEUE_ID_NIC_3_0] = CPU_ID_NIC_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_NIC_3_1] = CPU_ID_NIC_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_NIC_3_2] = CPU_ID_NIC_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_NIC_3_3] = CPU_ID_NIC_QMAN_ARC3,
	[GAUDI2_QUEUE_ID_NIC_4_0] = CPU_ID_NIC_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_NIC_4_1] = CPU_ID_NIC_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_NIC_4_2] = CPU_ID_NIC_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_NIC_4_3] = CPU_ID_NIC_QMAN_ARC4,
	[GAUDI2_QUEUE_ID_NIC_5_0] = CPU_ID_NIC_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_NIC_5_1] = CPU_ID_NIC_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_NIC_5_2] = CPU_ID_NIC_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_NIC_5_3] = CPU_ID_NIC_QMAN_ARC5,
	[GAUDI2_QUEUE_ID_NIC_6_0] = CPU_ID_NIC_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_NIC_6_1] = CPU_ID_NIC_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_NIC_6_2] = CPU_ID_NIC_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_NIC_6_3] = CPU_ID_NIC_QMAN_ARC6,
	[GAUDI2_QUEUE_ID_NIC_7_0] = CPU_ID_NIC_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_NIC_7_1] = CPU_ID_NIC_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_NIC_7_2] = CPU_ID_NIC_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_NIC_7_3] = CPU_ID_NIC_QMAN_ARC7,
	[GAUDI2_QUEUE_ID_NIC_8_0] = CPU_ID_NIC_QMAN_ARC8,
	[GAUDI2_QUEUE_ID_NIC_8_1] = CPU_ID_NIC_QMAN_ARC8,
	[GAUDI2_QUEUE_ID_NIC_8_2] = CPU_ID_NIC_QMAN_ARC8,
	[GAUDI2_QUEUE_ID_NIC_8_3] = CPU_ID_NIC_QMAN_ARC8,
	[GAUDI2_QUEUE_ID_NIC_9_0] = CPU_ID_NIC_QMAN_ARC9,
	[GAUDI2_QUEUE_ID_NIC_9_1] = CPU_ID_NIC_QMAN_ARC9,
	[GAUDI2_QUEUE_ID_NIC_9_2] = CPU_ID_NIC_QMAN_ARC9,
	[GAUDI2_QUEUE_ID_NIC_9_3] = CPU_ID_NIC_QMAN_ARC9,
	[GAUDI2_QUEUE_ID_NIC_10_0] = CPU_ID_NIC_QMAN_ARC10,
	[GAUDI2_QUEUE_ID_NIC_10_1] = CPU_ID_NIC_QMAN_ARC10,
	[GAUDI2_QUEUE_ID_NIC_10_2] = CPU_ID_NIC_QMAN_ARC10,
	[GAUDI2_QUEUE_ID_NIC_10_3] = CPU_ID_NIC_QMAN_ARC10,
	[GAUDI2_QUEUE_ID_NIC_11_0] = CPU_ID_NIC_QMAN_ARC11,
	[GAUDI2_QUEUE_ID_NIC_11_1] = CPU_ID_NIC_QMAN_ARC11,
	[GAUDI2_QUEUE_ID_NIC_11_2] = CPU_ID_NIC_QMAN_ARC11,
	[GAUDI2_QUEUE_ID_NIC_11_3] = CPU_ID_NIC_QMAN_ARC11,
	[GAUDI2_QUEUE_ID_NIC_12_0] = CPU_ID_NIC_QMAN_ARC12,
	[GAUDI2_QUEUE_ID_NIC_12_1] = CPU_ID_NIC_QMAN_ARC12,
	[GAUDI2_QUEUE_ID_NIC_12_2] = CPU_ID_NIC_QMAN_ARC12,
	[GAUDI2_QUEUE_ID_NIC_12_3] = CPU_ID_NIC_QMAN_ARC12,
	[GAUDI2_QUEUE_ID_NIC_13_0] = CPU_ID_NIC_QMAN_ARC13,
	[GAUDI2_QUEUE_ID_NIC_13_1] = CPU_ID_NIC_QMAN_ARC13,
	[GAUDI2_QUEUE_ID_NIC_13_2] = CPU_ID_NIC_QMAN_ARC13,
	[GAUDI2_QUEUE_ID_NIC_13_3] = CPU_ID_NIC_QMAN_ARC13,
	[GAUDI2_QUEUE_ID_NIC_14_0] = CPU_ID_NIC_QMAN_ARC14,
	[GAUDI2_QUEUE_ID_NIC_14_1] = CPU_ID_NIC_QMAN_ARC14,
	[GAUDI2_QUEUE_ID_NIC_14_2] = CPU_ID_NIC_QMAN_ARC14,
	[GAUDI2_QUEUE_ID_NIC_14_3] = CPU_ID_NIC_QMAN_ARC14,
	[GAUDI2_QUEUE_ID_NIC_15_0] = CPU_ID_NIC_QMAN_ARC15,
	[GAUDI2_QUEUE_ID_NIC_15_1] = CPU_ID_NIC_QMAN_ARC15,
	[GAUDI2_QUEUE_ID_NIC_15_2] = CPU_ID_NIC_QMAN_ARC15,
	[GAUDI2_QUEUE_ID_NIC_15_3] = CPU_ID_NIC_QMAN_ARC15,
	[GAUDI2_QUEUE_ID_NIC_16_0] = CPU_ID_NIC_QMAN_ARC16,
	[GAUDI2_QUEUE_ID_NIC_16_1] = CPU_ID_NIC_QMAN_ARC16,
	[GAUDI2_QUEUE_ID_NIC_16_2] = CPU_ID_NIC_QMAN_ARC16,
	[GAUDI2_QUEUE_ID_NIC_16_3] = CPU_ID_NIC_QMAN_ARC16,
	[GAUDI2_QUEUE_ID_NIC_17_0] = CPU_ID_NIC_QMAN_ARC17,
	[GAUDI2_QUEUE_ID_NIC_17_1] = CPU_ID_NIC_QMAN_ARC17,
	[GAUDI2_QUEUE_ID_NIC_17_2] = CPU_ID_NIC_QMAN_ARC17,
	[GAUDI2_QUEUE_ID_NIC_17_3] = CPU_ID_NIC_QMAN_ARC17,
	[GAUDI2_QUEUE_ID_NIC_18_0] = CPU_ID_NIC_QMAN_ARC18,
	[GAUDI2_QUEUE_ID_NIC_18_1] = CPU_ID_NIC_QMAN_ARC18,
	[GAUDI2_QUEUE_ID_NIC_18_2] = CPU_ID_NIC_QMAN_ARC18,
	[GAUDI2_QUEUE_ID_NIC_18_3] = CPU_ID_NIC_QMAN_ARC18,
	[GAUDI2_QUEUE_ID_NIC_19_0] = CPU_ID_NIC_QMAN_ARC19,
	[GAUDI2_QUEUE_ID_NIC_19_1] = CPU_ID_NIC_QMAN_ARC19,
	[GAUDI2_QUEUE_ID_NIC_19_2] = CPU_ID_NIC_QMAN_ARC19,
	[GAUDI2_QUEUE_ID_NIC_19_3] = CPU_ID_NIC_QMAN_ARC19,
	[GAUDI2_QUEUE_ID_NIC_20_0] = CPU_ID_NIC_QMAN_ARC20,
	[GAUDI2_QUEUE_ID_NIC_20_1] = CPU_ID_NIC_QMAN_ARC20,
	[GAUDI2_QUEUE_ID_NIC_20_2] = CPU_ID_NIC_QMAN_ARC20,
	[GAUDI2_QUEUE_ID_NIC_20_3] = CPU_ID_NIC_QMAN_ARC20,
	[GAUDI2_QUEUE_ID_NIC_21_0] = CPU_ID_NIC_QMAN_ARC21,
	[GAUDI2_QUEUE_ID_NIC_21_1] = CPU_ID_NIC_QMAN_ARC21,
	[GAUDI2_QUEUE_ID_NIC_21_2] = CPU_ID_NIC_QMAN_ARC21,
	[GAUDI2_QUEUE_ID_NIC_21_3] = CPU_ID_NIC_QMAN_ARC21,
	[GAUDI2_QUEUE_ID_NIC_22_0] = CPU_ID_NIC_QMAN_ARC22,
	[GAUDI2_QUEUE_ID_NIC_22_1] = CPU_ID_NIC_QMAN_ARC22,
	[GAUDI2_QUEUE_ID_NIC_22_2] = CPU_ID_NIC_QMAN_ARC22,
	[GAUDI2_QUEUE_ID_NIC_22_3] = CPU_ID_NIC_QMAN_ARC22,
	[GAUDI2_QUEUE_ID_NIC_23_0] = CPU_ID_NIC_QMAN_ARC23,
	[GAUDI2_QUEUE_ID_NIC_23_1] = CPU_ID_NIC_QMAN_ARC23,
	[GAUDI2_QUEUE_ID_NIC_23_2] = CPU_ID_NIC_QMAN_ARC23,
	[GAUDI2_QUEUE_ID_NIC_23_3] = CPU_ID_NIC_QMAN_ARC23,
	[GAUDI2_QUEUE_ID_ROT_0_0] = CPU_ID_ROT_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_ROT_0_1] = CPU_ID_ROT_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_ROT_0_2] = CPU_ID_ROT_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_ROT_0_3] = CPU_ID_ROT_QMAN_ARC0,
	[GAUDI2_QUEUE_ID_ROT_1_0] = CPU_ID_ROT_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_ROT_1_1] = CPU_ID_ROT_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_ROT_1_2] = CPU_ID_ROT_QMAN_ARC1,
	[GAUDI2_QUEUE_ID_ROT_1_3] = CPU_ID_ROT_QMAN_ARC1
};

const u32 gaudi2_dma_core_blocks_bases[DMA_CORE_ID_SIZE] = {
	[DMA_CORE_ID_PDMA0] = mmPDMA0_CORE_BASE,
	[DMA_CORE_ID_PDMA1] = mmPDMA1_CORE_BASE,
	[DMA_CORE_ID_EDMA0] = mmDCORE0_EDMA0_CORE_BASE,
	[DMA_CORE_ID_EDMA1] = mmDCORE0_EDMA1_CORE_BASE,
	[DMA_CORE_ID_EDMA2] = mmDCORE1_EDMA0_CORE_BASE,
	[DMA_CORE_ID_EDMA3] = mmDCORE1_EDMA1_CORE_BASE,
	[DMA_CORE_ID_EDMA4] = mmDCORE2_EDMA0_CORE_BASE,
	[DMA_CORE_ID_EDMA5] = mmDCORE2_EDMA1_CORE_BASE,
	[DMA_CORE_ID_EDMA6] = mmDCORE3_EDMA0_CORE_BASE,
	[DMA_CORE_ID_EDMA7] = mmDCORE3_EDMA1_CORE_BASE,
	[DMA_CORE_ID_KDMA] = mmARC_FARM_KDMA_BASE
};

const u32 gaudi2_mme_acc_blocks_bases[MME_ID_SIZE] = {
	[MME_ID_DCORE0] = mmDCORE0_MME_ACC_BASE,
	[MME_ID_DCORE1] = mmDCORE1_MME_ACC_BASE,
	[MME_ID_DCORE2] = mmDCORE2_MME_ACC_BASE,
	[MME_ID_DCORE3] = mmDCORE3_MME_ACC_BASE
};

static const u32 gaudi2_tpc_cfg_blocks_bases[TPC_ID_SIZE] = {
	[TPC_ID_DCORE0_TPC0] = mmDCORE0_TPC0_CFG_BASE,
	[TPC_ID_DCORE0_TPC1] = mmDCORE0_TPC1_CFG_BASE,
	[TPC_ID_DCORE0_TPC2] = mmDCORE0_TPC2_CFG_BASE,
	[TPC_ID_DCORE0_TPC3] = mmDCORE0_TPC3_CFG_BASE,
	[TPC_ID_DCORE0_TPC4] = mmDCORE0_TPC4_CFG_BASE,
	[TPC_ID_DCORE0_TPC5] = mmDCORE0_TPC5_CFG_BASE,
	[TPC_ID_DCORE1_TPC0] = mmDCORE1_TPC0_CFG_BASE,
	[TPC_ID_DCORE1_TPC1] = mmDCORE1_TPC1_CFG_BASE,
	[TPC_ID_DCORE1_TPC2] = mmDCORE1_TPC2_CFG_BASE,
	[TPC_ID_DCORE1_TPC3] = mmDCORE1_TPC3_CFG_BASE,
	[TPC_ID_DCORE1_TPC4] = mmDCORE1_TPC4_CFG_BASE,
	[TPC_ID_DCORE1_TPC5] = mmDCORE1_TPC5_CFG_BASE,
	[TPC_ID_DCORE2_TPC0] = mmDCORE2_TPC0_CFG_BASE,
	[TPC_ID_DCORE2_TPC1] = mmDCORE2_TPC1_CFG_BASE,
	[TPC_ID_DCORE2_TPC2] = mmDCORE2_TPC2_CFG_BASE,
	[TPC_ID_DCORE2_TPC3] = mmDCORE2_TPC3_CFG_BASE,
	[TPC_ID_DCORE2_TPC4] = mmDCORE2_TPC4_CFG_BASE,
	[TPC_ID_DCORE2_TPC5] = mmDCORE2_TPC5_CFG_BASE,
	[TPC_ID_DCORE3_TPC0] = mmDCORE3_TPC0_CFG_BASE,
	[TPC_ID_DCORE3_TPC1] = mmDCORE3_TPC1_CFG_BASE,
	[TPC_ID_DCORE3_TPC2] = mmDCORE3_TPC2_CFG_BASE,
	[TPC_ID_DCORE3_TPC3] = mmDCORE3_TPC3_CFG_BASE,
	[TPC_ID_DCORE3_TPC4] = mmDCORE3_TPC4_CFG_BASE,
	[TPC_ID_DCORE3_TPC5] = mmDCORE3_TPC5_CFG_BASE,
	[TPC_ID_DCORE0_TPC6] = mmDCORE0_TPC6_CFG_BASE,
};

const u32 gaudi2_rot_blocks_bases[ROTATOR_ID_SIZE] = {
	[ROTATOR_ID_0] = mmROT0_BASE,
	[ROTATOR_ID_1] = mmROT1_BASE
};

static const u32 gaudi2_tpc_id_to_queue_id[TPC_ID_SIZE] = {
	[TPC_ID_DCORE0_TPC0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0,
	[TPC_ID_DCORE0_TPC1] = GAUDI2_QUEUE_ID_DCORE0_TPC_1_0,
	[TPC_ID_DCORE0_TPC2] = GAUDI2_QUEUE_ID_DCORE0_TPC_2_0,
	[TPC_ID_DCORE0_TPC3] = GAUDI2_QUEUE_ID_DCORE0_TPC_3_0,
	[TPC_ID_DCORE0_TPC4] = GAUDI2_QUEUE_ID_DCORE0_TPC_4_0,
	[TPC_ID_DCORE0_TPC5] = GAUDI2_QUEUE_ID_DCORE0_TPC_5_0,
	[TPC_ID_DCORE1_TPC0] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0,
	[TPC_ID_DCORE1_TPC1] = GAUDI2_QUEUE_ID_DCORE1_TPC_1_0,
	[TPC_ID_DCORE1_TPC2] = GAUDI2_QUEUE_ID_DCORE1_TPC_2_0,
	[TPC_ID_DCORE1_TPC3] = GAUDI2_QUEUE_ID_DCORE1_TPC_3_0,
	[TPC_ID_DCORE1_TPC4] = GAUDI2_QUEUE_ID_DCORE1_TPC_4_0,
	[TPC_ID_DCORE1_TPC5] = GAUDI2_QUEUE_ID_DCORE1_TPC_5_0,
	[TPC_ID_DCORE2_TPC0] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0,
	[TPC_ID_DCORE2_TPC1] = GAUDI2_QUEUE_ID_DCORE2_TPC_1_0,
	[TPC_ID_DCORE2_TPC2] = GAUDI2_QUEUE_ID_DCORE2_TPC_2_0,
	[TPC_ID_DCORE2_TPC3] = GAUDI2_QUEUE_ID_DCORE2_TPC_3_0,
	[TPC_ID_DCORE2_TPC4] = GAUDI2_QUEUE_ID_DCORE2_TPC_4_0,
	[TPC_ID_DCORE2_TPC5] = GAUDI2_QUEUE_ID_DCORE2_TPC_5_0,
	[TPC_ID_DCORE3_TPC0] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0,
	[TPC_ID_DCORE3_TPC1] = GAUDI2_QUEUE_ID_DCORE3_TPC_1_0,
	[TPC_ID_DCORE3_TPC2] = GAUDI2_QUEUE_ID_DCORE3_TPC_2_0,
	[TPC_ID_DCORE3_TPC3] = GAUDI2_QUEUE_ID_DCORE3_TPC_3_0,
	[TPC_ID_DCORE3_TPC4] = GAUDI2_QUEUE_ID_DCORE3_TPC_4_0,
	[TPC_ID_DCORE3_TPC5] = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0,
	[TPC_ID_DCORE0_TPC6] = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0,
};

static const u32 gaudi2_rot_id_to_queue_id[ROTATOR_ID_SIZE] = {
	[ROTATOR_ID_0] = GAUDI2_QUEUE_ID_ROT_0_0,
	[ROTATOR_ID_1] = GAUDI2_QUEUE_ID_ROT_1_0,
};

const u32 edma_stream_base[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = {
	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0,
	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0,
	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0,
	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0,
	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0,
	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0,
	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0,
	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0,
};

static const char gaudi2_vdec_irq_name[GAUDI2_VDEC_MSIX_ENTRIES][GAUDI2_MAX_STRING_LEN] = {
	"gaudi2 vdec 0_0", "gaudi2 vdec 0_0 abnormal",
	"gaudi2 vdec 0_1", "gaudi2 vdec 0_1 abnormal",
	"gaudi2 vdec 1_0", "gaudi2 vdec 1_0 abnormal",
	"gaudi2 vdec 1_1", "gaudi2 vdec 1_1 abnormal",
	"gaudi2 vdec 2_0", "gaudi2 vdec 2_0 abnormal",
	"gaudi2 vdec 2_1", "gaudi2 vdec 2_1 abnormal",
	"gaudi2 vdec 3_0", "gaudi2 vdec 3_0 abnormal",
	"gaudi2 vdec 3_1", "gaudi2 vdec 3_1 abnormal",
	"gaudi2 vdec s_0", "gaudi2 vdec s_0 abnormal",
	"gaudi2 vdec s_1", "gaudi2 vdec s_1 abnormal"
};

static const u32 rtr_coordinates_to_rtr_id[NUM_OF_RTR_PER_DCORE * NUM_OF_DCORES] = {
	RTR_ID_X_Y(2, 4),
	RTR_ID_X_Y(3, 4),
	RTR_ID_X_Y(4, 4),
	RTR_ID_X_Y(5, 4),
	RTR_ID_X_Y(6, 4),
	RTR_ID_X_Y(7, 4),
	RTR_ID_X_Y(8, 4),
	RTR_ID_X_Y(9, 4),
	RTR_ID_X_Y(10, 4),
	RTR_ID_X_Y(11, 4),
	RTR_ID_X_Y(12, 4),
	RTR_ID_X_Y(13, 4),
	RTR_ID_X_Y(14, 4),
	RTR_ID_X_Y(15, 4),
	RTR_ID_X_Y(16, 4),
	RTR_ID_X_Y(17, 4),
	RTR_ID_X_Y(2, 11),
	RTR_ID_X_Y(3, 11),
	RTR_ID_X_Y(4, 11),
	RTR_ID_X_Y(5, 11),
	RTR_ID_X_Y(6, 11),
	RTR_ID_X_Y(7, 11),
	RTR_ID_X_Y(8, 11),
	RTR_ID_X_Y(9, 11),
	RTR_ID_X_Y(0, 0),/* 24 no id */
	RTR_ID_X_Y(0, 0),/* 25 no id */
	RTR_ID_X_Y(0, 0),/* 26 no id */
	RTR_ID_X_Y(0, 0),/* 27 no id */
	RTR_ID_X_Y(14, 11),
	RTR_ID_X_Y(15, 11),
	RTR_ID_X_Y(16, 11),
	RTR_ID_X_Y(17, 11)
};

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
enum rtr_id {
	DCORE0_RTR0,
	DCORE0_RTR1,
	DCORE0_RTR2,
	DCORE0_RTR3,
	DCORE0_RTR4,
	DCORE0_RTR5,
	DCORE0_RTR6,
	DCORE0_RTR7,
	DCORE1_RTR0,
	DCORE1_RTR1,
	DCORE1_RTR2,
	DCORE1_RTR3,
	DCORE1_RTR4,
	DCORE1_RTR5,
	DCORE1_RTR6,
	DCORE1_RTR7,
	DCORE2_RTR0,
	DCORE2_RTR1,
	DCORE2_RTR2,
	DCORE2_RTR3,
	DCORE2_RTR4,
	DCORE2_RTR5,
	DCORE2_RTR6,
	DCORE2_RTR7,
	DCORE3_RTR0,
	DCORE3_RTR1,
	DCORE3_RTR2,
	DCORE3_RTR3,
	DCORE3_RTR4,
	DCORE3_RTR5,
	DCORE3_RTR6,
	DCORE3_RTR7,
};

1571
static const u32 gaudi2_tpc_initiator_rtr_id[NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1] = {
1572 1573 1574 1575 1576
	DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR2, DCORE0_RTR2, DCORE0_RTR3, DCORE0_RTR3,
	DCORE1_RTR6, DCORE1_RTR6, DCORE1_RTR5, DCORE1_RTR5, DCORE1_RTR4, DCORE1_RTR4,
	DCORE2_RTR3, DCORE2_RTR3, DCORE2_RTR2, DCORE2_RTR2, DCORE2_RTR1, DCORE2_RTR1,
	DCORE3_RTR4, DCORE3_RTR4, DCORE3_RTR5, DCORE3_RTR5, DCORE3_RTR6, DCORE3_RTR6,
	DCORE0_RTR0
1577 1578 1579
};

static const u32 gaudi2_dec_initiator_rtr_id[NUMBER_OF_DEC] = {
1580 1581
	DCORE0_RTR0, DCORE0_RTR0, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0, DCORE2_RTR0,
	DCORE3_RTR7, DCORE3_RTR7, DCORE0_RTR0, DCORE0_RTR0
1582 1583 1584
};

static const u32 gaudi2_nic_initiator_rtr_id[NIC_NUMBER_OF_MACROS] = {
1585 1586
	DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0,
	DCORE2_RTR0, DCORE2_RTR0, DCORE2_RTR0, DCORE3_RTR7, DCORE3_RTR7, DCORE3_RTR7
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
};

struct sft_info {
	u8 interface_id;
	u8 dcore_id;
};

static const struct sft_info gaudi2_edma_initiator_sft_id[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = {
	{0, 0},	{1, 0}, {0, 1}, {1, 1}, {1, 2}, {1, 3},	{0, 2},	{0, 3},
};

static const u32 gaudi2_pdma_initiator_rtr_id[NUM_OF_PDMA] = {
1599
	DCORE0_RTR0, DCORE0_RTR0
1600 1601 1602
};

static const u32 gaudi2_rot_initiator_rtr_id[NUM_OF_ROT] = {
1603
	DCORE2_RTR0, DCORE3_RTR7
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
};

struct mme_initiators_rtr_id {
	u32 wap0;
	u32 wap1;
	u32 write;
	u32 read;
	u32 sbte0;
	u32 sbte1;
	u32 sbte2;
	u32 sbte3;
	u32 sbte4;
};

enum mme_initiators {
	MME_WAP0 = 0,
	MME_WAP1,
	MME_WRITE,
	MME_READ,
	MME_SBTE0,
	MME_SBTE1,
	MME_SBTE2,
	MME_SBTE3,
	MME_SBTE4,
	MME_INITIATORS_MAX
};

static const struct mme_initiators_rtr_id
gaudi2_mme_initiator_rtr_id[NUM_OF_MME_PER_DCORE * NUM_OF_DCORES] = {
	{ .wap0 = 5, .wap1 = 7, .write = 6, .read = 7,
	.sbte0 = 7, .sbte1 = 4, .sbte2 = 4, .sbte3 = 5, .sbte4 = 6},
	{ .wap0 = 10, .wap1 = 8, .write = 9, .read = 8,
	.sbte0 = 11, .sbte1 = 11, .sbte2 = 10, .sbte3 = 9, .sbte4 = 8},
	{ .wap0 = 21, .wap1 = 23, .write = 22, .read = 23,
	.sbte0 = 20, .sbte1 = 20, .sbte2 = 21, .sbte3 = 22, .sbte4 = 23},
	{ .wap0 = 30, .wap1 = 28, .write = 29, .read = 30,
	.sbte0 = 31, .sbte1 = 31, .sbte2 = 30, .sbte3 = 29, .sbte4 = 28},
};

enum razwi_event_sources {
	RAZWI_TPC,
	RAZWI_MME,
	RAZWI_EDMA,
	RAZWI_PDMA,
	RAZWI_NIC,
	RAZWI_DEC,
	RAZWI_ROT
};

struct hbm_mc_error_causes {
	u32 mask;
	char cause[50];
};

static struct hbm_mc_error_causes hbm_mc_spi[GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE] = {
	{HBM_MC_SPI_TEMP_PIN_CHG_MASK, "temperature pins changed"},
	{HBM_MC_SPI_THR_ENG_MASK, "temperature-based throttling engaged"},
	{HBM_MC_SPI_THR_DIS_ENG_MASK, "temperature-based throttling disengaged"},
	{HBM_MC_SPI_IEEE1500_COMP_MASK, "IEEE1500 op comp"},
	{HBM_MC_SPI_IEEE1500_PAUSED_MASK, "IEEE1500 op paused"},
};

static const char * const hbm_mc_sei_cause[GAUDI2_NUM_OF_HBM_SEI_CAUSE] = {
	[HBM_SEI_CMD_PARITY_EVEN] = "SEI C/A parity even",
	[HBM_SEI_CMD_PARITY_ODD] = "SEI C/A parity odd",
	[HBM_SEI_READ_ERR] = "SEI read data error",
	[HBM_SEI_WRITE_DATA_PARITY_ERR] = "SEI write data parity error",
	[HBM_SEI_CATTRIP] = "SEI CATTRIP asserted",
	[HBM_SEI_MEM_BIST_FAIL] = "SEI memory BIST fail",
	[HBM_SEI_DFI] = "SEI DFI error",
	[HBM_SEI_INV_TEMP_READ_OUT] = "SEI invalid temp read",
	[HBM_SEI_BIST_FAIL] = "SEI BIST fail"
};

struct mmu_spi_sei_cause {
	char cause[50];
	int clear_bit;
};

static const struct mmu_spi_sei_cause gaudi2_mmu_spi_sei[GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE] = {
	{"page fault", 1},		/* INTERRUPT_CLR[1] */
	{"page access", 1},		/* INTERRUPT_CLR[1] */
	{"bypass ddr", 2},		/* INTERRUPT_CLR[2] */
	{"multi hit", 2},		/* INTERRUPT_CLR[2] */
	{"mmu rei0", -1},		/* no clear register bit */
	{"mmu rei1", -1},		/* no clear register bit */
	{"stlb rei0", -1},		/* no clear register bit */
	{"stlb rei1", -1},		/* no clear register bit */
	{"rr privileged write hit", 2},	/* INTERRUPT_CLR[2] */
	{"rr privileged read hit", 2},	/* INTERRUPT_CLR[2] */
	{"rr secure write hit", 2},	/* INTERRUPT_CLR[2] */
	{"rr secure read hit", 2},	/* INTERRUPT_CLR[2] */
	{"bist_fail no use", 2},	/* INTERRUPT_CLR[2] */
	{"bist_fail no use", 2},	/* INTERRUPT_CLR[2] */
	{"bist_fail no use", 2},	/* INTERRUPT_CLR[2] */
	{"bist_fail no use", 2},	/* INTERRUPT_CLR[2] */
	{"slave error", 16},		/* INTERRUPT_CLR[16] */
	{"dec error", 17},		/* INTERRUPT_CLR[17] */
	{"burst fifo full", 2}		/* INTERRUPT_CLR[2] */
};

struct gaudi2_cache_invld_params {
	u64 start_va;
	u64 end_va;
	u32 inv_start_val;
	u32 flags;
	bool range_invalidation;
};

struct gaudi2_tpc_idle_data {
1714
	struct engines_data *e;
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	unsigned long *mask;
	bool *is_idle;
	const char *tpc_fmt;
};

struct gaudi2_tpc_mmu_data {
	u32 rw_asid;
};

static s64 gaudi2_state_dump_specs_props[SP_MAX] = {0};

static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val);
static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id);
static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id);
static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id);
static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id);
static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val);
static int gaudi2_send_job_to_kdma(struct hl_device *hdev, u64 src_addr, u64 dst_addr, u32 size,
										bool is_memset);
static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr);

static void gaudi2_init_scrambler_hbm(struct hl_device *hdev)
{

}

static u32 gaudi2_get_signal_cb_size(struct hl_device *hdev)
{
	return sizeof(struct packet_msg_short);
}

static u32 gaudi2_get_wait_cb_size(struct hl_device *hdev)
{
	return sizeof(struct packet_msg_short) * 4 + sizeof(struct packet_fence);
}

void gaudi2_iterate_tpcs(struct hl_device *hdev, struct iterate_module_ctx *ctx)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	int dcore, inst, tpc_seq;
	u32 offset;

1757 1758 1759
	/* init the return code */
	ctx->rc = 0;

1760 1761 1762 1763 1764 1765 1766 1767 1768
	for (dcore = 0; dcore < NUM_OF_DCORES; dcore++) {
		for (inst = 0; inst < NUM_OF_TPC_PER_DCORE; inst++) {
			tpc_seq = dcore * NUM_OF_TPC_PER_DCORE + inst;

			if (!(prop->tpc_enabled_mask & BIT(tpc_seq)))
				continue;

			offset = (DCORE_OFFSET * dcore) + (DCORE_TPC_OFFSET * inst);

1769 1770 1771 1772 1773 1774
			ctx->fn(hdev, dcore, inst, offset, ctx);
			if (ctx->rc) {
				dev_err(hdev->dev, "TPC iterator failed for DCORE%d TPC%d\n",
							dcore, inst);
				return;
			}
1775 1776 1777 1778 1779 1780 1781 1782
		}
	}

	if (!(prop->tpc_enabled_mask & BIT(TPC_ID_DCORE0_TPC6)))
		return;

	/* special check for PCI TPC (DCORE0_TPC6) */
	offset = DCORE_TPC_OFFSET * (NUM_DCORE0_TPC - 1);
1783 1784 1785
	ctx->fn(hdev, 0, NUM_DCORE0_TPC - 1, offset, ctx);
	if (ctx->rc)
		dev_err(hdev->dev, "TPC iterator failed for DCORE0 TPC6\n");
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
}

static bool gaudi2_host_phys_addr_valid(u64 addr)
{
	if ((addr < HOST_PHYS_BASE_0 + HOST_PHYS_SIZE_0) || (addr >= HOST_PHYS_BASE_1))
		return true;

	return false;
}

static int set_number_of_functional_hbms(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u8 faulty_hbms = hweight64(hdev->dram_binning);

	/* check if all HBMs should be used */
	if (!faulty_hbms) {
		dev_dbg(hdev->dev, "All HBM are in use (no binning)\n");
		prop->num_functional_hbms = GAUDI2_HBM_NUM;
		return 0;
	}

	/*
	 * check for error condition in which number of binning
	 * candidates is higher than the maximum supported by the
	 * driver (in which case binning mask shall be ignored and driver will
	 * set the default)
	 */
	if (faulty_hbms > MAX_FAULTY_HBMS) {
		dev_err(hdev->dev,
			"HBM binning supports max of %d faulty HBMs, supplied mask 0x%llx.\n",
			MAX_FAULTY_HBMS, hdev->dram_binning);
		return -EINVAL;
	}

	/*
	 * by default, number of functional HBMs in Gaudi2 is always
	 * GAUDI2_HBM_NUM - 1.
	 */
	prop->num_functional_hbms = GAUDI2_HBM_NUM - faulty_hbms;
	return 0;
}

static int gaudi2_set_dram_properties(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u32 basic_hbm_page_size;
	int rc;

	rc = set_number_of_functional_hbms(hdev);
	if (rc)
		return -EINVAL;

	/*
	 * Due to HW bug in which TLB size is x16 smaller than expected we use a workaround
	 * in which we are using x16 bigger page size to be able to populate the entire
	 * HBM mappings in the TLB
	 */
	basic_hbm_page_size = prop->num_functional_hbms * SZ_8M;
	prop->dram_page_size = GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR * basic_hbm_page_size;
	prop->device_mem_alloc_default_page_size = prop->dram_page_size;
	prop->dram_size = prop->num_functional_hbms * SZ_16G;
	prop->dram_base_address = DRAM_PHYS_BASE;
	prop->dram_end_address = prop->dram_base_address + prop->dram_size;
	prop->dram_supports_virtual_memory = true;

	prop->dram_user_base_address = DRAM_PHYS_BASE + prop->dram_page_size;
	prop->dram_hints_align_mask = ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK;
	prop->hints_dram_reserved_va_range.start_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_START;
	prop->hints_dram_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_END;

1857
	/* since DRAM page size differs from DMMU page size we need to allocate
1858 1859
	 * DRAM memory in units of dram_page size and mapping this memory in
	 * units of DMMU page size. we overcome this size mismatch using a
1860
	 * scrambling routine which takes a DRAM page and converts it to a DMMU
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	 * page.
	 * We therefore:
	 * 1. partition the virtual address space to DRAM-page (whole) pages.
	 *    (suppose we get n such pages)
	 * 2. limit the amount of virtual address space we got from 1 above to
	 *    a multiple of 64M as we don't want the scrambled address to cross
	 *    the DRAM virtual address space.
	 *    ( m = (n * DRAM_page_size) / DMMU_page_size).
	 * 3. determine the and address accordingly
	 *    end_addr = start_addr + m * 48M
	 *
	 *    the DRAM address MSBs (63:48) are not part of the roundup calculation
	 */
	prop->dmmu.start_addr = prop->dram_base_address +
1875 1876
			(prop->dram_page_size *
				DIV_ROUND_UP_SECTOR_T(prop->dram_size, prop->dram_page_size));
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

	prop->dmmu.end_addr = prop->dmmu.start_addr + prop->dram_page_size *
			div_u64((VA_HBM_SPACE_END - prop->dmmu.start_addr), prop->dmmu.page_size);

	return 0;
}

static int gaudi2_set_fixed_properties(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct hw_queue_properties *q_props;
	u32 num_sync_stream_queues = 0;
	int i;

	prop->max_queues = GAUDI2_QUEUE_ID_SIZE;
	prop->hw_queues_props = kcalloc(prop->max_queues, sizeof(struct hw_queue_properties),
					GFP_KERNEL);

	if (!prop->hw_queues_props)
		return -ENOMEM;

	q_props = prop->hw_queues_props;

	for (i = 0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i++) {
		q_props[i].type = QUEUE_TYPE_HW;
		q_props[i].driver_only = 0;

		if (i >= GAUDI2_QUEUE_ID_NIC_0_0 && i <= GAUDI2_QUEUE_ID_NIC_23_3) {
			q_props[i].supports_sync_stream = 0;
		} else {
			q_props[i].supports_sync_stream = 1;
			num_sync_stream_queues++;
		}

		q_props[i].cb_alloc_flags = CB_ALLOC_USER;
	}

	q_props[GAUDI2_QUEUE_ID_CPU_PQ].type = QUEUE_TYPE_CPU;
	q_props[GAUDI2_QUEUE_ID_CPU_PQ].driver_only = 1;
	q_props[GAUDI2_QUEUE_ID_CPU_PQ].cb_alloc_flags = CB_ALLOC_KERNEL;

	prop->cache_line_size = DEVICE_CACHE_LINE_SIZE;
	prop->cfg_base_address = CFG_BASE;
	prop->device_dma_offset_for_host_access = HOST_PHYS_BASE_0;
	prop->host_base_address = HOST_PHYS_BASE_0;
	prop->host_end_address = prop->host_base_address + HOST_PHYS_SIZE_0;
	prop->max_pending_cs = GAUDI2_MAX_PENDING_CS;
	prop->completion_queues_count = GAUDI2_RESERVED_CQ_NUMBER;
	prop->user_dec_intr_count = NUMBER_OF_DEC;
	prop->user_interrupt_count = GAUDI2_IRQ_NUM_USER_LAST - GAUDI2_IRQ_NUM_USER_FIRST + 1;
	prop->completion_mode = HL_COMPLETION_MODE_CS;
1928 1929
	prop->sync_stream_first_sob = GAUDI2_RESERVED_SOB_NUMBER;
	prop->sync_stream_first_mon = GAUDI2_RESERVED_MON_NUMBER;
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

	prop->sram_base_address = SRAM_BASE_ADDR;
	prop->sram_size = SRAM_SIZE;
	prop->sram_end_address = prop->sram_base_address + prop->sram_size;
	prop->sram_user_base_address = prop->sram_base_address + SRAM_USER_BASE_OFFSET;

	prop->hints_range_reservation = true;

	if (hdev->pldm)
		prop->mmu_pgt_size = 0x800000; /* 8MB */
	else
		prop->mmu_pgt_size = MMU_PAGE_TABLES_INITIAL_SIZE;

	prop->mmu_pte_size = HL_PTE_SIZE;
	prop->mmu_hop_table_size = HOP_TABLE_SIZE_512_PTE;
	prop->mmu_hop0_tables_total_size = HOP0_512_PTE_TABLES_TOTAL_SIZE;

	prop->dmmu.hop_shifts[MMU_HOP0] = DHOP0_SHIFT;
	prop->dmmu.hop_shifts[MMU_HOP1] = DHOP1_SHIFT;
	prop->dmmu.hop_shifts[MMU_HOP2] = DHOP2_SHIFT;
	prop->dmmu.hop_shifts[MMU_HOP3] = DHOP3_SHIFT;
	prop->dmmu.hop_shifts[MMU_HOP4] = DHOP4_SHIFT;
	prop->dmmu.hop_masks[MMU_HOP0] = DHOP0_MASK;
	prop->dmmu.hop_masks[MMU_HOP1] = DHOP1_MASK;
	prop->dmmu.hop_masks[MMU_HOP2] = DHOP2_MASK;
	prop->dmmu.hop_masks[MMU_HOP3] = DHOP3_MASK;
	prop->dmmu.hop_masks[MMU_HOP4] = DHOP4_MASK;
	prop->dmmu.page_size = PAGE_SIZE_1GB;
	prop->dmmu.num_hops = MMU_ARCH_6_HOPS;
	prop->dmmu.last_mask = LAST_MASK;
	prop->dmmu.host_resident = 1;
	/* TODO: will be duplicated until implementing per-MMU props */
	prop->dmmu.hop_table_size = prop->mmu_hop_table_size;
	prop->dmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;

	/*
	 * this is done in order to be able to validate FW descriptor (i.e. validating that
	 * the addresses and allocated space for FW image does not cross memory bounds).
	 * for this reason we set the DRAM size to the minimum possible and later it will
	 * be modified according to what reported in the cpucp info packet
	 */
	prop->dram_size = (GAUDI2_HBM_NUM - 1) * SZ_16G;

	hdev->pmmu_huge_range = true;
	prop->pmmu.host_resident = 1;
	prop->pmmu.num_hops = MMU_ARCH_6_HOPS;
	prop->pmmu.last_mask = LAST_MASK;
	/* TODO: will be duplicated until implementing per-MMU props */
	prop->pmmu.hop_table_size = prop->mmu_hop_table_size;
	prop->pmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;

1981
	prop->hints_host_reserved_va_range.start_addr = RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	prop->hints_host_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HOST_END;
	prop->hints_host_hpage_reserved_va_range.start_addr =
			RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_START;
	prop->hints_host_hpage_reserved_va_range.end_addr =
			RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_END;

	if (PAGE_SIZE == SZ_64K) {
		prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_64K;
		prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_64K;
		prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_64K;
		prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_64K;
		prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_64K;
		prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_64K;
		prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_64K;
		prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_64K;
		prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_64K;
		prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_64K;
		prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_64K;
		prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_64K;
		prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START;
		prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END;
		prop->pmmu.page_size = PAGE_SIZE_64KB;

		/* shifts and masks are the same in PMMU and HPMMU */
		memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
		prop->pmmu_huge.page_size = PAGE_SIZE_16MB;
		prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START;
		prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END;
	} else {
		prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_4K;
		prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_4K;
		prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_4K;
		prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_4K;
		prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_4K;
		prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_4K;
		prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_4K;
		prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_4K;
		prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_4K;
		prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_4K;
		prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_4K;
		prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_4K;
		prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START;
		prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END;
		prop->pmmu.page_size = PAGE_SIZE_4KB;

		/* shifts and masks are the same in PMMU and HPMMU */
		memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
		prop->pmmu_huge.page_size = PAGE_SIZE_2MB;
		prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START;
		prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END;
	}

2034
	prop->num_engine_cores = CPU_ID_MAX;
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	prop->cfg_size = CFG_SIZE;
	prop->max_asid = MAX_ASID;
	prop->num_of_events = GAUDI2_EVENT_SIZE;

	prop->dc_power_default = DC_POWER_DEFAULT;

	prop->cb_pool_cb_cnt = GAUDI2_CB_POOL_CB_CNT;
	prop->cb_pool_cb_size = GAUDI2_CB_POOL_CB_SIZE;
	prop->pcie_dbi_base_address = CFG_BASE + mmPCIE_DBI_BASE;
	prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI;

	strncpy(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN);

	prop->mme_master_slave_mode = 1;

2050
	prop->first_available_user_sob[0] = GAUDI2_RESERVED_SOB_NUMBER +
2051 2052
					(num_sync_stream_queues * HL_RSVD_SOBS);

2053
	prop->first_available_user_mon[0] = GAUDI2_RESERVED_MON_NUMBER +
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
					(num_sync_stream_queues * HL_RSVD_MONS);

	prop->first_available_user_interrupt = GAUDI2_IRQ_NUM_USER_FIRST;

	prop->first_available_cq[0] = GAUDI2_RESERVED_CQ_NUMBER;

	prop->fw_cpu_boot_dev_sts0_valid = false;
	prop->fw_cpu_boot_dev_sts1_valid = false;
	prop->hard_reset_done_by_fw = false;
	prop->gic_interrupts_enable = true;

	prop->server_type = HL_SERVER_TYPE_UNKNOWN;

	prop->max_dec = NUMBER_OF_DEC;

	prop->clk_pll_index = HL_GAUDI2_MME_PLL;

	prop->dma_mask = 64;

	return 0;
}

static int gaudi2_pci_bars_map(struct hl_device *hdev)
{
	static const char * const name[] = {"CFG_SRAM", "MSIX", "DRAM"};
	bool is_wc[3] = {false, false, true};
	int rc;

	rc = hl_pci_bars_map(hdev, name, is_wc);
	if (rc)
		return rc;

	hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] + (CFG_BASE - STM_FLASH_BASE_ADDR);

	return 0;
}

static u64 gaudi2_set_hbm_bar_base(struct hl_device *hdev, u64 addr)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	struct hl_inbound_pci_region pci_region;
	u64 old_addr = addr;
	int rc;

	if ((gaudi2) && (gaudi2->dram_bar_cur_addr == addr))
		return old_addr;

	if (hdev->asic_prop.iatu_done_by_fw)
		return U64_MAX;

	/* Inbound Region 2 - Bar 4 - Point to DRAM */
	pci_region.mode = PCI_BAR_MATCH_MODE;
	pci_region.bar = DRAM_BAR_ID;
	pci_region.addr = addr;
	rc = hl_pci_set_inbound_region(hdev, 2, &pci_region);
	if (rc)
		return U64_MAX;

	if (gaudi2) {
		old_addr = gaudi2->dram_bar_cur_addr;
		gaudi2->dram_bar_cur_addr = addr;
	}

	return old_addr;
}

static int gaudi2_init_iatu(struct hl_device *hdev)
{
	struct hl_inbound_pci_region inbound_region;
	struct hl_outbound_pci_region outbound_region;
	u32 bar_addr_low, bar_addr_high;
	int rc;

	if (hdev->asic_prop.iatu_done_by_fw)
		return 0;

	/* Temporary inbound Region 0 - Bar 0 - Point to CFG
	 * We must map this region in BAR match mode in order to
	 * fetch BAR physical base address
	 */
	inbound_region.mode = PCI_BAR_MATCH_MODE;
	inbound_region.bar = SRAM_CFG_BAR_ID;
	/* Base address must be aligned to Bar size which is 256 MB */
	inbound_region.addr = STM_FLASH_BASE_ADDR - STM_FLASH_ALIGNED_OFF;
	rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
	if (rc)
		return rc;

	/* Fetch physical BAR address */
	bar_addr_high = RREG32(mmPCIE_DBI_BAR1_REG + STM_FLASH_ALIGNED_OFF);
	bar_addr_low = RREG32(mmPCIE_DBI_BAR0_REG + STM_FLASH_ALIGNED_OFF) & ~0xF;

	hdev->pcie_bar_phys[SRAM_CFG_BAR_ID] = (u64)bar_addr_high << 32 | bar_addr_low;

	/* Inbound Region 0 - Bar 0 - Point to CFG */
	inbound_region.mode = PCI_ADDRESS_MATCH_MODE;
	inbound_region.bar = SRAM_CFG_BAR_ID;
	inbound_region.offset_in_bar = 0;
	inbound_region.addr = STM_FLASH_BASE_ADDR;
	inbound_region.size = CFG_REGION_SIZE;
	rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
	if (rc)
		return rc;

	/* Inbound Region 1 - Bar 0 - Point to BAR0_RESERVED + SRAM */
	inbound_region.mode = PCI_ADDRESS_MATCH_MODE;
	inbound_region.bar = SRAM_CFG_BAR_ID;
	inbound_region.offset_in_bar = CFG_REGION_SIZE;
	inbound_region.addr = BAR0_RSRVD_BASE_ADDR;
	inbound_region.size = BAR0_RSRVD_SIZE + SRAM_SIZE;
	rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region);
	if (rc)
		return rc;

	/* Inbound Region 2 - Bar 4 - Point to DRAM */
	inbound_region.mode = PCI_BAR_MATCH_MODE;
	inbound_region.bar = DRAM_BAR_ID;
	inbound_region.addr = DRAM_PHYS_BASE;
	rc = hl_pci_set_inbound_region(hdev, 2, &inbound_region);
	if (rc)
		return rc;

	/* Outbound Region 0 - Point to Host */
	outbound_region.addr = HOST_PHYS_BASE_0;
	outbound_region.size = HOST_PHYS_SIZE_0;
	rc = hl_pci_set_outbound_region(hdev, &outbound_region);

	return rc;
}

static enum hl_device_hw_state gaudi2_get_hw_state(struct hl_device *hdev)
{
	return RREG32(mmHW_STATE);
}

static int gaudi2_tpc_binning_init_prop(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;

	/*
	 * check for error condition in which number of binning candidates
	 * is higher than the maximum supported by the driver
	 */
	if (hweight64(hdev->tpc_binning) > MAX_CLUSTER_BINNING_FAULTY_TPCS) {
		dev_err(hdev->dev, "TPC binning is supported for max of %d faulty TPCs, provided mask 0x%llx\n",
					MAX_CLUSTER_BINNING_FAULTY_TPCS,
					hdev->tpc_binning);
		return -EINVAL;
	}

	prop->tpc_binning_mask = hdev->tpc_binning;
	prop->tpc_enabled_mask = GAUDI2_TPC_FULL_MASK;

	return 0;
}

static int gaudi2_set_tpc_binning_masks(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct hw_queue_properties *q_props = prop->hw_queues_props;
	u64 tpc_binning_mask;
	u8 subst_idx = 0;
	int i, rc;

	rc = gaudi2_tpc_binning_init_prop(hdev);
	if (rc)
		return rc;

	tpc_binning_mask = prop->tpc_binning_mask;

	for (i = 0 ; i < MAX_FAULTY_TPCS ; i++) {
		u8 subst_seq, binned, qid_base;

		if (tpc_binning_mask == 0)
			break;

		if (subst_idx == 0) {
			subst_seq = TPC_ID_DCORE0_TPC6;
			qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0;
		} else {
			subst_seq = TPC_ID_DCORE3_TPC5;
			qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0;
		}


		/* clear bit from mask */
		binned = __ffs(tpc_binning_mask);
		/*
		 * Coverity complains about possible out-of-bound access in
		 * clear_bit
		 */
		if (binned >= TPC_ID_SIZE) {
			dev_err(hdev->dev,
				"Invalid binned TPC (binning mask: %llx)\n",
				tpc_binning_mask);
			return -EINVAL;
		}
		clear_bit(binned, (unsigned long *)&tpc_binning_mask);

		/* also clear replacing TPC bit from enabled mask */
		clear_bit(subst_seq, (unsigned long *)&prop->tpc_enabled_mask);

		/* bin substite TPC's Qs */
		q_props[qid_base].binned = 1;
		q_props[qid_base + 1].binned = 1;
		q_props[qid_base + 2].binned = 1;
		q_props[qid_base + 3].binned = 1;

		subst_idx++;
	}

	return 0;
}

static int gaudi2_set_dec_binning_masks(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u8 num_faulty;

	num_faulty = hweight32(hdev->decoder_binning);

	/*
	 * check for error condition in which number of binning candidates
	 * is higher than the maximum supported by the driver
	 */
	if (num_faulty > MAX_FAULTY_DECODERS) {
		dev_err(hdev->dev, "decoder binning is supported for max of single faulty decoder, provided mask 0x%x\n",
						hdev->decoder_binning);
		return -EINVAL;
	}

	prop->decoder_binning_mask = (hdev->decoder_binning & GAUDI2_DECODER_FULL_MASK);

	if (prop->decoder_binning_mask)
		prop->decoder_enabled_mask = (GAUDI2_DECODER_FULL_MASK & ~BIT(DEC_ID_PCIE_VDEC1));
	else
		prop->decoder_enabled_mask = GAUDI2_DECODER_FULL_MASK;

	return 0;
}

static void gaudi2_set_dram_binning_masks(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;

	/* check if we should override default binning */
	if (!hdev->dram_binning) {
		prop->dram_binning_mask = 0;
		prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK;
		return;
	}

	/* set DRAM binning constraints */
	prop->faulty_dram_cluster_map |= hdev->dram_binning;
	prop->dram_binning_mask = hdev->dram_binning;
	prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK & ~BIT(HBM_ID5);
}

static int gaudi2_set_edma_binning_masks(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct hw_queue_properties *q_props;
	u8 seq, num_faulty;

	num_faulty = hweight32(hdev->edma_binning);

	/*
	 * check for error condition in which number of binning candidates
	 * is higher than the maximum supported by the driver
	 */
	if (num_faulty > MAX_FAULTY_EDMAS) {
		dev_err(hdev->dev,
			"EDMA binning is supported for max of single faulty EDMA, provided mask 0x%x\n",
			hdev->edma_binning);
		return -EINVAL;
	}

	if (!hdev->edma_binning) {
		prop->edma_binning_mask = 0;
		prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK;
		return 0;
	}

	seq = __ffs((unsigned long)hdev->edma_binning);

	/* set binning constraints */
	prop->faulty_dram_cluster_map |= BIT(edma_to_hbm_cluster[seq]);
	prop->edma_binning_mask = hdev->edma_binning;
	prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK & ~BIT(EDMA_ID_DCORE3_INSTANCE1);

	/* bin substitute EDMA's queue */
	q_props = prop->hw_queues_props;
	q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0].binned = 1;
	q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1].binned = 1;
	q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2].binned = 1;
	q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3].binned = 1;

	return 0;
}

static int gaudi2_set_xbar_edge_enable_mask(struct hl_device *hdev, u32 xbar_edge_iso_mask)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u8 num_faulty, seq;

	/* check if we should override default binning */
	if (!xbar_edge_iso_mask) {
		prop->xbar_edge_enabled_mask = GAUDI2_XBAR_EDGE_FULL_MASK;
		return 0;
	}

	/*
	 * note that it can be set to value other than 0 only after cpucp packet (i.e.
	 * only the FW can set a redundancy value). for user it'll always be 0.
	 */
	num_faulty = hweight32(xbar_edge_iso_mask);

	/*
	 * check for error condition in which number of binning candidates
	 * is higher than the maximum supported by the driver
	 */
	if (num_faulty > MAX_FAULTY_XBARS) {
		dev_err(hdev->dev, "we cannot have more than %d faulty XBAR EDGE\n",
									MAX_FAULTY_XBARS);
		return -EINVAL;
	}

	seq = __ffs((unsigned long)xbar_edge_iso_mask);

	/* set binning constraints */
	prop->faulty_dram_cluster_map |= BIT(xbar_edge_to_hbm_cluster[seq]);
	prop->xbar_edge_enabled_mask = (~xbar_edge_iso_mask) & GAUDI2_XBAR_EDGE_FULL_MASK;

	return 0;
}

static int gaudi2_set_cluster_binning_masks_common(struct hl_device *hdev, u8 xbar_edge_iso_mask)
{
	int rc;

	/*
	 * mark all clusters as good, each component will "fail" cluster
	 * based on eFuse/user values.
	 * If more than single cluster is faulty- the chip is unusable
	 */
	hdev->asic_prop.faulty_dram_cluster_map = 0;

	gaudi2_set_dram_binning_masks(hdev);

	rc = gaudi2_set_edma_binning_masks(hdev);
	if (rc)
		return rc;

	rc = gaudi2_set_xbar_edge_enable_mask(hdev, xbar_edge_iso_mask);
	if (rc)
		return rc;


	/* always initially set to full mask */
	hdev->asic_prop.hmmu_hif_enabled_mask = GAUDI2_HIF_HMMU_FULL_MASK;

	return 0;
}

static int gaudi2_set_cluster_binning_masks(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	int rc;

	rc = gaudi2_set_cluster_binning_masks_common(hdev, prop->cpucp_info.xbar_binning_mask);
	if (rc)
		return rc;

	/* if we have DRAM binning reported by FW we should perform cluster config  */
	if (prop->faulty_dram_cluster_map) {
		u8 cluster_seq = __ffs((unsigned long)prop->faulty_dram_cluster_map);

		prop->hmmu_hif_enabled_mask = cluster_hmmu_hif_enabled_mask[cluster_seq];
	}

	return 0;
}

static int gaudi2_cpucp_info_get(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	long max_power;
	u64 dram_size;
	int rc;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

	/* No point of asking this information again when not doing hard reset, as the device
	 * CPU hasn't been reset
	 */
2451
	if (hdev->reset_info.in_compute_reset)
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		return 0;

	rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0,
										mmCPU_BOOT_ERR1);
	if (rc)
		return rc;

	dram_size = le64_to_cpu(prop->cpucp_info.dram_size);
	if (dram_size) {
		/* we can have wither 5 or 6 HBMs. other values are invalid */

		if ((dram_size != ((GAUDI2_HBM_NUM - 1) * SZ_16G)) &&
2464
					(dram_size != (GAUDI2_HBM_NUM * SZ_16G))) {
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
			dev_err(hdev->dev,
				"F/W reported invalid DRAM size %llu. Trying to use default size %llu\n",
				dram_size, prop->dram_size);
			dram_size = prop->dram_size;
		}

		prop->dram_size = dram_size;
		prop->dram_end_address = prop->dram_base_address + dram_size;
	}

	if (!strlen(prop->cpucp_info.card_name))
		strncpy(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN);

	/* Overwrite binning masks with the actual binning values from F/W */
	hdev->dram_binning = prop->cpucp_info.dram_binning_mask;
	hdev->edma_binning = prop->cpucp_info.edma_binning_mask;
	hdev->tpc_binning = le64_to_cpu(prop->cpucp_info.tpc_binning_mask);
	hdev->decoder_binning = lower_32_bits(le64_to_cpu(prop->cpucp_info.decoder_binning_mask));

	/*
	 * at this point the DRAM parameters need to be updated according to data obtained
	 * from the FW
	 */
	rc = gaudi2_set_dram_properties(hdev);
	if (rc)
		return rc;

	rc = gaudi2_set_cluster_binning_masks(hdev);
	if (rc)
		return rc;

	rc = gaudi2_set_tpc_binning_masks(hdev);
	if (rc)
		return rc;

	rc = gaudi2_set_dec_binning_masks(hdev);
	if (rc)
		return rc;

	max_power = hl_fw_get_max_power(hdev);
	if (max_power < 0)
		return max_power;

	prop->max_power_default = (u64) max_power;

	return 0;
}

static int gaudi2_fetch_psoc_frequency(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS];
	int rc;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

	rc = hl_fw_cpucp_pll_info_get(hdev, HL_GAUDI2_CPU_PLL, pll_freq_arr);
	if (rc)
		return rc;

	hdev->asic_prop.psoc_timestamp_frequency = pll_freq_arr[3];

	return 0;
}

static int gaudi2_early_init(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct pci_dev *pdev = hdev->pdev;
	resource_size_t pci_bar_size;
	int rc;

	rc = gaudi2_set_fixed_properties(hdev);
	if (rc)
		return rc;

	/* Check BAR sizes */
	pci_bar_size = pci_resource_len(pdev, SRAM_CFG_BAR_ID);

	if (pci_bar_size != CFG_BAR_SIZE) {
		dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
			SRAM_CFG_BAR_ID, &pci_bar_size, CFG_BAR_SIZE);
		rc = -ENODEV;
		goto free_queue_props;
	}

	pci_bar_size = pci_resource_len(pdev, MSIX_BAR_ID);
	if (pci_bar_size != MSIX_BAR_SIZE) {
		dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
			MSIX_BAR_ID, &pci_bar_size, MSIX_BAR_SIZE);
		rc = -ENODEV;
		goto free_queue_props;
	}

	prop->dram_pci_bar_size = pci_resource_len(pdev, DRAM_BAR_ID);
	hdev->dram_pci_bar_start = pci_resource_start(pdev, DRAM_BAR_ID);

2563 2564 2565 2566 2567 2568
	/*
	 * Only in pldm driver config iATU
	 */
	if (hdev->pldm)
		hdev->asic_prop.iatu_done_by_fw = false;
	else
2569 2570 2571 2572 2573 2574 2575 2576 2577
		hdev->asic_prop.iatu_done_by_fw = true;

	rc = hl_pci_init(hdev);
	if (rc)
		goto free_queue_props;

	/* Before continuing in the initialization, we need to read the preboot
	 * version to determine whether we run with a security-enabled firmware
	 */
2578
	rc = hl_fw_read_preboot_status(hdev);
2579 2580 2581 2582 2583 2584 2585
	if (rc) {
		if (hdev->reset_on_preboot_fail)
			hdev->asic_funcs->hw_fini(hdev, true, false);
		goto pci_fini;
	}

	if (gaudi2_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) {
2586
		dev_dbg(hdev->dev, "H/W state is dirty, must reset before initializing\n");
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
		hdev->asic_funcs->hw_fini(hdev, true, false);
	}

	return 0;

pci_fini:
	hl_pci_fini(hdev);
free_queue_props:
	kfree(hdev->asic_prop.hw_queues_props);
	return rc;
}

static int gaudi2_early_fini(struct hl_device *hdev)
{
	kfree(hdev->asic_prop.hw_queues_props);
	hl_pci_fini(hdev);

	return 0;
}

static bool gaudi2_is_arc_nic_owned(u64 arc_id)
{
	switch (arc_id) {
	case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
		return true;
	default:
		return false;
	}
}

static bool gaudi2_is_arc_tpc_owned(u64 arc_id)
{
	switch (arc_id) {
	case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
		return true;
	default:
		return false;
	}
}

static void gaudi2_init_arcs(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u64 arc_id;
	u32 i;

	for (i = CPU_ID_SCHED_ARC0 ; i <= CPU_ID_SCHED_ARC3 ; i++) {
		if (gaudi2_is_arc_enabled(hdev, i))
			continue;

		gaudi2_set_arc_id_cap(hdev, i);
	}

	for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) {
		if (!gaudi2_is_queue_enabled(hdev, i))
			continue;

		arc_id = gaudi2_queue_id_to_arc_id[i];
		if (gaudi2_is_arc_enabled(hdev, arc_id))
			continue;

		if (gaudi2_is_arc_nic_owned(arc_id) &&
				!(hdev->nic_ports_mask & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0)))
			continue;

		if (gaudi2_is_arc_tpc_owned(arc_id) && !(gaudi2->tpc_hw_cap_initialized &
							BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0)))
			continue;

		gaudi2_set_arc_id_cap(hdev, arc_id);
	}
}

static int gaudi2_scrub_arc_dccm(struct hl_device *hdev, u32 cpu_id)
{
	u32 reg_base, reg_val;
	int rc;

	switch (cpu_id) {
	case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC3:
		/* Each ARC scheduler has 2 consecutive DCCM blocks */
		rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
						ARC_DCCM_BLOCK_SIZE * 2, true);
		if (rc)
			return rc;
		break;
	case CPU_ID_SCHED_ARC4:
	case CPU_ID_SCHED_ARC5:
	case CPU_ID_MME_QMAN_ARC0:
	case CPU_ID_MME_QMAN_ARC1:
		reg_base = gaudi2_arc_blocks_bases[cpu_id];

		/* Scrub lower DCCM block */
		rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
						ARC_DCCM_BLOCK_SIZE, true);
		if (rc)
			return rc;

		/* Switch to upper DCCM block */
		reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 1);
		WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val);

		/* Scrub upper DCCM block */
		rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
						ARC_DCCM_BLOCK_SIZE, true);
		if (rc)
			return rc;

		/* Switch to lower DCCM block */
		reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 0);
		WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val);
		break;
	default:
		rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
						ARC_DCCM_BLOCK_SIZE, true);
		if (rc)
			return rc;
	}

	return 0;
}

static void gaudi2_scrub_arcs_dccm(struct hl_device *hdev)
{
	u16 arc_id;

	for (arc_id = CPU_ID_SCHED_ARC0 ; arc_id < CPU_ID_MAX ; arc_id++) {
		if (!gaudi2_is_arc_enabled(hdev, arc_id))
			continue;

		gaudi2_scrub_arc_dccm(hdev, arc_id);
	}
}

static int gaudi2_late_init(struct hl_device *hdev)
{
2723
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
2724 2725
	int rc;

2726 2727
	hdev->asic_prop.supports_advanced_cpucp_rc = true;

2728 2729
	rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS,
					gaudi2->virt_msix_db_dma_addr);
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	if (rc) {
		dev_err(hdev->dev, "Failed to enable PCI access from CPU\n");
		return rc;
	}

	rc = gaudi2_fetch_psoc_frequency(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to fetch psoc frequency\n");
		goto disable_pci_access;
	}

	gaudi2_init_arcs(hdev);
	gaudi2_scrub_arcs_dccm(hdev);
2743
	gaudi2_init_security(hdev);
2744 2745 2746 2747

	return 0;

disable_pci_access:
2748
	hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
2749 2750 2751 2752 2753 2754

	return rc;
}

static void gaudi2_late_fini(struct hl_device *hdev)
{
2755
	hl_hwmon_release_resources(hdev);
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
}

static void gaudi2_user_mapped_dec_init(struct gaudi2_device *gaudi2, u32 start_idx)
{
	struct user_mapped_block *blocks = gaudi2->mapped_blocks;

	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC0_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC1_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC0_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC1_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC0_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC1_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC0_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC1_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmPCIE_DEC0_CMD_BASE, HL_BLOCK_SIZE);
	HL_USR_MAPPED_BLK_INIT(&blocks[start_idx], mmPCIE_DEC1_CMD_BASE, HL_BLOCK_SIZE);
}

static void gaudi2_user_mapped_blocks_init(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	struct user_mapped_block *blocks = gaudi2->mapped_blocks;
	u32 block_size, umr_start_idx, num_umr_blocks;
	int i;

	for (i = 0 ; i < NUM_ARC_CPUS ; i++) {
		if (i >= CPU_ID_SCHED_ARC0 && i <= CPU_ID_SCHED_ARC3)
			block_size = ARC_DCCM_BLOCK_SIZE * 2;
		else
			block_size = ARC_DCCM_BLOCK_SIZE;

		blocks[i].address = gaudi2_arc_dccm_bases[i];
		blocks[i].size = block_size;
	}

	blocks[NUM_ARC_CPUS].address = mmARC_FARM_ARC0_ACP_ENG_BASE;
	blocks[NUM_ARC_CPUS].size = HL_BLOCK_SIZE;

	blocks[NUM_ARC_CPUS + 1].address = mmARC_FARM_ARC1_ACP_ENG_BASE;
	blocks[NUM_ARC_CPUS + 1].size = HL_BLOCK_SIZE;

	blocks[NUM_ARC_CPUS + 2].address = mmARC_FARM_ARC2_ACP_ENG_BASE;
	blocks[NUM_ARC_CPUS + 2].size = HL_BLOCK_SIZE;

	blocks[NUM_ARC_CPUS + 3].address = mmARC_FARM_ARC3_ACP_ENG_BASE;
	blocks[NUM_ARC_CPUS + 3].size = HL_BLOCK_SIZE;

	blocks[NUM_ARC_CPUS + 4].address = mmDCORE0_MME_QM_ARC_ACP_ENG_BASE;
	blocks[NUM_ARC_CPUS + 4].size = HL_BLOCK_SIZE;

	blocks[NUM_ARC_CPUS + 5].address = mmDCORE1_MME_QM_ARC_ACP_ENG_BASE;
	blocks[NUM_ARC_CPUS + 5].size = HL_BLOCK_SIZE;

	blocks[NUM_ARC_CPUS + 6].address = mmDCORE2_MME_QM_ARC_ACP_ENG_BASE;
	blocks[NUM_ARC_CPUS + 6].size = HL_BLOCK_SIZE;

	blocks[NUM_ARC_CPUS + 7].address = mmDCORE3_MME_QM_ARC_ACP_ENG_BASE;
	blocks[NUM_ARC_CPUS + 7].size = HL_BLOCK_SIZE;

	umr_start_idx = NUM_ARC_CPUS + NUM_OF_USER_ACP_BLOCKS;
	num_umr_blocks = NIC_NUMBER_OF_ENGINES * NUM_OF_USER_NIC_UMR_BLOCKS;
	for (i = 0 ; i < num_umr_blocks ; i++) {
		u8 nic_id, umr_block_id;

		nic_id = i / NUM_OF_USER_NIC_UMR_BLOCKS;
		umr_block_id = i % NUM_OF_USER_NIC_UMR_BLOCKS;

		blocks[umr_start_idx + i].address =
			mmNIC0_UMR0_0_UNSECURE_DOORBELL0_BASE +
			(nic_id / NIC_NUMBER_OF_QM_PER_MACRO) * NIC_OFFSET +
			(nic_id % NIC_NUMBER_OF_QM_PER_MACRO) * NIC_QM_OFFSET +
			umr_block_id * NIC_UMR_OFFSET;
		blocks[umr_start_idx + i].size = HL_BLOCK_SIZE;
	}

	/* Expose decoder HW configuration block to user */
	gaudi2_user_mapped_dec_init(gaudi2, USR_MAPPED_BLK_DEC_START_IDX);

	for (i = 1; i < NUM_OF_DCORES; ++i) {
		blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].size = SM_OBJS_BLOCK_SIZE;
		blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].size = HL_BLOCK_SIZE;

		blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].address =
						mmDCORE0_SYNC_MNGR_OBJS_BASE + i * DCORE_OFFSET;

		blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].address =
						mmDCORE0_SYNC_MNGR_GLBL_BASE + i * DCORE_OFFSET;
	}
}

static int gaudi2_alloc_cpu_accessible_dma_mem(struct hl_device *hdev)
{
	dma_addr_t dma_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {}, end_addr;
	void *virt_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {};
	int i, j, rc = 0;

	/* The device ARC works with 32-bits addresses, and because there is a single HW register
	 * that holds the extension bits (49..28), these bits must be identical in all the allocated
	 * range.
	 */

	for (i = 0 ; i < GAUDI2_ALLOC_CPU_MEM_RETRY_CNT ; i++) {
		virt_addr_arr[i] = hl_asic_dma_alloc_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE,
							&dma_addr_arr[i], GFP_KERNEL | __GFP_ZERO);
		if (!virt_addr_arr[i]) {
			rc = -ENOMEM;
			goto free_dma_mem_arr;
		}

		end_addr = dma_addr_arr[i] + HL_CPU_ACCESSIBLE_MEM_SIZE - 1;
		if (GAUDI2_ARC_PCI_MSB_ADDR(dma_addr_arr[i]) == GAUDI2_ARC_PCI_MSB_ADDR(end_addr))
			break;
	}

	if (i == GAUDI2_ALLOC_CPU_MEM_RETRY_CNT) {
		dev_err(hdev->dev,
			"MSB of ARC accessible DMA memory are not identical in all range\n");
		rc = -EFAULT;
		goto free_dma_mem_arr;
	}

	hdev->cpu_accessible_dma_mem = virt_addr_arr[i];
	hdev->cpu_accessible_dma_address = dma_addr_arr[i];

free_dma_mem_arr:
	for (j = 0 ; j < i ; j++)
		hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, virt_addr_arr[j],
						dma_addr_arr[j]);

	return rc;
}

static void gaudi2_set_pci_memory_regions(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct pci_mem_region *region;

	/* CFG */
	region = &hdev->pci_mem_region[PCI_REGION_CFG];
	region->region_base = CFG_BASE;
	region->region_size = CFG_SIZE;
	region->offset_in_bar = CFG_BASE - STM_FLASH_BASE_ADDR;
	region->bar_size = CFG_BAR_SIZE;
	region->bar_id = SRAM_CFG_BAR_ID;
	region->used = 1;

	/* SRAM */
	region = &hdev->pci_mem_region[PCI_REGION_SRAM];
	region->region_base = SRAM_BASE_ADDR;
	region->region_size = SRAM_SIZE;
	region->offset_in_bar = CFG_REGION_SIZE + BAR0_RSRVD_SIZE;
	region->bar_size = CFG_BAR_SIZE;
	region->bar_id = SRAM_CFG_BAR_ID;
	region->used = 1;

	/* DRAM */
	region = &hdev->pci_mem_region[PCI_REGION_DRAM];
	region->region_base = DRAM_PHYS_BASE;
	region->region_size = hdev->asic_prop.dram_size;
	region->offset_in_bar = 0;
	region->bar_size = prop->dram_pci_bar_size;
	region->bar_id = DRAM_BAR_ID;
	region->used = 1;
}

static void gaudi2_user_interrupt_setup(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	int i, j, k;

2926 2927 2928
	/* Initialize common user CQ interrupt */
	HL_USR_INTR_STRUCT_INIT(hdev->common_user_cq_interrupt, hdev,
				HL_COMMON_USER_CQ_INTERRUPT_ID, false);
2929

2930 2931 2932 2933
	/* Initialize common decoder interrupt */
	HL_USR_INTR_STRUCT_INIT(hdev->common_decoder_interrupt, hdev,
				HL_COMMON_DEC_INTERRUPT_ID, true);

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	/* User interrupts structure holds both decoder and user interrupts from various engines.
	 * We first initialize the decoder interrupts and then we add the user interrupts.
	 * The only limitation is that the last decoder interrupt id must be smaller
	 * then GAUDI2_IRQ_NUM_USER_FIRST. This is checked at compilation time.
	 */

	/* Initialize decoder interrupts, expose only normal interrupts,
	 * error interrupts to be handled by driver
	 */
	for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, j = 0 ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_NRM;
										i += 2, j++)
		HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, true);

	for (i = GAUDI2_IRQ_NUM_USER_FIRST, k = 0 ; k < prop->user_interrupt_count; i++, j++, k++)
		HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, false);
}

static inline int gaudi2_get_non_zero_random_int(void)
{
2953
	int rand = get_random_u32();
2954 2955 2956 2957 2958 2959

	return rand ? rand : 1;
}

static int gaudi2_sw_init(struct hl_device *hdev)
{
2960
	struct asic_fixed_properties *prop = &hdev->asic_prop;
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	struct gaudi2_device *gaudi2;
	int i, rc;

	/* Allocate device structure */
	gaudi2 = kzalloc(sizeof(*gaudi2), GFP_KERNEL);
	if (!gaudi2)
		return -ENOMEM;

	for (i = 0 ; i < ARRAY_SIZE(gaudi2_irq_map_table) ; i++) {
		if (gaudi2_irq_map_table[i].msg || !gaudi2_irq_map_table[i].valid)
			continue;

		if (gaudi2->num_of_valid_hw_events == GAUDI2_EVENT_SIZE) {
			dev_err(hdev->dev, "H/W events array exceeds the limit of %u events\n",
				GAUDI2_EVENT_SIZE);
			rc = -EINVAL;
			goto free_gaudi2_device;
		}

		gaudi2->hw_events[gaudi2->num_of_valid_hw_events++] = gaudi2_irq_map_table[i].fc_id;
	}

	for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++)
		gaudi2->lfsr_rand_seeds[i] = gaudi2_get_non_zero_random_int();

	gaudi2->cpucp_info_get = gaudi2_cpucp_info_get;

	hdev->asic_specific = gaudi2;

	/* Create DMA pool for small allocations.
	 * Use DEVICE_CACHE_LINE_SIZE for alignment since the NIC memory-mapped
	 * PI/CI registers allocated from this pool have this restriction
	 */
	hdev->dma_pool = dma_pool_create(dev_name(hdev->dev), &hdev->pdev->dev,
					GAUDI2_DMA_POOL_BLK_SIZE, DEVICE_CACHE_LINE_SIZE, 0);
	if (!hdev->dma_pool) {
		dev_err(hdev->dev, "failed to create DMA pool\n");
		rc = -ENOMEM;
		goto free_gaudi2_device;
	}

	rc = gaudi2_alloc_cpu_accessible_dma_mem(hdev);
	if (rc)
		goto free_dma_pool;

	hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1);
	if (!hdev->cpu_accessible_dma_pool) {
		dev_err(hdev->dev, "Failed to create CPU accessible DMA pool\n");
		rc = -ENOMEM;
		goto free_cpu_dma_mem;
	}

	rc = gen_pool_add(hdev->cpu_accessible_dma_pool, (uintptr_t) hdev->cpu_accessible_dma_mem,
				HL_CPU_ACCESSIBLE_MEM_SIZE, -1);
	if (rc) {
		dev_err(hdev->dev, "Failed to add memory to CPU accessible DMA pool\n");
		rc = -EFAULT;
		goto free_cpu_accessible_dma_pool;
	}

3021 3022 3023 3024 3025 3026 3027 3028
	gaudi2->virt_msix_db_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, prop->pmmu.page_size,
								&gaudi2->virt_msix_db_dma_addr);
	if (!gaudi2->virt_msix_db_cpu_addr) {
		dev_err(hdev->dev, "Failed to allocate DMA memory for virtual MSI-X doorbell\n");
		rc = -ENOMEM;
		goto free_cpu_accessible_dma_pool;
	}

3029 3030 3031 3032 3033 3034 3035
	spin_lock_init(&gaudi2->hw_queues_lock);

	gaudi2->scratchpad_kernel_address = hl_asic_dma_alloc_coherent(hdev, PAGE_SIZE,
							&gaudi2->scratchpad_bus_address,
							GFP_KERNEL | __GFP_ZERO);
	if (!gaudi2->scratchpad_kernel_address) {
		rc = -ENOMEM;
3036
		goto free_virt_msix_db_mem;
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	}

	gaudi2_user_mapped_blocks_init(hdev);

	/* Initialize user interrupts */
	gaudi2_user_interrupt_setup(hdev);

	hdev->supports_coresight = true;
	hdev->supports_sync_stream = true;
	hdev->supports_cb_mapping = true;
	hdev->supports_wait_for_multi_cs = false;

3049
	prop->supports_compute_reset = true;
3050

3051 3052 3053 3054
	hdev->asic_funcs->set_pci_memory_regions(hdev);

	return 0;

3055 3056
free_virt_msix_db_mem:
	hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr);
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
free_cpu_accessible_dma_pool:
	gen_pool_destroy(hdev->cpu_accessible_dma_pool);
free_cpu_dma_mem:
	hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
					hdev->cpu_accessible_dma_address);
free_dma_pool:
	dma_pool_destroy(hdev->dma_pool);
free_gaudi2_device:
	kfree(gaudi2);
	return rc;
}

static int gaudi2_sw_fini(struct hl_device *hdev)
{
3071
	struct asic_fixed_properties *prop = &hdev->asic_prop;
3072 3073
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

3074 3075
	hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr);

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
	gen_pool_destroy(hdev->cpu_accessible_dma_pool);

	hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
						hdev->cpu_accessible_dma_address);

	hl_asic_dma_free_coherent(hdev, PAGE_SIZE, gaudi2->scratchpad_kernel_address,
					gaudi2->scratchpad_bus_address);

	dma_pool_destroy(hdev->dma_pool);

	kfree(gaudi2);

	return 0;
}

static void gaudi2_stop_qman_common(struct hl_device *hdev, u32 reg_base)
{
	WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_STOP |
						QM_GLBL_CFG1_CQF_STOP |
						QM_GLBL_CFG1_CP_STOP);

	/* stop also the ARC */
	WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_STOP);
}

static void gaudi2_flush_qman_common(struct hl_device *hdev, u32 reg_base)
{
	WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_FLUSH |
						QM_GLBL_CFG1_CQF_FLUSH |
						QM_GLBL_CFG1_CP_FLUSH);
}

static void gaudi2_flush_qman_arc_common(struct hl_device *hdev, u32 reg_base)
{
	WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_FLUSH);
}

/**
 * gaudi2_clear_qm_fence_counters_common - clear QM's fence counters
 *
 * @hdev: pointer to the habanalabs device structure
 * @queue_id: queue to clear fence counters to
 * @skip_fence: if true set maximum fence value to all fence counters to avoid
 *              getting stuck on any fence value. otherwise set all fence
 *              counters to 0 (standard clear of fence counters)
 */
static void gaudi2_clear_qm_fence_counters_common(struct hl_device *hdev, u32 queue_id,
						bool skip_fence)
{
	u32 size, reg_base;
	u32 addr, val;

	reg_base = gaudi2_qm_blocks_bases[queue_id];

	addr = reg_base + QM_CP_FENCE0_CNT_0_OFFSET;
	size = mmPDMA0_QM_CP_BARRIER_CFG - mmPDMA0_QM_CP_FENCE0_CNT_0;

	/*
	 * in case we want to make sure that QM that is stuck on a fence will
	 * be released we should set the fence counter to a higher value that
	 * the value the QM waiting for. to comply with any fence counter of
	 * any value we set maximum fence value to all counters
	 */
	val = skip_fence ? U32_MAX : 0;
	gaudi2_memset_device_lbw(hdev, addr, size, val);
}

static void gaudi2_qman_manual_flush_common(struct hl_device *hdev, u32 queue_id)
{
	u32 reg_base = gaudi2_qm_blocks_bases[queue_id];

	gaudi2_clear_qm_fence_counters_common(hdev, queue_id, true);
	gaudi2_flush_qman_common(hdev, reg_base);
	gaudi2_flush_qman_arc_common(hdev, reg_base);
}

static void gaudi2_stop_dma_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int dcore, inst;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
		goto stop_edma_qmans;

	/* Stop CPs of PDMA QMANs */
	gaudi2_stop_qman_common(hdev, mmPDMA0_QM_BASE);
	gaudi2_stop_qman_common(hdev, mmPDMA1_QM_BASE);

stop_edma_qmans:
	if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
		return;

	for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
		for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
			u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
			u32 qm_base;

			if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
				continue;

			qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET +
					inst * DCORE_EDMA_OFFSET;

			/* Stop CPs of EDMA QMANs */
			gaudi2_stop_qman_common(hdev, qm_base);
		}
	}
}

static void gaudi2_stop_mme_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 offset, i;

	offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE;

	for (i = 0 ; i < NUM_OF_DCORES ; i++) {
		if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i)))
			continue;

		gaudi2_stop_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset));
	}
}

static void gaudi2_stop_tpc_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base;
	int i;

	if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
		return;

	for (i = 0 ; i < TPC_ID_SIZE ; i++) {
		if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
			continue;

		reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]];
		gaudi2_stop_qman_common(hdev, reg_base);
	}
}

static void gaudi2_stop_rot_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base;
	int i;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
		return;

	for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
		if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
			continue;

		reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]];
		gaudi2_stop_qman_common(hdev, reg_base);
	}
}

static void gaudi2_stop_nic_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base, queue_id;
	int i;

	if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
		return;

	queue_id = GAUDI2_QUEUE_ID_NIC_0_0;

	for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
		if (!(hdev->nic_ports_mask & BIT(i)))
			continue;

		reg_base = gaudi2_qm_blocks_bases[queue_id];
		gaudi2_stop_qman_common(hdev, reg_base);
	}
}

static void gaudi2_stall_dma_common(struct hl_device *hdev, u32 reg_base)
{
	u32 reg_val;

	reg_val = FIELD_PREP(PDMA0_CORE_CFG_1_HALT_MASK, 0x1);
	WREG32(reg_base + DMA_CORE_CFG_1_OFFSET, reg_val);
}

static void gaudi2_dma_stall(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int dcore, inst;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
		goto stall_edma;

	gaudi2_stall_dma_common(hdev, mmPDMA0_CORE_BASE);
	gaudi2_stall_dma_common(hdev, mmPDMA1_CORE_BASE);

stall_edma:
	if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
		return;

	for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
		for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
			u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
			u32 core_base;

			if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
				continue;

			core_base = mmDCORE0_EDMA0_CORE_BASE + dcore * DCORE_OFFSET +
					inst * DCORE_EDMA_OFFSET;

			/* Stall CPs of EDMA QMANs */
			gaudi2_stall_dma_common(hdev, core_base);
		}
	}
}

static void gaudi2_mme_stall(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 offset, i;

	offset = mmDCORE1_MME_CTRL_LO_QM_STALL - mmDCORE0_MME_CTRL_LO_QM_STALL;

	for (i = 0 ; i < NUM_OF_DCORES ; i++)
		if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i))
			WREG32(mmDCORE0_MME_CTRL_LO_QM_STALL + (i * offset), 1);
}

static void gaudi2_tpc_stall(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base;
	int i;

	if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
		return;

	for (i = 0 ; i < TPC_ID_SIZE ; i++) {
		if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
			continue;

		reg_base = gaudi2_tpc_cfg_blocks_bases[i];
		WREG32(reg_base + TPC_CFG_STALL_OFFSET, 1);
	}
}

static void gaudi2_rotator_stall(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_val;
	int i;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
		return;

	reg_val = FIELD_PREP(ROT_MSS_HALT_WBC_MASK, 0x1) |
			FIELD_PREP(ROT_MSS_HALT_RSB_MASK, 0x1) |
			FIELD_PREP(ROT_MSS_HALT_MRSB_MASK, 0x1);

	for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
		if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
			continue;

		WREG32(mmROT0_MSS_HALT + i * ROT_OFFSET, reg_val);
	}
}

static void gaudi2_disable_qman_common(struct hl_device *hdev, u32 reg_base)
{
	WREG32(reg_base + QM_GLBL_CFG0_OFFSET, 0);
}

static void gaudi2_disable_dma_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int dcore, inst;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
		goto stop_edma_qmans;

	gaudi2_disable_qman_common(hdev, mmPDMA0_QM_BASE);
	gaudi2_disable_qman_common(hdev, mmPDMA1_QM_BASE);

stop_edma_qmans:
	if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
		return;

	for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
		for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
			u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
			u32 qm_base;

			if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
				continue;

			qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET +
					inst * DCORE_EDMA_OFFSET;

			/* Disable CPs of EDMA QMANs */
			gaudi2_disable_qman_common(hdev, qm_base);
		}
	}
}

static void gaudi2_disable_mme_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 offset, i;

	offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE;

	for (i = 0 ; i < NUM_OF_DCORES ; i++)
		if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i))
			gaudi2_disable_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset));
}

static void gaudi2_disable_tpc_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base;
	int i;

	if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
		return;

	for (i = 0 ; i < TPC_ID_SIZE ; i++) {
		if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
			continue;

		reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]];
		gaudi2_disable_qman_common(hdev, reg_base);
	}
}

static void gaudi2_disable_rot_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base;
	int i;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
		return;

	for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
		if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
			continue;

		reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]];
		gaudi2_disable_qman_common(hdev, reg_base);
	}
}

static void gaudi2_disable_nic_qmans(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base, queue_id;
	int i;

	if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
		return;

	queue_id = GAUDI2_QUEUE_ID_NIC_0_0;

	for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
		if (!(hdev->nic_ports_mask & BIT(i)))
			continue;

		reg_base = gaudi2_qm_blocks_bases[queue_id];
		gaudi2_disable_qman_common(hdev, reg_base);
	}
}

static void gaudi2_enable_timestamp(struct hl_device *hdev)
{
	/* Disable the timestamp counter */
	WREG32(mmPSOC_TIMESTAMP_BASE, 0);

	/* Zero the lower/upper parts of the 64-bit counter */
	WREG32(mmPSOC_TIMESTAMP_BASE + 0xC, 0);
	WREG32(mmPSOC_TIMESTAMP_BASE + 0x8, 0);

	/* Enable the counter */
	WREG32(mmPSOC_TIMESTAMP_BASE, 1);
}

static void gaudi2_disable_timestamp(struct hl_device *hdev)
{
	/* Disable the timestamp counter */
	WREG32(mmPSOC_TIMESTAMP_BASE, 0);
}

static const char *gaudi2_irq_name(u16 irq_number)
{
	switch (irq_number) {
	case GAUDI2_IRQ_NUM_EVENT_QUEUE:
		return "gaudi2 cpu eq";
	case GAUDI2_IRQ_NUM_COMPLETION:
		return "gaudi2 completion";
	case GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ... GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM:
		return gaudi2_vdec_irq_name[irq_number - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM];
	case GAUDI2_IRQ_NUM_USER_FIRST ... GAUDI2_IRQ_NUM_USER_LAST:
		return "gaudi2 user completion";
	default:
		return "invalid";
	}
}

static void gaudi2_dec_disable_msix(struct hl_device *hdev, u32 max_irq_num)
{
	int i, irq, relative_idx;
	struct hl_dec *dec;

	for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i < max_irq_num ; i++) {
		irq = pci_irq_vector(hdev->pdev, i);
		relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM;

		dec = hdev->dec + relative_idx / 2;

		/* We pass different structures depending on the irq handler. For the abnormal
		 * interrupt we pass hl_dec and for the regular interrupt we pass the relevant
		 * user_interrupt entry
		 */
		free_irq(irq, ((relative_idx % 2) ?
				(void *) dec :
				(void *) &hdev->user_interrupt[dec->core_id]));
	}
}

static int gaudi2_dec_enable_msix(struct hl_device *hdev)
{
	int rc, i, irq_init_cnt, irq, relative_idx;
	irq_handler_t irq_handler;
	struct hl_dec *dec;

	for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, irq_init_cnt = 0;
			i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM;
			i++, irq_init_cnt++) {

		irq = pci_irq_vector(hdev->pdev, i);
		relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM;

		irq_handler = (relative_idx % 2) ?
				hl_irq_handler_dec_abnrm :
				hl_irq_handler_user_interrupt;

		dec = hdev->dec + relative_idx / 2;

		/* We pass different structures depending on the irq handler. For the abnormal
		 * interrupt we pass hl_dec and for the regular interrupt we pass the relevant
		 * user_interrupt entry
		 */
		rc = request_irq(irq, irq_handler, 0, gaudi2_irq_name(i),
				((relative_idx % 2) ?
				(void *) dec :
				(void *) &hdev->user_interrupt[dec->core_id]));
		if (rc) {
			dev_err(hdev->dev, "Failed to request IRQ %d", irq);
			goto free_dec_irqs;
		}
	}

	return 0;

free_dec_irqs:
	gaudi2_dec_disable_msix(hdev, (GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + irq_init_cnt));
	return rc;
}

static int gaudi2_enable_msix(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int rc, irq, i, j, user_irq_init_cnt;
	irq_handler_t irq_handler;
	struct hl_cq *cq;

	if (gaudi2->hw_cap_initialized & HW_CAP_MSIX)
		return 0;

	rc = pci_alloc_irq_vectors(hdev->pdev, GAUDI2_MSIX_ENTRIES, GAUDI2_MSIX_ENTRIES,
					PCI_IRQ_MSIX);
	if (rc < 0) {
		dev_err(hdev->dev, "MSI-X: Failed to enable support -- %d/%d\n",
			GAUDI2_MSIX_ENTRIES, rc);
		return rc;
	}

	irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
3568
	cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION];
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	rc = request_irq(irq, hl_irq_handler_cq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_COMPLETION), cq);
	if (rc) {
		dev_err(hdev->dev, "Failed to request IRQ %d", irq);
		goto free_irq_vectors;
	}

	irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
	rc = request_irq(irq, hl_irq_handler_eq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_EVENT_QUEUE),
			&hdev->event_queue);
	if (rc) {
		dev_err(hdev->dev, "Failed to request IRQ %d", irq);
		goto free_completion_irq;
	}

	rc = gaudi2_dec_enable_msix(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to enable decoder IRQ");
3586
		goto free_event_irq;
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	}

	for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, user_irq_init_cnt = 0;
			user_irq_init_cnt < prop->user_interrupt_count;
			i++, j++, user_irq_init_cnt++) {

		irq = pci_irq_vector(hdev->pdev, i);
		irq_handler = hl_irq_handler_user_interrupt;

		rc = request_irq(irq, irq_handler, 0, gaudi2_irq_name(i), &hdev->user_interrupt[j]);
		if (rc) {
			dev_err(hdev->dev, "Failed to request IRQ %d", irq);
			goto free_user_irq;
		}
	}

	gaudi2->hw_cap_initialized |= HW_CAP_MSIX;

	return 0;

free_user_irq:
	for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count;
			i < GAUDI2_IRQ_NUM_USER_FIRST + user_irq_init_cnt ; i++, j++) {

		irq = pci_irq_vector(hdev->pdev, i);
		free_irq(irq, &hdev->user_interrupt[j]);
	}

	gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1);

3617 3618 3619 3620
free_event_irq:
	irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
	free_irq(irq, cq);

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
free_completion_irq:
	irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
	free_irq(irq, cq);

free_irq_vectors:
	pci_free_irq_vectors(hdev->pdev);

	return rc;
}

static void gaudi2_sync_irqs(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int i, j;
	int irq;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX))
		return;

	/* Wait for all pending IRQs to be finished */
	synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION));

	for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM ; i++) {
		irq = pci_irq_vector(hdev->pdev, i);
		synchronize_irq(irq);
	}

	for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = 0 ; j < hdev->asic_prop.user_interrupt_count;
										i++, j++) {
		irq = pci_irq_vector(hdev->pdev, i);
		synchronize_irq(irq);
	}

	synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE));
}

static void gaudi2_disable_msix(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	struct hl_cq *cq;
	int irq, i, j, k;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX))
		return;

	gaudi2_sync_irqs(hdev);

	irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
	free_irq(irq, &hdev->event_queue);

	gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1);

	for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, k = 0;
			k < hdev->asic_prop.user_interrupt_count ; i++, j++, k++) {

		irq = pci_irq_vector(hdev->pdev, i);
		free_irq(irq, &hdev->user_interrupt[j]);
	}

	irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
3682
	cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION];
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	free_irq(irq, cq);

	pci_free_irq_vectors(hdev->pdev);

	gaudi2->hw_cap_initialized &= ~HW_CAP_MSIX;
}

static void gaudi2_stop_dcore_dec(struct hl_device *hdev, int dcore_id)
{
	u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1);
	u32 graceful_pend_mask = DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK;
	u32 timeout_usec, dec_id, dec_bit, offset, graceful;
	int rc;

	if (hdev->pldm)
		timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC;
	else
		timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC;

	for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
		dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id;
		if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
			continue;

		offset = dcore_id * DCORE_OFFSET + dec_id * DCORE_VDEC_OFFSET;

		WREG32(mmDCORE0_DEC0_CMD_SWREG16 + offset, 0);

		WREG32(mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val);

		/* Wait till all traffic from decoder stops
		 * before apply core reset.
		 */
		rc = hl_poll_timeout(
				hdev,
				mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset,
				graceful,
				(graceful & graceful_pend_mask),
				100,
				timeout_usec);
		if (rc)
			dev_err(hdev->dev,
				"Failed to stop traffic from DCORE%d Decoder %d\n",
				dcore_id, dec_id);
	}
}

static void gaudi2_stop_pcie_dec(struct hl_device *hdev)
{
	u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1);
	u32 graceful_pend_mask = PCIE_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK;
	u32 timeout_usec, dec_id, dec_bit, offset, graceful;
	int rc;

	if (hdev->pldm)
		timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC;
	else
		timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC;

	for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
		dec_bit = PCIE_DEC_SHIFT + dec_id;
		if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
			continue;

		offset = dec_id * PCIE_VDEC_OFFSET;

		WREG32(mmPCIE_DEC0_CMD_SWREG16 + offset, 0);

		WREG32(mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val);

		/* Wait till all traffic from decoder stops
		 * before apply core reset.
		 */
		rc = hl_poll_timeout(
				hdev,
				mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset,
				graceful,
				(graceful & graceful_pend_mask),
				100,
				timeout_usec);
		if (rc)
			dev_err(hdev->dev,
				"Failed to stop traffic from PCIe Decoder %d\n",
				dec_id);
	}
}

static void gaudi2_stop_dec(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int dcore_id;

	if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == 0)
		return;

	for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
		gaudi2_stop_dcore_dec(hdev, dcore_id);

	gaudi2_stop_pcie_dec(hdev);
}

3784
static void gaudi2_set_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode)
3785 3786 3787 3788
{
	u32 reg_base, reg_val;

	reg_base = gaudi2_arc_blocks_bases[cpu_id];
3789 3790 3791 3792
	if (run_mode == HL_ENGINE_CORE_RUN)
		reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 1);
	else
		reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_HALT_REQ_MASK, 1);
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

	WREG32(reg_base + ARC_HALT_REQ_OFFSET, reg_val);
}

static void gaudi2_halt_arcs(struct hl_device *hdev)
{
	u16 arc_id;

	for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++) {
		if (gaudi2_is_arc_enabled(hdev, arc_id))
3803
			gaudi2_set_arc_running_mode(hdev, arc_id, HL_ENGINE_CORE_HALT);
3804 3805 3806
	}
}

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
static int gaudi2_verify_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode)
{
	int rc;
	u32 reg_base, val, ack_mask, timeout_usec = 100000;

	if (hdev->pldm)
		timeout_usec *= 100;

	reg_base = gaudi2_arc_blocks_bases[cpu_id];
	if (run_mode == HL_ENGINE_CORE_RUN)
		ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_RUN_ACK_MASK;
	else
		ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_HALT_ACK_MASK;

	rc = hl_poll_timeout(hdev, reg_base + ARC_HALT_ACK_OFFSET,
				val, ((val & ack_mask) == ack_mask),
				1000, timeout_usec);

	if (!rc) {
		/* Clear */
		val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 0);
		WREG32(reg_base + ARC_HALT_REQ_OFFSET, val);
	}

	return rc;
}

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
static void gaudi2_reset_arcs(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u16 arc_id;

	if (!gaudi2)
		return;

	for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++)
		if (gaudi2_is_arc_enabled(hdev, arc_id))
			gaudi2_clr_arc_id_cap(hdev, arc_id);
}

static void gaudi2_nic_qmans_manual_flush(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 queue_id;
	int i;

	if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
		return;

	queue_id = GAUDI2_QUEUE_ID_NIC_0_0;

3858 3859 3860 3861
	for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
		if (!(hdev->nic_ports_mask & BIT(i)))
			continue;

3862
		gaudi2_qman_manual_flush_common(hdev, queue_id);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	}
}

static int gaudi2_set_engine_cores(struct hl_device *hdev, u32 *core_ids,
					u32 num_cores, u32 core_command)
{
	int i, rc;


	for (i = 0 ; i < num_cores ; i++) {
		if (gaudi2_is_arc_enabled(hdev, core_ids[i]))
			gaudi2_set_arc_running_mode(hdev, core_ids[i], core_command);
	}

	for (i = 0 ; i < num_cores ; i++) {
		if (gaudi2_is_arc_enabled(hdev, core_ids[i])) {
			rc = gaudi2_verify_arc_running_mode(hdev, core_ids[i], core_command);

			if (rc) {
				dev_err(hdev->dev, "failed to %s arc: %d\n",
					(core_command == HL_ENGINE_CORE_HALT) ?
					"HALT" : "RUN", core_ids[i]);
				return -1;
			}
		}
	}

	return 0;
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
}

static void gaudi2_halt_engines(struct hl_device *hdev, bool hard_reset, bool fw_reset)
{
	u32 wait_timeout_ms;

	if (hdev->pldm)
		wait_timeout_ms = GAUDI2_PLDM_RESET_WAIT_MSEC;
	else
		wait_timeout_ms = GAUDI2_RESET_WAIT_MSEC;

	if (fw_reset)
		goto skip_engines;

	gaudi2_stop_dma_qmans(hdev);
	gaudi2_stop_mme_qmans(hdev);
	gaudi2_stop_tpc_qmans(hdev);
	gaudi2_stop_rot_qmans(hdev);
	gaudi2_stop_nic_qmans(hdev);
	msleep(wait_timeout_ms);

	gaudi2_halt_arcs(hdev);
	gaudi2_dma_stall(hdev);
	gaudi2_mme_stall(hdev);
	gaudi2_tpc_stall(hdev);
	gaudi2_rotator_stall(hdev);

	msleep(wait_timeout_ms);

	gaudi2_stop_dec(hdev);

	/*
	 * in case of soft reset do a manual flush for QMANs (currently called
	 * only for NIC QMANs
	 */
	if (!hard_reset)
		gaudi2_nic_qmans_manual_flush(hdev);

	gaudi2_disable_dma_qmans(hdev);
	gaudi2_disable_mme_qmans(hdev);
	gaudi2_disable_tpc_qmans(hdev);
	gaudi2_disable_rot_qmans(hdev);
	gaudi2_disable_nic_qmans(hdev);
	gaudi2_disable_timestamp(hdev);

skip_engines:
	if (hard_reset) {
		gaudi2_disable_msix(hdev);
		return;
	}

	gaudi2_sync_irqs(hdev);
}

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
static void gaudi2_init_firmware_preload_params(struct hl_device *hdev)
{
	struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;

	pre_fw_load->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS;
	pre_fw_load->sts_boot_dev_sts0_reg = mmCPU_BOOT_DEV_STS0;
	pre_fw_load->sts_boot_dev_sts1_reg = mmCPU_BOOT_DEV_STS1;
	pre_fw_load->boot_err0_reg = mmCPU_BOOT_ERR0;
	pre_fw_load->boot_err1_reg = mmCPU_BOOT_ERR1;
	pre_fw_load->wait_for_preboot_timeout = GAUDI2_PREBOOT_REQ_TIMEOUT_USEC;
}

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
static void gaudi2_init_firmware_loader(struct hl_device *hdev)
{
	struct fw_load_mgr *fw_loader = &hdev->fw_loader;
	struct dynamic_fw_load_mgr *dynamic_loader;
	struct cpu_dyn_regs *dyn_regs;

	/* fill common fields */
	fw_loader->fw_comp_loaded = FW_TYPE_NONE;
	fw_loader->boot_fit_img.image_name = GAUDI2_BOOT_FIT_FILE;
	fw_loader->linux_img.image_name = GAUDI2_LINUX_FW_FILE;
	fw_loader->boot_fit_timeout = GAUDI2_BOOT_FIT_REQ_TIMEOUT_USEC;
	fw_loader->skip_bmc = false;
	fw_loader->sram_bar_id = SRAM_CFG_BAR_ID;
	fw_loader->dram_bar_id = DRAM_BAR_ID;
3971
	fw_loader->cpu_timeout = GAUDI2_CPU_TIMEOUT_USEC;
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

	/* here we update initial values for few specific dynamic regs (as
	 * before reading the first descriptor from FW those value has to be
	 * hard-coded). in later stages of the protocol those values will be
	 * updated automatically by reading the FW descriptor so data there
	 * will always be up-to-date
	 */
	dynamic_loader = &hdev->fw_loader.dynamic_loader;
	dyn_regs = &dynamic_loader->comm_desc.cpu_dyn_regs;
	dyn_regs->kmd_msg_to_cpu = cpu_to_le32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU);
	dyn_regs->cpu_cmd_status_to_host = cpu_to_le32(mmCPU_CMD_STATUS_TO_HOST);
	dynamic_loader->wait_for_bl_timeout = GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC;
}

static int gaudi2_init_cpu(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int rc;

	if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
		return 0;

	if (gaudi2->hw_cap_initialized & HW_CAP_CPU)
		return 0;

	rc = hl_fw_init_cpu(hdev);
	if (rc)
		return rc;

	gaudi2->hw_cap_initialized |= HW_CAP_CPU;

	return 0;
}

static int gaudi2_init_cpu_queues(struct hl_device *hdev, u32 cpu_timeout)
{
	struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	struct cpu_dyn_regs *dyn_regs;
	struct hl_eq *eq;
	u32 status;
	int err;

	if (!hdev->cpu_queues_enable)
		return 0;

	if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)
		return 0;

	eq = &hdev->event_queue;

	dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;

	WREG32(mmCPU_IF_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address));
	WREG32(mmCPU_IF_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address));

	WREG32(mmCPU_IF_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address));
	WREG32(mmCPU_IF_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address));

	WREG32(mmCPU_IF_CQ_BASE_ADDR_LOW, lower_32_bits(hdev->cpu_accessible_dma_address));
	WREG32(mmCPU_IF_CQ_BASE_ADDR_HIGH, upper_32_bits(hdev->cpu_accessible_dma_address));

	WREG32(mmCPU_IF_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES);
	WREG32(mmCPU_IF_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES);
	WREG32(mmCPU_IF_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE);

	/* Used for EQ CI */
	WREG32(mmCPU_IF_EQ_RD_OFFS, 0);

	WREG32(mmCPU_IF_PF_PQ_PI, 0);

	WREG32(mmCPU_IF_QUEUE_INIT, PQ_INIT_STATUS_READY_FOR_CP);

	/* Let the ARC know we are ready as it is now handling those queues  */

	WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq),
		gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id);

	err = hl_poll_timeout(
		hdev,
		mmCPU_IF_QUEUE_INIT,
		status,
		(status == PQ_INIT_STATUS_READY_FOR_HOST),
		1000,
		cpu_timeout);

	if (err) {
		dev_err(hdev->dev, "Failed to communicate with device CPU (timeout)\n");
		return -EIO;
	}

	/* update FW application security bits */
	if (prop->fw_cpu_boot_dev_sts0_valid)
		prop->fw_app_cpu_boot_dev_sts0 = RREG32(mmCPU_BOOT_DEV_STS0);

	if (prop->fw_cpu_boot_dev_sts1_valid)
		prop->fw_app_cpu_boot_dev_sts1 = RREG32(mmCPU_BOOT_DEV_STS1);

	gaudi2->hw_cap_initialized |= HW_CAP_CPU_Q;
	return 0;
}

static void gaudi2_init_qman_pq(struct hl_device *hdev, u32 reg_base,
				u32 queue_id_base)
{
	struct hl_hw_queue *q;
	u32 pq_id, pq_offset;

	for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) {
		q = &hdev->kernel_queues[queue_id_base + pq_id];
		pq_offset = pq_id * 4;

		WREG32(reg_base + QM_PQ_BASE_LO_0_OFFSET + pq_offset,
				lower_32_bits(q->bus_address));
		WREG32(reg_base + QM_PQ_BASE_HI_0_OFFSET + pq_offset,
				upper_32_bits(q->bus_address));
		WREG32(reg_base + QM_PQ_SIZE_0_OFFSET + pq_offset, ilog2(HL_QUEUE_LENGTH));
		WREG32(reg_base + QM_PQ_PI_0_OFFSET + pq_offset, 0);
		WREG32(reg_base + QM_PQ_CI_0_OFFSET + pq_offset, 0);
	}
}

static void gaudi2_init_qman_cp(struct hl_device *hdev, u32 reg_base)
{
	u32 cp_id, cp_offset, mtr_base_lo, mtr_base_hi, so_base_lo, so_base_hi;

	mtr_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	mtr_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
	so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
	so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);

	for (cp_id = 0 ; cp_id < NUM_OF_CP_PER_QMAN; cp_id++) {
		cp_offset = cp_id * 4;

		WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_LO_0_OFFSET + cp_offset, mtr_base_lo);
		WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_HI_0_OFFSET + cp_offset,	mtr_base_hi);
		WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_LO_0_OFFSET + cp_offset,	so_base_lo);
		WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_HI_0_OFFSET + cp_offset,	so_base_hi);
	}

	/* allow QMANs to accept work from ARC CQF */
	WREG32(reg_base + QM_CP_CFG_OFFSET, FIELD_PREP(PDMA0_QM_CP_CFG_SWITCH_EN_MASK, 0x1));
}

static void gaudi2_init_qman_pqc(struct hl_device *hdev, u32 reg_base,
				u32 queue_id_base)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 pq_id, pq_offset, so_base_lo, so_base_hi;

	so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
	so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);

	for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) {
		pq_offset = pq_id * 4;

		/* Configure QMAN HBW to scratchpad as it is not needed */
		WREG32(reg_base + QM_PQC_HBW_BASE_LO_0_OFFSET + pq_offset,
				lower_32_bits(gaudi2->scratchpad_bus_address));
		WREG32(reg_base + QM_PQC_HBW_BASE_HI_0_OFFSET + pq_offset,
				upper_32_bits(gaudi2->scratchpad_bus_address));
		WREG32(reg_base + QM_PQC_SIZE_0_OFFSET + pq_offset,
				ilog2(PAGE_SIZE / sizeof(struct hl_cq_entry)));

		WREG32(reg_base + QM_PQC_PI_0_OFFSET + pq_offset, 0);
		WREG32(reg_base + QM_PQC_LBW_WDATA_0_OFFSET + pq_offset, QM_PQC_LBW_WDATA);
		WREG32(reg_base + QM_PQC_LBW_BASE_LO_0_OFFSET + pq_offset, so_base_lo);
		WREG32(reg_base + QM_PQC_LBW_BASE_HI_0_OFFSET + pq_offset, so_base_hi);
	}

	/* Enable QMAN H/W completion */
	WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT);
}

static u32 gaudi2_get_dyn_sp_reg(struct hl_device *hdev, u32 queue_id_base)
{
	struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
	u32 sp_reg_addr;

	switch (queue_id_base) {
	case GAUDI2_QUEUE_ID_PDMA_0_0...GAUDI2_QUEUE_ID_PDMA_1_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3:
		sp_reg_addr = le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl);
		break;
	case GAUDI2_QUEUE_ID_DCORE0_MME_0_0...GAUDI2_QUEUE_ID_DCORE0_MME_0_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE1_MME_0_0...GAUDI2_QUEUE_ID_DCORE1_MME_0_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE2_MME_0_0...GAUDI2_QUEUE_ID_DCORE2_MME_0_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE3_MME_0_0...GAUDI2_QUEUE_ID_DCORE3_MME_0_3:
		sp_reg_addr = le32_to_cpu(dyn_regs->gic_mme_qm_irq_ctrl);
		break;
	case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3:
		fallthrough;
	case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3:
		sp_reg_addr = le32_to_cpu(dyn_regs->gic_tpc_qm_irq_ctrl);
		break;
	case GAUDI2_QUEUE_ID_ROT_0_0...GAUDI2_QUEUE_ID_ROT_1_3:
		sp_reg_addr = le32_to_cpu(dyn_regs->gic_rot_qm_irq_ctrl);
		break;
	case GAUDI2_QUEUE_ID_NIC_0_0...GAUDI2_QUEUE_ID_NIC_23_3:
		sp_reg_addr = le32_to_cpu(dyn_regs->gic_nic_qm_irq_ctrl);
		break;
	default:
		dev_err(hdev->dev, "Unexpected h/w queue %d\n", queue_id_base);
		return 0;
	}

	return sp_reg_addr;
}

static void gaudi2_init_qman_common(struct hl_device *hdev, u32 reg_base,
					u32 queue_id_base)
{
	u32 glbl_prot = QMAN_MAKE_TRUSTED, irq_handler_offset;
	int map_table_entry;

	WREG32(reg_base + QM_GLBL_PROT_OFFSET, glbl_prot);

	irq_handler_offset = gaudi2_get_dyn_sp_reg(hdev, queue_id_base);
	WREG32(reg_base + QM_GLBL_ERR_ADDR_LO_OFFSET, lower_32_bits(CFG_BASE + irq_handler_offset));
	WREG32(reg_base + QM_GLBL_ERR_ADDR_HI_OFFSET, upper_32_bits(CFG_BASE + irq_handler_offset));

	map_table_entry = gaudi2_qman_async_event_id[queue_id_base];
	WREG32(reg_base + QM_GLBL_ERR_WDATA_OFFSET,
		gaudi2_irq_map_table[map_table_entry].cpu_id);

	WREG32(reg_base + QM_ARB_ERR_MSG_EN_OFFSET, QM_ARB_ERR_MSG_EN_MASK);

	WREG32(reg_base + QM_ARB_SLV_CHOISE_WDT_OFFSET, GAUDI2_ARB_WDT_TIMEOUT);
	WREG32(reg_base + QM_GLBL_CFG1_OFFSET, 0);
	WREG32(reg_base + QM_GLBL_CFG2_OFFSET, 0);

	/* Enable the QMAN channel.
4219 4220 4221 4222
	 * PDMA QMAN configuration is different, as we do not allow user to
	 * access some of the CPs.
	 * PDMA0: CP2/3 are reserved for the ARC usage.
	 * PDMA1: CP1/2/3 are reserved for the ARC usage.
4223 4224 4225
	 */
	if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0])
		WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA1_QMAN_ENABLE);
4226 4227
	else if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0])
		WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA0_QMAN_ENABLE);
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	else
		WREG32(reg_base + QM_GLBL_CFG0_OFFSET, QMAN_ENABLE);
}

static void gaudi2_init_qman(struct hl_device *hdev, u32 reg_base,
		u32 queue_id_base)
{
	u32 pq_id;

	for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++)
4238
		hdev->kernel_queues[queue_id_base + pq_id].cq_id = GAUDI2_RESERVED_CQ_CS_COMPLETION;
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350

	gaudi2_init_qman_pq(hdev, reg_base, queue_id_base);
	gaudi2_init_qman_cp(hdev, reg_base);
	gaudi2_init_qman_pqc(hdev, reg_base, queue_id_base);
	gaudi2_init_qman_common(hdev, reg_base, queue_id_base);
}

static void gaudi2_init_dma_core(struct hl_device *hdev, u32 reg_base,
				u32 dma_core_id, bool is_secure)
{
	u32 prot, irq_handler_offset;
	struct cpu_dyn_regs *dyn_regs;
	int map_table_entry;

	prot = 1 << ARC_FARM_KDMA_PROT_ERR_VAL_SHIFT;
	if (is_secure)
		prot |= 1 << ARC_FARM_KDMA_PROT_VAL_SHIFT;

	WREG32(reg_base + DMA_CORE_PROT_OFFSET, prot);

	dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
	irq_handler_offset = le32_to_cpu(dyn_regs->gic_dma_core_irq_ctrl);

	WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_LO_OFFSET,
			lower_32_bits(CFG_BASE + irq_handler_offset));

	WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_HI_OFFSET,
			upper_32_bits(CFG_BASE + irq_handler_offset));

	map_table_entry = gaudi2_dma_core_async_event_id[dma_core_id];
	WREG32(reg_base + DMA_CORE_ERRMSG_WDATA_OFFSET,
		gaudi2_irq_map_table[map_table_entry].cpu_id);

	/* Enable the DMA channel */
	WREG32(reg_base + DMA_CORE_CFG_0_OFFSET, 1 << ARC_FARM_KDMA_CFG_0_EN_SHIFT);
}

static void gaudi2_init_kdma(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base;

	if ((gaudi2->hw_cap_initialized & HW_CAP_KDMA) == HW_CAP_KDMA)
		return;

	reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_KDMA];

	gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_KDMA, true);

	gaudi2->hw_cap_initialized |= HW_CAP_KDMA;
}

static void gaudi2_init_pdma(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_base;

	if ((gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK) == HW_CAP_PDMA_MASK)
		return;

	reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA0];
	gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA0, false);

	reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0];
	gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_0_0);

	reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA1];
	gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA1, false);

	reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0];
	gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_1_0);

	gaudi2->hw_cap_initialized |= HW_CAP_PDMA_MASK;
}

static void gaudi2_init_edma_instance(struct hl_device *hdev, u8 seq)
{
	u32 reg_base, base_edma_core_id, base_edma_qman_id;

	base_edma_core_id = DMA_CORE_ID_EDMA0 + seq;
	base_edma_qman_id = edma_stream_base[seq];

	reg_base = gaudi2_dma_core_blocks_bases[base_edma_core_id];
	gaudi2_init_dma_core(hdev, reg_base, base_edma_core_id, false);

	reg_base = gaudi2_qm_blocks_bases[base_edma_qman_id];
	gaudi2_init_qman(hdev, reg_base, base_edma_qman_id);
}

static void gaudi2_init_edma(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int dcore, inst;

	if ((gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK) == HW_CAP_EDMA_MASK)
		return;

	for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
		for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
			u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;

			if (!(prop->edma_enabled_mask & BIT(seq)))
				continue;

			gaudi2_init_edma_instance(hdev, seq);

			gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_EDMA_SHIFT + seq);
		}
	}
}

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
/*
 * gaudi2_arm_monitors_for_virt_msix_db() - Arm monitors for writing to the virtual MSI-X doorbell.
 * @hdev: pointer to habanalabs device structure.
 * @sob_id: sync object ID.
 * @first_mon_id: ID of first monitor out of 3 consecutive monitors.
 * @interrupt_id: interrupt ID.
 *
 * Some initiators cannot have HBW address in their completion address registers, and thus cannot
 * write directly to the HBW host memory of the virtual MSI-X doorbell.
 * Instead, they are configured to LBW write to a sync object, and a monitor will do the HBW write.
 *
 * The mechanism in the sync manager block is composed of a master monitor with 3 messages.
 * In addition to the HBW write, the other 2 messages are for preparing the monitor to next
 * completion, by decrementing the sync object value and re-arming the monitor.
 */
static void gaudi2_arm_monitors_for_virt_msix_db(struct hl_device *hdev, u32 sob_id,
							u32 first_mon_id, u32 interrupt_id)
{
	u32 sob_offset, first_mon_offset, mon_offset, payload, sob_group, mode, arm, config;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u64 addr;
	u8 mask;

	/* Reset the SOB value */
	sob_offset = sob_id * sizeof(u32);
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0);

	/* Configure 3 monitors:
	 * 1. Write interrupt ID to the virtual MSI-X doorbell (master monitor)
	 * 2. Decrement SOB value by 1.
	 * 3. Re-arm the master monitor.
	 */

	first_mon_offset = first_mon_id * sizeof(u32);

	/* 2nd monitor: Decrement SOB value by 1 */
	mon_offset = first_mon_offset + sizeof(u32);

	addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));

	payload = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 0x7FFF) | /* "-1" */
			FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_SIGN_MASK, 1) |
			FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1);
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);

	/* 3rd monitor: Re-arm the master monitor */
	mon_offset = first_mon_offset + 2 * sizeof(u32);

	addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + first_mon_offset;
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));

	sob_group = sob_id / 8;
	mask = ~BIT(sob_id & 0x7);
	mode = 0; /* comparison mode is "greater than or equal to" */
	arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sob_group) |
			FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask) |
			FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode) |
			FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, 1);

	payload = arm;
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);

	/* 1st monitor (master): Write interrupt ID to the virtual MSI-X doorbell */
	mon_offset = first_mon_offset;

	config = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_WR_NUM_MASK, 2); /* "2": 3 writes */
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + mon_offset, config);

	addr = gaudi2->virt_msix_db_dma_addr;
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));

	payload = interrupt_id;
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);

	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, arm);
}

static void gaudi2_prepare_sm_for_virt_msix_db(struct hl_device *hdev)
{
	u32 decoder_id, sob_id, first_mon_id, interrupt_id;
	struct asic_fixed_properties *prop = &hdev->asic_prop;

	/* Decoder normal/abnormal interrupts */
	for (decoder_id = 0 ; decoder_id < NUMBER_OF_DEC ; ++decoder_id) {
		if (!(prop->decoder_enabled_mask & BIT(decoder_id)))
			continue;

		sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id;
		first_mon_id = GAUDI2_RESERVED_MON_DEC_NRM_FIRST + 3 * decoder_id;
		interrupt_id = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 2 * decoder_id;
		gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id);

		sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id;
		first_mon_id = GAUDI2_RESERVED_MON_DEC_ABNRM_FIRST + 3 * decoder_id;
		interrupt_id += 1;
		gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id);
	}
}

4454 4455
static void gaudi2_init_sm(struct hl_device *hdev)
{
4456
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	u64 cq_address;
	u32 reg_val;
	int i;

	/* Enable HBW/LBW CQ for completion monitors */
	reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1);
	reg_val |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_LBW_EN_MASK, 1);

	for (i = 0 ; i < GAUDI2_MAX_PENDING_CS ; i++)
		WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val);

	/* Enable only HBW CQ for KDMA completion monitor */
	reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1);
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val);

4472 4473 4474
	/* Init CQ0 DB - configure the monitor to trigger MSI-X interrupt */
	WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0, lower_32_bits(gaudi2->virt_msix_db_dma_addr));
	WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0, upper_32_bits(gaudi2->virt_msix_db_dma_addr));
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0, GAUDI2_IRQ_NUM_COMPLETION);

	for (i = 0 ; i < GAUDI2_RESERVED_CQ_NUMBER ; i++) {
		cq_address =
			hdev->completion_queue[i].bus_address;

		WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + (4 * i),
							lower_32_bits(cq_address));
		WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + (4 * i),
							upper_32_bits(cq_address));
		WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + (4 * i),
							ilog2(HL_CQ_SIZE_IN_BYTES));
	}

	/* Configure kernel ASID and MMU BP*/
	WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_SEC, 0x10000);
	WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV, 0);
4492 4493 4494

	/* Initialize sync objects and monitors which are used for the virtual MSI-X doorbell */
	gaudi2_prepare_sm_for_virt_msix_db(hdev);
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
}

static void gaudi2_init_mme_acc(struct hl_device *hdev, u32 reg_base)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 reg_val;
	int i;

	reg_val = FIELD_PREP(MME_ACC_INTR_MASK_WBC_ERR_RESP_MASK, 0);
	reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_POS_INF_MASK, 1);
	reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NEG_INF_MASK, 1);
	reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NAN_MASK, 1);
	reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_POS_INF_MASK, 1);
	reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_NEG_INF_MASK, 1);

	WREG32(reg_base + MME_ACC_INTR_MASK_OFFSET, reg_val);
	WREG32(reg_base + MME_ACC_AP_LFSR_POLY_OFFSET, 0x80DEADAF);

	for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++) {
		WREG32(reg_base + MME_ACC_AP_LFSR_SEED_SEL_OFFSET, i);
		WREG32(reg_base + MME_ACC_AP_LFSR_SEED_WDATA_OFFSET, gaudi2->lfsr_rand_seeds[i]);
	}
}

static void gaudi2_init_dcore_mme(struct hl_device *hdev, int dcore_id,
							bool config_qman_only)
{
4522
	u32 queue_id_base, reg_base;
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

	switch (dcore_id) {
	case 0:
		queue_id_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0;
		break;
	case 1:
		queue_id_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0;
		break;
	case 2:
		queue_id_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0;
		break;
	case 3:
		queue_id_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0;
		break;
	default:
		dev_err(hdev->dev, "Invalid dcore id %u\n", dcore_id);
		return;
	}

	if (!config_qman_only) {
		reg_base = gaudi2_mme_acc_blocks_bases[dcore_id];
		gaudi2_init_mme_acc(hdev, reg_base);
	}

	reg_base = gaudi2_qm_blocks_bases[queue_id_base];
	gaudi2_init_qman(hdev, reg_base, queue_id_base);
}

static void gaudi2_init_mme(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int i;

	if ((gaudi2->hw_cap_initialized & HW_CAP_MME_MASK) == HW_CAP_MME_MASK)
		return;

	for (i = 0 ; i < NUM_OF_DCORES ; i++) {
		gaudi2_init_dcore_mme(hdev, i, false);

		gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_MME_SHIFT + i);
	}
}

static void gaudi2_init_tpc_cfg(struct hl_device *hdev, u32 reg_base)
{
	/* Mask arithmetic and QM interrupts in TPC */
	WREG32(reg_base + TPC_CFG_TPC_INTR_MASK_OFFSET, 0x23FFFE);

	/* Set 16 cache lines */
	WREG32(reg_base + TPC_CFG_MSS_CONFIG_OFFSET,
			2 << DCORE0_TPC0_CFG_MSS_CONFIG_ICACHE_FETCH_LINE_NUM_SHIFT);
}

struct gaudi2_tpc_init_cfg_data {
	enum gaudi2_queue_id dcore_tpc_qid_base[NUM_OF_DCORES];
};

static void gaudi2_init_tpc_config(struct hl_device *hdev, int dcore, int inst,
4581
					u32 offset, struct iterate_module_ctx *ctx)
4582 4583
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
4584
	struct gaudi2_tpc_init_cfg_data *cfg_data = ctx->data;
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	u32 queue_id_base;
	u8 seq;

	queue_id_base = cfg_data->dcore_tpc_qid_base[dcore] + (inst * NUM_OF_PQ_PER_QMAN);

	if (dcore == 0 && inst == (NUM_DCORE0_TPC - 1))
		/* gets last sequence number */
		seq = NUM_OF_DCORES * NUM_OF_TPC_PER_DCORE;
	else
		seq = dcore * NUM_OF_TPC_PER_DCORE + inst;

	gaudi2_init_tpc_cfg(hdev, mmDCORE0_TPC0_CFG_BASE + offset);
	gaudi2_init_qman(hdev, mmDCORE0_TPC0_QM_BASE + offset, queue_id_base);

	gaudi2->tpc_hw_cap_initialized |= BIT_ULL(HW_CAP_TPC_SHIFT + seq);
}

static void gaudi2_init_tpc(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	struct gaudi2_tpc_init_cfg_data init_cfg_data;
	struct iterate_module_ctx tpc_iter;

	if (!hdev->asic_prop.tpc_enabled_mask)
		return;

	if ((gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK) == HW_CAP_TPC_MASK)
		return;

	init_cfg_data.dcore_tpc_qid_base[0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0;
	init_cfg_data.dcore_tpc_qid_base[1] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0;
	init_cfg_data.dcore_tpc_qid_base[2] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0;
	init_cfg_data.dcore_tpc_qid_base[3] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0;
	tpc_iter.fn = &gaudi2_init_tpc_config;
	tpc_iter.data = &init_cfg_data;
	gaudi2_iterate_tpcs(hdev, &tpc_iter);
}

static void gaudi2_init_rotator(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 i, reg_base, queue_id;

	queue_id = GAUDI2_QUEUE_ID_ROT_0_0;

	for (i = 0 ; i < NUM_OF_ROT ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
		reg_base = gaudi2_qm_blocks_bases[queue_id];
		gaudi2_init_qman(hdev, reg_base, queue_id);

		gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_ROT_SHIFT + i);
	}
}

4638
static void gaudi2_init_vdec_brdg_ctrl(struct hl_device *hdev, u64 base_addr, u32 decoder_id)
4639
{
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	u32 sob_id;

	/* VCMD normal interrupt */
	sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id;
	WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_AWADDR,
			mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32));
	WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE);

	/* VCMD abnormal interrupt */
	sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id;
	WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_AWADDR,
			mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32));
	WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE);
4653 4654 4655 4656 4657
}

static void gaudi2_init_dec(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
4658
	u32 dcore_id, dec_id, dec_bit;
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	u64 base_addr;

	if (!hdev->asic_prop.decoder_enabled_mask)
		return;

	if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == HW_CAP_DEC_MASK)
		return;

	for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
		for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
			dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id;

			if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
				continue;

			base_addr =  mmDCORE0_DEC0_CMD_BASE +
					BRDG_CTRL_BLOCK_OFFSET +
					dcore_id * DCORE_OFFSET +
					dec_id * DCORE_VDEC_OFFSET;

4679
			gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit);
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691

			gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit);
		}

	for (dec_id = 0 ; dec_id < NUM_OF_PCIE_VDEC ; dec_id++) {
		dec_bit = PCIE_DEC_SHIFT + dec_id;
		if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
			continue;

		base_addr = mmPCIE_DEC0_CMD_BASE + BRDG_CTRL_BLOCK_OFFSET +
				dec_id * DCORE_VDEC_OFFSET;

4692
		gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit);
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997

		gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit);
	}
}

static int gaudi2_mmu_update_asid_hop0_addr(struct hl_device *hdev,
					u32 stlb_base, u32 asid, u64 phys_addr)
{
	u32 status, timeout_usec;
	int rc;

	if (hdev->pldm || !hdev->pdev)
		timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC;
	else
		timeout_usec = MMU_CONFIG_TIMEOUT_USEC;

	WREG32(stlb_base + STLB_ASID_OFFSET, asid);
	WREG32(stlb_base + STLB_HOP0_PA43_12_OFFSET, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
	WREG32(stlb_base + STLB_HOP0_PA63_44_OFFSET, phys_addr >> MMU_HOP0_PA63_44_SHIFT);
	WREG32(stlb_base + STLB_BUSY_OFFSET, 0x80000000);

	rc = hl_poll_timeout(
		hdev,
		stlb_base + STLB_BUSY_OFFSET,
		status,
		!(status & 0x80000000),
		1000,
		timeout_usec);

	if (rc) {
		dev_err(hdev->dev, "Timeout during MMU hop0 config of asid %d\n", asid);
		return rc;
	}

	return 0;
}

static void gaudi2_mmu_send_invalidate_cache_cmd(struct hl_device *hdev, u32 stlb_base,
					u32 start_offset, u32 inv_start_val,
					u32 flags)
{
	/* clear PMMU mem line cache (only needed in mmu range invalidation) */
	if (flags & MMU_OP_CLEAR_MEMCACHE)
		WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INVALIDATION, 0x1);

	if (flags & MMU_OP_SKIP_LOW_CACHE_INV)
		return;

	WREG32(stlb_base + start_offset, inv_start_val);
}

static int gaudi2_mmu_invalidate_cache_status_poll(struct hl_device *hdev, u32 stlb_base,
						struct gaudi2_cache_invld_params *inv_params)
{
	u32 status, timeout_usec, start_offset;
	int rc;

	timeout_usec = (hdev->pldm) ? GAUDI2_PLDM_MMU_TIMEOUT_USEC :
					GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC;

	/* poll PMMU mem line cache (only needed in mmu range invalidation) */
	if (inv_params->flags & MMU_OP_CLEAR_MEMCACHE) {
		rc = hl_poll_timeout(
			hdev,
			mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS,
			status,
			status & 0x1,
			1000,
			timeout_usec);

		if (rc)
			return rc;

		/* Need to manually reset the status to 0 */
		WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS, 0x0);
	}

	/* Lower cache does not work with cache lines, hence we can skip its
	 * invalidation upon map and invalidate only upon unmap
	 */
	if (inv_params->flags & MMU_OP_SKIP_LOW_CACHE_INV)
		return 0;

	start_offset = inv_params->range_invalidation ?
			STLB_RANGE_CACHE_INVALIDATION_OFFSET : STLB_INV_ALL_START_OFFSET;

	rc = hl_poll_timeout(
		hdev,
		stlb_base + start_offset,
		status,
		!(status & 0x1),
		1000,
		timeout_usec);

	return rc;
}

bool gaudi2_is_hmmu_enabled(struct hl_device *hdev, int dcore_id, int hmmu_id)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 hw_cap;

	hw_cap = HW_CAP_DCORE0_DMMU0 << (NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id);

	if (gaudi2->hw_cap_initialized & hw_cap)
		return true;

	return false;
}

/* this function shall be called only for HMMUs for which capability bit is set */
static inline u32 get_hmmu_stlb_base(int dcore_id, int hmmu_id)
{
	u32 offset;

	offset =  (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET);
	return (u32)(mmDCORE0_HMMU0_STLB_BASE + offset);
}

static void gaudi2_mmu_invalidate_cache_trigger(struct hl_device *hdev, u32 stlb_base,
						struct gaudi2_cache_invld_params *inv_params)
{
	u32 start_offset;

	if (inv_params->range_invalidation) {
		/* Set the addresses range
		 * Note: that the start address we set in register, is not included in
		 * the range of the invalidation, by design.
		 * that's why we need to set lower address than the one we actually
		 * want to be included in the range invalidation.
		 */
		u64 start = inv_params->start_va - 1;

		start_offset = STLB_RANGE_CACHE_INVALIDATION_OFFSET;

		WREG32(stlb_base + STLB_RANGE_INV_START_LSB_OFFSET,
				start >> MMU_RANGE_INV_VA_LSB_SHIFT);

		WREG32(stlb_base + STLB_RANGE_INV_START_MSB_OFFSET,
				start >> MMU_RANGE_INV_VA_MSB_SHIFT);

		WREG32(stlb_base + STLB_RANGE_INV_END_LSB_OFFSET,
				inv_params->end_va >> MMU_RANGE_INV_VA_LSB_SHIFT);

		WREG32(stlb_base + STLB_RANGE_INV_END_MSB_OFFSET,
				inv_params->end_va >> MMU_RANGE_INV_VA_MSB_SHIFT);
	} else {
		start_offset = STLB_INV_ALL_START_OFFSET;
	}

	gaudi2_mmu_send_invalidate_cache_cmd(hdev, stlb_base, start_offset,
						inv_params->inv_start_val, inv_params->flags);
}

static inline void gaudi2_hmmu_invalidate_cache_trigger(struct hl_device *hdev,
						int dcore_id, int hmmu_id,
						struct gaudi2_cache_invld_params *inv_params)
{
	u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id);

	gaudi2_mmu_invalidate_cache_trigger(hdev, stlb_base, inv_params);
}

static inline int gaudi2_hmmu_invalidate_cache_status_poll(struct hl_device *hdev,
						int dcore_id, int hmmu_id,
						struct gaudi2_cache_invld_params *inv_params)
{
	u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id);

	return gaudi2_mmu_invalidate_cache_status_poll(hdev, stlb_base, inv_params);
}

static int gaudi2_hmmus_invalidate_cache(struct hl_device *hdev,
						struct gaudi2_cache_invld_params *inv_params)
{
	int dcore_id, hmmu_id;

	/* first send all invalidation commands */
	for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
		for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) {
			if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id))
				continue;

			gaudi2_hmmu_invalidate_cache_trigger(hdev, dcore_id, hmmu_id, inv_params);
		}
	}

	/* next, poll all invalidations status */
	for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
		for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) {
			int rc;

			if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id))
				continue;

			rc = gaudi2_hmmu_invalidate_cache_status_poll(hdev, dcore_id, hmmu_id,
										inv_params);
			if (rc)
				return rc;
		}
	}

	return 0;
}

static int gaudi2_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	struct gaudi2_cache_invld_params invld_params;
	int rc = 0;

	if (hdev->reset_info.hard_reset_pending)
		return rc;

	invld_params.range_invalidation = false;
	invld_params.inv_start_val = 1;

	if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
		invld_params.flags = flags;
		gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params);
		rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE,
										&invld_params);
	} else if (flags & MMU_OP_PHYS_PACK) {
		invld_params.flags = 0;
		rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params);
	}

	return rc;
}

static int gaudi2_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
				u32 flags, u32 asid, u64 va, u64 size)
{
	struct gaudi2_cache_invld_params invld_params = {0};
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u64 start_va, end_va;
	u32 inv_start_val;
	int rc = 0;

	if (hdev->reset_info.hard_reset_pending)
		return 0;

	inv_start_val = (1 << MMU_RANGE_INV_EN_SHIFT |
			1 << MMU_RANGE_INV_ASID_EN_SHIFT |
			asid << MMU_RANGE_INV_ASID_SHIFT);
	start_va = va;
	end_va = start_va + size;

	if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
		/* As range invalidation does not support zero address we will
		 * do full invalidation in this case
		 */
		if (start_va) {
			invld_params.range_invalidation = true;
			invld_params.start_va = start_va;
			invld_params.end_va = end_va;
			invld_params.inv_start_val = inv_start_val;
			invld_params.flags = flags | MMU_OP_CLEAR_MEMCACHE;
		} else {
			invld_params.range_invalidation = false;
			invld_params.inv_start_val = 1;
			invld_params.flags = flags;
		}


		gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params);
		rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE,
										&invld_params);
		if (rc)
			return rc;

	} else if (flags & MMU_OP_PHYS_PACK) {
		invld_params.start_va = gaudi2_mmu_scramble_addr(hdev, start_va);
		invld_params.end_va = gaudi2_mmu_scramble_addr(hdev, end_va);
		invld_params.inv_start_val = inv_start_val;
		invld_params.flags = flags;
		rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params);
	}

	return rc;
}

static int gaudi2_mmu_update_hop0_addr(struct hl_device *hdev, u32 stlb_base)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u64 hop0_addr;
	u32 asid, max_asid = prop->max_asid;
	int rc;

	/* it takes too much time to init all of the ASIDs on palladium */
	if (hdev->pldm)
		max_asid = min((u32) 8, max_asid);

	for (asid = 0 ; asid < max_asid ; asid++) {
		hop0_addr = hdev->mmu_priv.hr.mmu_asid_hop0[asid].phys_addr;
		rc = gaudi2_mmu_update_asid_hop0_addr(hdev, stlb_base, asid, hop0_addr);
		if (rc) {
			dev_err(hdev->dev, "failed to set hop0 addr for asid %d\n", asid);
			return rc;
		}
	}

	return 0;
}

4998
static int gaudi2_mmu_init_common(struct hl_device *hdev, u32 mmu_base, u32 stlb_base)
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
{
	u32 status, timeout_usec;
	int rc;

	if (hdev->pldm || !hdev->pdev)
		timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC;
	else
		timeout_usec = GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC;

	WREG32(stlb_base + STLB_INV_ALL_START_OFFSET, 1);

	rc = hl_poll_timeout(
		hdev,
		stlb_base + STLB_SRAM_INIT_OFFSET,
		status,
		!status,
		1000,
		timeout_usec);

	if (rc)
		dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU SRAM init\n");

	rc = gaudi2_mmu_update_hop0_addr(hdev, stlb_base);
	if (rc)
		return rc;

	WREG32(mmu_base + MMU_BYPASS_OFFSET, 0);

	rc = hl_poll_timeout(
		hdev,
		stlb_base + STLB_INV_ALL_START_OFFSET,
		status,
		!status,
		1000,
		timeout_usec);

	if (rc)
		dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU invalidate all\n");

	WREG32(mmu_base + MMU_ENABLE_OFFSET, 1);

	return rc;
}

static int gaudi2_pci_mmu_init(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 mmu_base, stlb_base;
	int rc;

	if (gaudi2->hw_cap_initialized & HW_CAP_PMMU)
		return 0;

	mmu_base = mmPMMU_HBW_MMU_BASE;
	stlb_base = mmPMMU_HBW_STLB_BASE;

5055
	RMWREG32_SHIFTED(stlb_base + STLB_HOP_CONFIGURATION_OFFSET,
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
		(0 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_SHIFT) |
		(5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_SHIFT) |
		(4 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_SHIFT) |
		(5 << PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_SHIFT) |
		(5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_SHIFT),
		PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK |
		PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK |
		PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK |
		PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_MASK |
		PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK);

	WREG32(stlb_base + STLB_LL_LOOKUP_MASK_63_32_OFFSET, 0);

	if (PAGE_SIZE == SZ_64K) {
		/* Set page sizes to 64K on hop5 and 16M on hop4 + enable 8 bit hops */
5071
		RMWREG32_SHIFTED(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET,
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
			FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK, 4) |
			FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK, 3) |
			FIELD_PREP(
				DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK,
				1),
			DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK |
			DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK |
			DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK);
	}

5082 5083
	WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_PMMU_SPI_SEI_ENABLE_MASK);

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base);
	if (rc)
		return rc;

	gaudi2->hw_cap_initialized |= HW_CAP_PMMU;

	return 0;
}

static int gaudi2_dcore_hmmu_init(struct hl_device *hdev, int dcore_id,
				int hmmu_id)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 offset, mmu_base, stlb_base, hw_cap;
	u8 dmmu_seq;
	int rc;

	dmmu_seq = NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id;
	hw_cap = HW_CAP_DCORE0_DMMU0 << dmmu_seq;

	/*
	 * return if DMMU is already initialized or if it's not out of
	 * isolation (due to cluster binning)
	 */
	if ((gaudi2->hw_cap_initialized & hw_cap) || !(prop->hmmu_hif_enabled_mask & BIT(dmmu_seq)))
		return 0;

	offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET);
	mmu_base = mmDCORE0_HMMU0_MMU_BASE + offset;
	stlb_base = mmDCORE0_HMMU0_STLB_BASE + offset;

	RMWREG32(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET, 5 /* 64MB */,
			MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK);

5119
	RMWREG32_SHIFTED(stlb_base + STLB_HOP_CONFIGURATION_OFFSET,
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
		FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK, 0) |
		FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK, 3) |
		FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK, 3) |
		FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK, 3) |
		FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK, 3),
			DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK |
			DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK |
			DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK |
			DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK |
			DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK);

	RMWREG32(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, 1,
			STLB_HOP_CONFIGURATION_ONLY_LARGE_PAGE_MASK);

5134 5135
	WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_HMMU_SPI_SEI_ENABLE_MASK);

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
	rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base);
	if (rc)
		return rc;

	gaudi2->hw_cap_initialized |= hw_cap;

	return 0;
}

static int gaudi2_hbm_mmu_init(struct hl_device *hdev)
{
	int rc, dcore_id, hmmu_id;

	for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
		for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE; hmmu_id++) {
			rc = gaudi2_dcore_hmmu_init(hdev, dcore_id, hmmu_id);
			if (rc)
				return rc;
		}

	return 0;
}

static int gaudi2_mmu_init(struct hl_device *hdev)
{
	int rc;

	rc = gaudi2_pci_mmu_init(hdev);
	if (rc)
		return rc;

	rc = gaudi2_hbm_mmu_init(hdev);
	if (rc)
		return rc;

	return 0;
}

static int gaudi2_hw_init(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int rc;

	/* Let's mark in the H/W that we have reached this point. We check
	 * this value in the reset_before_init function to understand whether
	 * we need to reset the chip before doing H/W init. This register is
	 * cleared by the H/W upon H/W reset
	 */
	WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY);

	/* Perform read from the device to make sure device is up */
	RREG32(mmHW_STATE);

	/* If iATU is done by FW, the HBM bar ALWAYS points to DRAM_PHYS_BASE.
	 * So we set it here and if anyone tries to move it later to
	 * a different address, there will be an error
	 */
	if (hdev->asic_prop.iatu_done_by_fw)
		gaudi2->dram_bar_cur_addr = DRAM_PHYS_BASE;

	/*
	 * Before pushing u-boot/linux to device, need to set the hbm bar to
	 * base address of dram
	 */
	if (gaudi2_set_hbm_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) {
		dev_err(hdev->dev, "failed to map HBM bar to DRAM base address\n");
		return -EIO;
	}

	rc = gaudi2_init_cpu(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize CPU\n");
		return rc;
	}

	gaudi2_init_scrambler_hbm(hdev);
	gaudi2_init_kdma(hdev);

	rc = gaudi2_init_cpu_queues(hdev, GAUDI2_CPU_TIMEOUT_USEC);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n", rc);
		return rc;
	}

	rc = gaudi2->cpucp_info_get(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to get cpucp info\n");
		return rc;
	}

	rc = gaudi2_mmu_init(hdev);
	if (rc)
		return rc;

	gaudi2_init_pdma(hdev);
	gaudi2_init_edma(hdev);
	gaudi2_init_sm(hdev);
	gaudi2_init_tpc(hdev);
	gaudi2_init_mme(hdev);
	gaudi2_init_rotator(hdev);
	gaudi2_init_dec(hdev);
	gaudi2_enable_timestamp(hdev);

5239 5240 5241 5242
	rc = gaudi2_coresight_init(hdev);
	if (rc)
		goto disable_queues;

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
	rc = gaudi2_enable_msix(hdev);
	if (rc)
		goto disable_queues;

	/* Perform read from the device to flush all configuration */
	RREG32(mmHW_STATE);

	return 0;

disable_queues:
	gaudi2_disable_dma_qmans(hdev);
	gaudi2_disable_mme_qmans(hdev);
	gaudi2_disable_tpc_qmans(hdev);
	gaudi2_disable_rot_qmans(hdev);
	gaudi2_disable_nic_qmans(hdev);

	gaudi2_disable_timestamp(hdev);

	return rc;
}

/**
 * gaudi2_send_hard_reset_cmd - common function to handle reset
 *
 * @hdev: pointer to the habanalabs device structure
 *
 * This function handles the various possible scenarios for reset.
 * It considers if reset is handled by driver\FW and what FW components are loaded
 */
static void gaudi2_send_hard_reset_cmd(struct hl_device *hdev)
{
	struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
	bool heartbeat_reset, preboot_only, cpu_initialized = false;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 cpu_boot_status;

	preboot_only = (hdev->fw_loader.fw_comp_loaded == FW_TYPE_PREBOOT_CPU);
	heartbeat_reset = (hdev->reset_info.curr_reset_cause == HL_RESET_CAUSE_HEARTBEAT);

	/*
	 * Handle corner case where failure was at cpu management app load,
	 * and driver didn't detect any failure while loading the FW,
	 * then at such scenario driver will send only HALT_MACHINE
	 * and no one will respond to this request since FW already back to preboot
	 * and it cannot handle such cmd.
	 * In this case next time the management app loads it'll check on events register
	 * which will still have the halt indication, and will reboot the device.
	 * The solution is to let preboot clear all relevant registers before next boot
	 * once driver send COMMS_RST_DEV.
	 */
	cpu_boot_status = RREG32(mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS);

	if (gaudi2 && (gaudi2->hw_cap_initialized & HW_CAP_CPU) &&
			(cpu_boot_status == CPU_BOOT_STATUS_SRAM_AVAIL))
		cpu_initialized = true;

	/*
	 * when Linux/Bootfit exist this write to the SP can be interpreted in 2 ways:
	 * 1. FW reset: FW initiate the reset sequence
	 * 2. driver reset: FW will start HALT sequence (the preparations for the
	 *                  reset but not the reset itself as it is not implemented
	 *                  on their part) and LKD will wait to let FW complete the
	 *                  sequence before issuing the reset
	 */
	if (!preboot_only && cpu_initialized) {
		WREG32(le32_to_cpu(dyn_regs->gic_host_halt_irq),
			gaudi2_irq_map_table[GAUDI2_EVENT_CPU_HALT_MACHINE].cpu_id);

		msleep(GAUDI2_CPU_RESET_WAIT_MSEC);
	}

	/*
	 * When working with preboot (without Linux/Boot fit) we can
	 * communicate only using the COMMS commands to issue halt/reset.
	 *
	 * For the case in which we are working with Linux/Bootfit this is a hail-mary
	 * attempt to revive the card in the small chance that the f/w has
	 * experienced a watchdog event, which caused it to return back to preboot.
	 * In that case, triggering reset through GIC won't help. We need to
	 * trigger the reset as if Linux wasn't loaded.
	 *
	 * We do it only if the reset cause was HB, because that would be the
	 * indication of such an event.
	 *
	 * In case watchdog hasn't expired but we still got HB, then this won't
	 * do any damage.
	 */

	if (heartbeat_reset || preboot_only || !cpu_initialized) {
		if (hdev->asic_prop.hard_reset_done_by_fw)
			hl_fw_ask_hard_reset_without_linux(hdev);
		else
			hl_fw_ask_halt_machine_without_linux(hdev);
	}
}

/**
 * gaudi2_execute_hard_reset - execute hard reset by driver/FW
 *
 * @hdev: pointer to the habanalabs device structure
 * @reset_sleep_ms: sleep time in msec after reset
 *
 * This function executes hard reset based on if driver/FW should do the reset
 */
static void gaudi2_execute_hard_reset(struct hl_device *hdev, u32 reset_sleep_ms)
{
	if (hdev->asic_prop.hard_reset_done_by_fw) {
		gaudi2_send_hard_reset_cmd(hdev);
		return;
	}

	/* Set device to handle FLR by H/W as we will put the device
	 * CPU to halt mode
	 */
	WREG32(mmPCIE_AUX_FLR_CTRL,
			(PCIE_AUX_FLR_CTRL_HW_CTRL_MASK | PCIE_AUX_FLR_CTRL_INT_MASK_MASK));

	gaudi2_send_hard_reset_cmd(hdev);

	WREG32(mmPSOC_RESET_CONF_SW_ALL_RST, 1);
}

/**
 * gaudi2_execute_soft_reset - execute soft reset by driver/FW
 *
 * @hdev: pointer to the habanalabs device structure
 * @reset_sleep_ms: sleep time in msec after reset
 * @driver_performs_reset: true if driver should perform reset instead of f/w.
 *
 * This function executes soft reset based on if driver/FW should do the reset
 */
static void gaudi2_execute_soft_reset(struct hl_device *hdev, u32 reset_sleep_ms,
						bool driver_performs_reset)
{
	struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;

	if (!driver_performs_reset) {
		/* set SP to indicate reset request sent to FW */
5381 5382 5383 5384
		if (dyn_regs->cpu_rst_status)
			WREG32(le32_to_cpu(dyn_regs->cpu_rst_status), CPU_RST_STATUS_NA);
		else
			WREG32(mmCPU_RST_STATUS_TO_HOST, CPU_RST_STATUS_NA);
5385 5386 5387 5388 5389 5390

		WREG32(le32_to_cpu(dyn_regs->gic_host_soft_rst_irq),
			gaudi2_irq_map_table[GAUDI2_EVENT_CPU_SOFT_RESET].cpu_id);
		return;
	}

5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	/* Block access to engines, QMANs and SM during reset, these
	 * RRs will be reconfigured after soft reset.
	 * PCIE_MSIX is left unsecured to allow NIC packets processing during the reset.
	 */
	gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 1,
					mmDCORE0_TPC0_QM_DCCM_BASE, mmPCIE_MSIX_BASE);

	gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 2,
				mmPCIE_MSIX_BASE + HL_BLOCK_SIZE,
				mmPCIE_VDEC1_MSTR_IF_RR_SHRD_HBW_BASE + HL_BLOCK_SIZE);

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
	WREG32(mmPSOC_RESET_CONF_SOFT_RST, 1);
}

static void gaudi2_poll_btm_indication(struct hl_device *hdev, u32 reset_sleep_ms,
								u32 poll_timeout_us)
{
	int i, rc = 0;
	u32 reg_val;

	/* without this sleep reset will not work */
	msleep(reset_sleep_ms);

	/* We poll the BTM done indication multiple times after reset due to
	 * a HW errata 'GAUDI2_0300'
	 */
	for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++)
		rc = hl_poll_timeout(
			hdev,
			mmPSOC_GLOBAL_CONF_BTM_FSM,
			reg_val,
			reg_val == 0,
			1000,
			poll_timeout_us);

	if (rc)
		dev_err(hdev->dev, "Timeout while waiting for device to reset 0x%x\n", reg_val);
}

static void gaudi2_get_soft_rst_done_indication(struct hl_device *hdev, u32 poll_timeout_us)
{
	int i, rc = 0;
	u32 reg_val;

	for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++)
		rc = hl_poll_timeout(
			hdev,
			mmCPU_RST_STATUS_TO_HOST,
			reg_val,
			reg_val == CPU_RST_STATUS_SOFT_RST_DONE,
			1000,
			poll_timeout_us);

	if (rc)
		dev_err(hdev->dev, "Timeout while waiting for FW to complete soft reset (0x%x)\n",
				reg_val);
}

static void gaudi2_hw_fini(struct hl_device *hdev, bool hard_reset, bool fw_reset)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 poll_timeout_us, reset_sleep_ms;
	bool driver_performs_reset = false;

	if (hdev->pldm) {
		reset_sleep_ms = hard_reset ? GAUDI2_PLDM_HRESET_TIMEOUT_MSEC :
						GAUDI2_PLDM_SRESET_TIMEOUT_MSEC;
		poll_timeout_us = GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC;
	} else {
		reset_sleep_ms = GAUDI2_RESET_TIMEOUT_MSEC;
		poll_timeout_us = GAUDI2_RESET_POLL_TIMEOUT_USEC;
	}

	if (fw_reset)
		goto skip_reset;

	gaudi2_reset_arcs(hdev);

	if (hard_reset) {
		driver_performs_reset = !hdev->asic_prop.hard_reset_done_by_fw;
		gaudi2_execute_hard_reset(hdev, reset_sleep_ms);
	} else {
		/*
		 * As we have to support also work with preboot only (which does not supports
		 * soft reset) we have to make sure that security is disabled before letting driver
		 * do the reset. user shall control the BFE flags to avoid asking soft reset in
		 * secured device with preboot only.
		 */
		driver_performs_reset = (hdev->fw_components == FW_TYPE_PREBOOT_CPU &&
							!hdev->asic_prop.fw_security_enabled);
		gaudi2_execute_soft_reset(hdev, reset_sleep_ms, driver_performs_reset);
	}

skip_reset:
	if (driver_performs_reset || hard_reset)
		gaudi2_poll_btm_indication(hdev, reset_sleep_ms, poll_timeout_us);
	else
		gaudi2_get_soft_rst_done_indication(hdev, poll_timeout_us);

	if (!gaudi2)
		return;

	gaudi2->dec_hw_cap_initialized &= ~(HW_CAP_DEC_MASK);
	gaudi2->tpc_hw_cap_initialized &= ~(HW_CAP_TPC_MASK);

	/*
	 * Clear NIC capability mask in order for driver to re-configure
	 * NIC QMANs. NIC ports will not be re-configured during soft
	 * reset as we call gaudi2_nic_init only during hard reset
	 */
	gaudi2->nic_hw_cap_initialized &= ~(HW_CAP_NIC_MASK);

	if (hard_reset) {
		gaudi2->hw_cap_initialized &=
			~(HW_CAP_DRAM | HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_MASK |
			HW_CAP_PMMU | HW_CAP_CPU | HW_CAP_CPU_Q |
			HW_CAP_SRAM_SCRAMBLER | HW_CAP_DMMU_MASK |
			HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_KDMA |
			HW_CAP_MME_MASK | HW_CAP_ROT_MASK);

		memset(gaudi2->events_stat, 0, sizeof(gaudi2->events_stat));
	} else {
		gaudi2->hw_cap_initialized &=
			~(HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_SW_RESET |
			HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_MME_MASK |
			HW_CAP_ROT_MASK);
	}
}

static int gaudi2_suspend(struct hl_device *hdev)
{
	int rc;

5524
	rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
	if (rc)
		dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");

	return rc;
}

static int gaudi2_resume(struct hl_device *hdev)
{
	return gaudi2_init_iatu(hdev);
}

static int gaudi2_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
		void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	int rc;

	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
			VM_DONTCOPY | VM_NORESERVE;

#ifdef _HAS_DMA_MMAP_COHERENT

	rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr, dma_addr, size);
	if (rc)
		dev_err(hdev->dev, "dma_mmap_coherent error %d", rc);

#else

	rc = remap_pfn_range(vma, vma->vm_start,
				virt_to_phys(cpu_addr) >> PAGE_SHIFT,
				size, vma->vm_page_prot);
	if (rc)
		dev_err(hdev->dev, "remap_pfn_range error %d", rc);

#endif

	return rc;
}

static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u64 hw_cap_mask = 0;
	u64 hw_tpc_cap_bit = 0;
	u64 hw_nic_cap_bit = 0;
	u64 hw_test_cap_bit = 0;

	switch (hw_queue_id) {
5572 5573 5574
	case GAUDI2_QUEUE_ID_PDMA_0_0:
	case GAUDI2_QUEUE_ID_PDMA_0_1:
	case GAUDI2_QUEUE_ID_PDMA_1_0:
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
		hw_cap_mask = HW_CAP_PDMA_MASK;
		break;
	case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3:
		hw_test_cap_bit = HW_CAP_EDMA_SHIFT +
			((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0) >> 2);
		break;
	case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3:
		hw_test_cap_bit = HW_CAP_EDMA_SHIFT + NUM_OF_EDMA_PER_DCORE +
			((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0) >> 2);
		break;
	case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3:
		hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 2 * NUM_OF_EDMA_PER_DCORE +
			((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0) >> 2);
		break;
	case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3:
		hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 3 * NUM_OF_EDMA_PER_DCORE +
			((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0) >> 2);
		break;

	case GAUDI2_QUEUE_ID_DCORE0_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE0_MME_0_3:
		hw_test_cap_bit = HW_CAP_MME_SHIFT;
		break;

	case GAUDI2_QUEUE_ID_DCORE1_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE1_MME_0_3:
		hw_test_cap_bit = HW_CAP_MME_SHIFT + 1;
		break;

	case GAUDI2_QUEUE_ID_DCORE2_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE2_MME_0_3:
		hw_test_cap_bit = HW_CAP_MME_SHIFT + 2;
		break;

	case GAUDI2_QUEUE_ID_DCORE3_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE3_MME_0_3:
		hw_test_cap_bit = HW_CAP_MME_SHIFT + 3;
		break;

	case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_5_3:
		hw_tpc_cap_bit = HW_CAP_TPC_SHIFT +
			((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_TPC_0_0) >> 2);

		/* special case where cap bit refers to the first queue id */
		if (!hw_tpc_cap_bit)
			return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(0));
		break;

	case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3:
		hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + NUM_OF_TPC_PER_DCORE +
			((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_TPC_0_0) >> 2);
		break;

	case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3:
		hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (2 * NUM_OF_TPC_PER_DCORE) +
			((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_TPC_0_0) >> 2);
		break;

	case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3:
		hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (3 * NUM_OF_TPC_PER_DCORE) +
			((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_TPC_0_0) >> 2);
		break;

	case GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3:
		hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (4 * NUM_OF_TPC_PER_DCORE);
		break;

	case GAUDI2_QUEUE_ID_ROT_0_0 ... GAUDI2_QUEUE_ID_ROT_1_3:
		hw_test_cap_bit = HW_CAP_ROT_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_ROT_0_0) >> 2);
		break;

	case GAUDI2_QUEUE_ID_NIC_0_0 ... GAUDI2_QUEUE_ID_NIC_23_3:
		hw_nic_cap_bit = HW_CAP_NIC_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_NIC_0_0) >> 2);

		/* special case where cap bit refers to the first queue id */
		if (!hw_nic_cap_bit)
			return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(0));
		break;

	case GAUDI2_QUEUE_ID_CPU_PQ:
		return !!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q);

	default:
		return false;
	}

	if (hw_tpc_cap_bit)
		return  !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(hw_tpc_cap_bit));

	if (hw_nic_cap_bit)
		return  !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(hw_nic_cap_bit));

	if (hw_test_cap_bit)
		hw_cap_mask = BIT_ULL(hw_test_cap_bit);

	return !!(gaudi2->hw_cap_initialized & hw_cap_mask);
}

static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	switch (arc_id) {
	case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
	case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
		return !!(gaudi2->active_hw_arc & BIT_ULL(arc_id));

	case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
		return !!(gaudi2->active_tpc_arc & BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0));

	case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
		return !!(gaudi2->active_nic_arc & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0));

	default:
		return false;
	}
}

static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	switch (arc_id) {
	case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
	case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
		gaudi2->active_hw_arc &= ~(BIT_ULL(arc_id));
		break;

	case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
		gaudi2->active_tpc_arc &= ~(BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0));
		break;

	case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
		gaudi2->active_nic_arc &= ~(BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0));
		break;

	default:
		return;
	}
}

static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	switch (arc_id) {
	case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
	case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
		gaudi2->active_hw_arc |= BIT_ULL(arc_id);
		break;

	case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
		gaudi2->active_tpc_arc |= BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0);
		break;

	case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
		gaudi2->active_nic_arc |= BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0);
		break;

	default:
		return;
	}
}

static void gaudi2_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
{
	struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
	u32 pq_offset, reg_base, db_reg_offset, db_value;

	if (hw_queue_id != GAUDI2_QUEUE_ID_CPU_PQ) {
		/*
		 * QMAN has 4 successive PQ_PI registers, 1 for each of the QMAN PQs.
		 * Masking the H/W queue ID with 0x3 extracts the QMAN internal PQ
		 * number.
		 */
		pq_offset = (hw_queue_id & 0x3) * 4;
		reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
		db_reg_offset = reg_base + QM_PQ_PI_0_OFFSET + pq_offset;
	} else {
		db_reg_offset = mmCPU_IF_PF_PQ_PI;
	}

	db_value = pi;

	/* ring the doorbell */
	WREG32(db_reg_offset, db_value);

	if (hw_queue_id == GAUDI2_QUEUE_ID_CPU_PQ) {
		/* make sure device CPU will read latest data from host */
		mb();
		WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq),
			gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id);
	}
}

static void gaudi2_pqe_write(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd)
{
	__le64 *pbd = (__le64 *) bd;

	/* The QMANs are on the host memory so a simple copy suffice */
	pqe[0] = pbd[0];
	pqe[1] = pbd[1];
}

static void *gaudi2_dma_alloc_coherent(struct hl_device *hdev, size_t size,
				dma_addr_t *dma_handle, gfp_t flags)
{
	return dma_alloc_coherent(&hdev->pdev->dev, size, dma_handle, flags);
}

static void gaudi2_dma_free_coherent(struct hl_device *hdev, size_t size,
				void *cpu_addr, dma_addr_t dma_handle)
{
	dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, dma_handle);
}

static int gaudi2_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
				u32 timeout, u64 *result)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) {
		if (result)
			*result = 0;
		return 0;
	}

	if (!timeout)
		timeout = GAUDI2_MSG_TO_CPU_TIMEOUT_USEC;

	return hl_fw_send_cpu_message(hdev, GAUDI2_QUEUE_ID_CPU_PQ, msg, len, timeout, result);
}

static void *gaudi2_dma_pool_zalloc(struct hl_device *hdev, size_t size,
				gfp_t mem_flags, dma_addr_t *dma_handle)
{
	if (size > GAUDI2_DMA_POOL_BLK_SIZE)
		return NULL;

	return dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);
}

static void gaudi2_dma_pool_free(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr)
{
	dma_pool_free(hdev->dma_pool, vaddr, dma_addr);
}

static void *gaudi2_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
						dma_addr_t *dma_handle)
{
	return hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
}

static void gaudi2_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
{
	hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr);
}

static dma_addr_t gaudi2_dma_map_single(struct hl_device *hdev, void *addr, int len,
					enum dma_data_direction dir)
{
	dma_addr_t dma_addr;

	dma_addr = dma_map_single(&hdev->pdev->dev, addr, len, dir);
	if (unlikely(dma_mapping_error(&hdev->pdev->dev, dma_addr)))
		return 0;

	return dma_addr;
}

static void gaudi2_dma_unmap_single(struct hl_device *hdev, dma_addr_t addr, int len,
					enum dma_data_direction dir)
{
	dma_unmap_single(&hdev->pdev->dev, addr, len, dir);
}

static int gaudi2_validate_cb_address(struct hl_device *hdev, struct hl_cs_parser *parser)
{
	struct asic_fixed_properties *asic_prop = &hdev->asic_prop;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	if (!gaudi2_is_queue_enabled(hdev, parser->hw_queue_id)) {
		dev_err(hdev->dev, "h/w queue %d is disabled\n", parser->hw_queue_id);
		return -EINVAL;
	}

	/* Just check if CB address is valid */

	if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
					parser->user_cb_size,
					asic_prop->sram_user_base_address,
					asic_prop->sram_end_address))
		return 0;

	if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
					parser->user_cb_size,
					asic_prop->dram_user_base_address,
					asic_prop->dram_end_address))
		return 0;

	if ((gaudi2->hw_cap_initialized & HW_CAP_DMMU_MASK) &&
		hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
						parser->user_cb_size,
						asic_prop->dmmu.start_addr,
						asic_prop->dmmu.end_addr))
		return 0;

	if (gaudi2->hw_cap_initialized & HW_CAP_PMMU) {
		if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
					parser->user_cb_size,
					asic_prop->pmmu.start_addr,
					asic_prop->pmmu.end_addr) ||
			hl_mem_area_inside_range(
					(u64) (uintptr_t) parser->user_cb,
					parser->user_cb_size,
					asic_prop->pmmu_huge.start_addr,
					asic_prop->pmmu_huge.end_addr))
			return 0;

	} else if (gaudi2_host_phys_addr_valid((u64) (uintptr_t) parser->user_cb)) {
		if (!hdev->pdev)
			return 0;

		if (!device_iommu_mapped(&hdev->pdev->dev))
			return 0;
	}

	dev_err(hdev->dev, "CB address %p + 0x%x for internal QMAN is not valid\n",
		parser->user_cb, parser->user_cb_size);

	return -EFAULT;
}

static int gaudi2_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	if (!parser->is_kernel_allocated_cb)
		return gaudi2_validate_cb_address(hdev, parser);

	if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
		dev_err(hdev->dev, "PMMU not initialized - Unsupported mode in Gaudi2\n");
		return -EINVAL;
	}

	return 0;
}

static int gaudi2_send_heartbeat(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

	return hl_fw_send_heartbeat(hdev);
}

/* This is an internal helper function, used to update the KDMA mmu props.
 * Should be called with a proper kdma lock.
 */
static void gaudi2_kdma_set_mmbp_asid(struct hl_device *hdev,
					   bool mmu_bypass, u32 asid)
{
	u32 rw_asid, rw_mmu_bp;

	rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
		      (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);

	rw_mmu_bp = (!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_SHIFT) |
			(!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_SHIFT);

	WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_ASID, rw_asid);
	WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP, rw_mmu_bp);
}

5947
static void gaudi2_arm_cq_monitor(struct hl_device *hdev, u32 sob_id, u32 mon_id, u32 cq_id,
5948 5949
						u32 mon_payload, u32 sync_value)
{
5950
	u32 sob_offset, mon_offset, sync_group_id, mode, mon_arm;
5951
	u8 mask;
5952

5953 5954 5955
	sob_offset = sob_id * 4;
	mon_offset = mon_id * 4;

5956
	/* Reset the SOB value */
5957
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0);
5958 5959

	/* Configure this address with CQ_ID 0 because CQ_EN is set */
5960
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, cq_id);
5961 5962

	/* Configure this address with CS index because CQ_EN is set */
5963
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, mon_payload);
5964

5965 5966
	sync_group_id = sob_id / 8;
	mask = ~(1 << (sob_id & 0x7));
5967 5968 5969 5970 5971 5972
	mode = 1; /* comparison mode is "equal to" */

	mon_arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, sync_value);
	mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode);
	mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask);
	mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sync_group_id);
5973
	WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, mon_arm);
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
}

/* This is an internal helper function used by gaudi2_send_job_to_kdma only */
static int gaudi2_send_job_to_kdma(struct hl_device *hdev,
					u64 src_addr, u64 dst_addr,
					u32 size, bool is_memset)
{
	u32 comp_val, commit_mask, *polling_addr, timeout, status = 0;
	struct hl_cq_entry *cq_base;
	struct hl_cq *cq;
	u64 comp_addr;
	int rc;

5987 5988
	gaudi2_arm_cq_monitor(hdev, GAUDI2_RESERVED_SOB_KDMA_COMPLETION,
				GAUDI2_RESERVED_MON_KDMA_COMPLETION,
5989 5990 5991
				GAUDI2_RESERVED_CQ_KDMA_COMPLETION, 1, 1);

	comp_addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 +
5992
			(GAUDI2_RESERVED_SOB_KDMA_COMPLETION * sizeof(u32));
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174

	comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) |
			FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1);

	WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_LO, lower_32_bits(src_addr));
	WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_HI, upper_32_bits(src_addr));
	WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_LO, lower_32_bits(dst_addr));
	WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_HI, upper_32_bits(dst_addr));
	WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_LO, lower_32_bits(comp_addr));
	WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_HI, upper_32_bits(comp_addr));
	WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_WDATA, comp_val);
	WREG32(mmARC_FARM_KDMA_CTX_DST_TSIZE_0, size);

	commit_mask = FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_LIN_MASK, 1) |
				FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_WR_COMP_EN_MASK, 1);

	if (is_memset)
		commit_mask |= FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_MEM_SET_MASK, 1);

	WREG32(mmARC_FARM_KDMA_CTX_COMMIT, commit_mask);

	/* Wait for completion */
	cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_KDMA_COMPLETION];
	cq_base = cq->kernel_address;
	polling_addr = (u32 *)&cq_base[cq->ci];

	if (hdev->pldm)
		/* for each 1MB 20 second of timeout */
		timeout = ((size / SZ_1M) + 1) * USEC_PER_SEC * 20;
	else
		timeout = KDMA_TIMEOUT_USEC;

	/* Polling */
	rc = hl_poll_timeout_memory(
			hdev,
			polling_addr,
			status,
			(status == 1),
			1000,
			timeout,
			true);

	*polling_addr = 0;

	if (rc) {
		dev_err(hdev->dev, "Timeout while waiting for KDMA to be idle\n");
		WREG32(mmARC_FARM_KDMA_CFG_1, 1 << ARC_FARM_KDMA_CFG_1_HALT_SHIFT);
		return rc;
	}

	cq->ci = hl_cq_inc_ptr(cq->ci);

	return 0;
}

static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val)
{
	u32 i;

	for (i = 0 ; i < size ; i += sizeof(u32))
		WREG32(addr + i, val);
}

static void gaudi2_qman_set_test_mode(struct hl_device *hdev, u32 hw_queue_id, bool enable)
{
	u32 reg_base = gaudi2_qm_blocks_bases[hw_queue_id];

	if (enable) {
		WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED_TEST_MODE);
		WREG32(reg_base + QM_PQC_CFG_OFFSET, 0);
	} else {
		WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED);
		WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT);
	}
}

static int gaudi2_test_queue(struct hl_device *hdev, u32 hw_queue_id)
{
	u32 sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4;
	u32 sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
	u32 timeout_usec, tmp, sob_base = 1, sob_val = 0x5a5a;
	struct packet_msg_short *msg_short_pkt;
	dma_addr_t pkt_dma_addr;
	size_t pkt_size;
	int rc;

	if (hdev->pldm)
		timeout_usec = GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC;
	else
		timeout_usec = GAUDI2_TEST_QUEUE_WAIT_USEC;

	pkt_size = sizeof(*msg_short_pkt);
	msg_short_pkt = hl_asic_dma_pool_zalloc(hdev, pkt_size, GFP_KERNEL, &pkt_dma_addr);
	if (!msg_short_pkt) {
		dev_err(hdev->dev, "Failed to allocate packet for H/W queue %d testing\n",
			hw_queue_id);
		return -ENOMEM;
	}

	tmp = (PACKET_MSG_SHORT << GAUDI2_PKT_CTL_OPCODE_SHIFT) |
		(1 << GAUDI2_PKT_CTL_EB_SHIFT) |
		(1 << GAUDI2_PKT_CTL_MB_SHIFT) |
		(sob_base << GAUDI2_PKT_SHORT_CTL_BASE_SHIFT) |
		(sob_offset << GAUDI2_PKT_SHORT_CTL_ADDR_SHIFT);

	msg_short_pkt->value = cpu_to_le32(sob_val);
	msg_short_pkt->ctl = cpu_to_le32(tmp);

	/* Reset the SOB value */
	WREG32(sob_addr, 0);

	rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, pkt_dma_addr);
	if (rc) {
		dev_err(hdev->dev, "Failed to send msg_short packet to H/W queue %d\n",
			hw_queue_id);
		goto free_pkt;
	}

	rc = hl_poll_timeout(
			hdev,
			sob_addr,
			tmp,
			(tmp == sob_val),
			1000,
			timeout_usec);

	if (rc == -ETIMEDOUT) {
		dev_err(hdev->dev, "H/W queue %d test failed (SOB_OBJ_0 == 0x%x)\n",
			hw_queue_id, tmp);
		rc = -EIO;
	}

	/* Reset the SOB value */
	WREG32(sob_addr, 0);

free_pkt:
	hl_asic_dma_pool_free(hdev, (void *) msg_short_pkt, pkt_dma_addr);
	return rc;
}

static int gaudi2_test_cpu_queue(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	/*
	 * check capability here as send_cpu_message() won't update the result
	 * value if no capability
	 */
	if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

	return hl_fw_test_cpu_queue(hdev);
}

static int gaudi2_test_queues(struct hl_device *hdev)
{
	int i, rc, ret_val = 0;

	for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ; i++) {
		if (!gaudi2_is_queue_enabled(hdev, i))
			continue;

		gaudi2_qman_set_test_mode(hdev, i, true);
		rc = gaudi2_test_queue(hdev, i);
		gaudi2_qman_set_test_mode(hdev, i, false);

		if (rc) {
			ret_val = -EINVAL;
			goto done;
		}
	}

	rc = gaudi2_test_cpu_queue(hdev);
	if (rc) {
		ret_val = -EINVAL;
		goto done;
	}

done:
	return ret_val;
}

6175
static int gaudi2_compute_reset_late_init(struct hl_device *hdev)
6176 6177 6178 6179 6180 6181 6182 6183 6184
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	size_t irq_arr_size;

	/* TODO: missing gaudi2_nic_resume.
	 * Until implemented nic_hw_cap_initialized will remain zeroed
	 */
	gaudi2_init_arcs(hdev);
	gaudi2_scrub_arcs_dccm(hdev);
6185
	gaudi2_init_security(hdev);
6186 6187 6188 6189 6190 6191 6192

	/* Unmask all IRQs since some could have been received during the soft reset */
	irq_arr_size = gaudi2->num_of_valid_hw_events * sizeof(gaudi2->hw_events[0]);
	return hl_fw_unmask_irq_arr(hdev, gaudi2->hw_events, irq_arr_size);
}

static void gaudi2_is_tpc_engine_idle(struct hl_device *hdev, int dcore, int inst, u32 offset,
6193
					struct iterate_module_ctx *ctx)
6194
{
6195
	struct gaudi2_tpc_idle_data *idle_data = ctx->data;
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
	u32 tpc_cfg_sts, qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts;
	bool is_eng_idle;
	int engine_idx;

	if ((dcore == 0) && (inst == (NUM_DCORE0_TPC - 1)))
		engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_6;
	else
		engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_0 +
				dcore * GAUDI2_ENGINE_ID_DCORE_OFFSET + inst;

	tpc_cfg_sts = RREG32(mmDCORE0_TPC0_CFG_STATUS + offset);
	qm_glbl_sts0 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS0 + offset);
	qm_glbl_sts1 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS1 + offset);
	qm_cgm_sts = RREG32(mmDCORE0_TPC0_QM_CGM_STS + offset);

	is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
						IS_TPC_IDLE(tpc_cfg_sts);
	*(idle_data->is_idle) &= is_eng_idle;

	if (idle_data->mask && !is_eng_idle)
		set_bit(engine_idx, idle_data->mask);

6218 6219 6220
	if (idle_data->e)
		hl_engine_data_sprintf(idle_data->e,
					idle_data->tpc_fmt, dcore, inst,
6221 6222 6223 6224
					is_eng_idle ? "Y" : "N",
					qm_glbl_sts0, qm_cgm_sts, tpc_cfg_sts);
}

6225 6226
static bool gaudi2_is_device_idle(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
					struct engines_data *e)
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
{
	u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts, dma_core_idle_ind_mask,
		mme_arch_sts, dec_swreg15, dec_enabled_bit;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	const char *rot_fmt = "%-6d%-5d%-9s%#-14x%#-12x%s\n";
	unsigned long *mask = (unsigned long *) mask_arr;
	const char *edma_fmt = "%-6d%-6d%-9s%#-14x%#x\n";
	const char *mme_fmt = "%-5d%-6s%-9s%#-14x%#x\n";
	const char *nic_fmt = "%-5d%-9s%#-14x%#-12x\n";
	const char *pdma_fmt = "%-6d%-9s%#-14x%#x\n";
	const char *pcie_dec_fmt = "%-10d%-9s%#x\n";
	const char *dec_fmt = "%-6d%-5d%-9s%#x\n";
	bool is_idle = true, is_eng_idle;
	u64 offset;

	struct gaudi2_tpc_idle_data tpc_idle_data = {
		.tpc_fmt = "%-6d%-5d%-9s%#-14x%#-12x%#x\n",
6244
		.e = e,
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
		.mask = mask,
		.is_idle = &is_idle,
	};
	struct iterate_module_ctx tpc_iter = {
		.fn = &gaudi2_is_tpc_engine_idle,
		.data = &tpc_idle_data,
	};

	int engine_idx, i, j;

	/* EDMA, Two engines per Dcore */
6256 6257
	if (e)
		hl_engine_data_sprintf(e,
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
			"\nCORE  EDMA  is_idle  QM_GLBL_STS0  DMA_CORE_IDLE_IND_MASK\n"
			"----  ----  -------  ------------  ----------------------\n");

	for (i = 0; i < NUM_OF_DCORES; i++) {
		for (j = 0 ; j < NUM_OF_EDMA_PER_DCORE ; j++) {
			int seq = i * NUM_OF_EDMA_PER_DCORE + j;

			if (!(prop->edma_enabled_mask & BIT(seq)))
				continue;

			engine_idx = GAUDI2_DCORE0_ENGINE_ID_EDMA_0 +
					i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j;
			offset = i * DCORE_OFFSET + j * DCORE_EDMA_OFFSET;

			dma_core_idle_ind_mask =
			RREG32(mmDCORE0_EDMA0_CORE_IDLE_IND_MASK + offset);

			qm_glbl_sts0 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS0 + offset);
			qm_glbl_sts1 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS1 + offset);
			qm_cgm_sts = RREG32(mmDCORE0_EDMA0_QM_CGM_STS + offset);

			is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
					IS_DMA_IDLE(dma_core_idle_ind_mask);
			is_idle &= is_eng_idle;

			if (mask && !is_eng_idle)
				set_bit(engine_idx, mask);

6286 6287 6288 6289 6290
			if (e)
				hl_engine_data_sprintf(e, edma_fmt, i, j,
							is_eng_idle ? "Y" : "N",
							qm_glbl_sts0,
							dma_core_idle_ind_mask);
6291 6292 6293 6294
		}
	}

	/* PDMA, Two engines in Full chip */
6295 6296 6297 6298
	if (e)
		hl_engine_data_sprintf(e,
					"\nPDMA  is_idle  QM_GLBL_STS0  DMA_CORE_IDLE_IND_MASK\n"
					"----  -------  ------------  ----------------------\n");
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315

	for (i = 0 ; i < NUM_OF_PDMA ; i++) {
		engine_idx = GAUDI2_ENGINE_ID_PDMA_0 + i;
		offset = i * PDMA_OFFSET;
		dma_core_idle_ind_mask = RREG32(mmPDMA0_CORE_IDLE_IND_MASK + offset);

		qm_glbl_sts0 = RREG32(mmPDMA0_QM_GLBL_STS0 + offset);
		qm_glbl_sts1 = RREG32(mmPDMA0_QM_GLBL_STS1 + offset);
		qm_cgm_sts = RREG32(mmPDMA0_QM_CGM_STS + offset);

		is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
				IS_DMA_IDLE(dma_core_idle_ind_mask);
		is_idle &= is_eng_idle;

		if (mask && !is_eng_idle)
			set_bit(engine_idx, mask);

6316 6317 6318
		if (e)
			hl_engine_data_sprintf(e, pdma_fmt, i, is_eng_idle ? "Y" : "N",
						qm_glbl_sts0, dma_core_idle_ind_mask);
6319 6320 6321
	}

	/* NIC, twelve macros in Full chip */
6322 6323 6324 6325
	if (e && hdev->nic_ports_mask)
		hl_engine_data_sprintf(e,
					"\nNIC  is_idle  QM_GLBL_STS0  QM_CGM_STS\n"
					"---  -------  ------------  ----------\n");
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348

	for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) {
		if (!(i & 1))
			offset = i / 2 * NIC_OFFSET;
		else
			offset += NIC_QM_OFFSET;

		if (!(hdev->nic_ports_mask & BIT(i)))
			continue;

		engine_idx = GAUDI2_ENGINE_ID_NIC0_0 + i;


		qm_glbl_sts0 = RREG32(mmNIC0_QM0_GLBL_STS0 + offset);
		qm_glbl_sts1 = RREG32(mmNIC0_QM0_GLBL_STS1 + offset);
		qm_cgm_sts = RREG32(mmNIC0_QM0_CGM_STS + offset);

		is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
		is_idle &= is_eng_idle;

		if (mask && !is_eng_idle)
			set_bit(engine_idx, mask);

6349 6350 6351
		if (e)
			hl_engine_data_sprintf(e, nic_fmt, i, is_eng_idle ? "Y" : "N",
						qm_glbl_sts0, qm_cgm_sts);
6352 6353
	}

6354 6355 6356 6357
	if (e)
		hl_engine_data_sprintf(e,
					"\nMME  Stub  is_idle  QM_GLBL_STS0  MME_ARCH_STATUS\n"
					"---  ----  -------  ------------  ---------------\n");
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
	/* MME, one per Dcore */
	for (i = 0 ; i < NUM_OF_DCORES ; i++) {
		engine_idx = GAUDI2_DCORE0_ENGINE_ID_MME + i * GAUDI2_ENGINE_ID_DCORE_OFFSET;
		offset = i * DCORE_OFFSET;

		qm_glbl_sts0 = RREG32(mmDCORE0_MME_QM_GLBL_STS0 + offset);
		qm_glbl_sts1 = RREG32(mmDCORE0_MME_QM_GLBL_STS1 + offset);
		qm_cgm_sts = RREG32(mmDCORE0_MME_QM_CGM_STS + offset);

		is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
		is_idle &= is_eng_idle;

		mme_arch_sts = RREG32(mmDCORE0_MME_CTRL_LO_ARCH_STATUS + offset);
		is_eng_idle &= IS_MME_IDLE(mme_arch_sts);
		is_idle &= is_eng_idle;

6374 6375
		if (e)
			hl_engine_data_sprintf(e, mme_fmt, i, "N",
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
				is_eng_idle ? "Y" : "N",
				qm_glbl_sts0,
				mme_arch_sts);

		if (mask && !is_eng_idle)
			set_bit(engine_idx, mask);
	}

	/*
	 * TPC
	 */
6387 6388
	if (e && prop->tpc_enabled_mask)
		hl_engine_data_sprintf(e,
6389 6390 6391 6392 6393 6394
			"\nCORE  TPC   is_idle  QM_GLBL_STS0  QM_CGM_STS  DMA_CORE_IDLE_IND_MASK\n"
			"----  ---  --------  ------------  ----------  ----------------------\n");

	gaudi2_iterate_tpcs(hdev, &tpc_iter);

	/* Decoders, two each Dcore and two shared PCIe decoders */
6395 6396
	if (e && (prop->decoder_enabled_mask & (~PCIE_DEC_EN_MASK)))
		hl_engine_data_sprintf(e,
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
			"\nCORE  DEC  is_idle  VSI_CMD_SWREG15\n"
			"----  ---  -------  ---------------\n");

	for (i = 0 ; i < NUM_OF_DCORES ; i++) {
		for (j = 0 ; j < NUM_OF_DEC_PER_DCORE ; j++) {
			dec_enabled_bit = 1 << (i * NUM_OF_DEC_PER_DCORE + j);
			if (!(prop->decoder_enabled_mask & dec_enabled_bit))
				continue;

			engine_idx = GAUDI2_DCORE0_ENGINE_ID_DEC_0 +
					i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j;
			offset = i * DCORE_OFFSET + j * DCORE_DEC_OFFSET;

			dec_swreg15 = RREG32(mmDCORE0_DEC0_CMD_SWREG15 + offset);
			is_eng_idle = IS_DEC_IDLE(dec_swreg15);
			is_idle &= is_eng_idle;

			if (mask && !is_eng_idle)
				set_bit(engine_idx, mask);

6417 6418 6419
			if (e)
				hl_engine_data_sprintf(e, dec_fmt, i, j,
							is_eng_idle ? "Y" : "N", dec_swreg15);
6420 6421 6422
		}
	}

6423 6424
	if (e && (prop->decoder_enabled_mask & PCIE_DEC_EN_MASK))
		hl_engine_data_sprintf(e,
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
			"\nPCIe DEC  is_idle  VSI_CMD_SWREG15\n"
			"--------  -------  ---------------\n");

	/* Check shared(PCIe) decoders */
	for (i = 0 ; i < NUM_OF_DEC_PER_DCORE ; i++) {
		dec_enabled_bit = PCIE_DEC_SHIFT + i;
		if (!(prop->decoder_enabled_mask & BIT(dec_enabled_bit)))
			continue;

		engine_idx = GAUDI2_PCIE_ENGINE_ID_DEC_0 + i;
		offset = i * DCORE_DEC_OFFSET;
		dec_swreg15 = RREG32(mmPCIE_DEC0_CMD_SWREG15 + offset);
		is_eng_idle = IS_DEC_IDLE(dec_swreg15);
		is_idle &= is_eng_idle;

		if (mask && !is_eng_idle)
			set_bit(engine_idx, mask);

6443 6444 6445
		if (e)
			hl_engine_data_sprintf(e, pcie_dec_fmt, i,
						is_eng_idle ? "Y" : "N", dec_swreg15);
6446 6447
	}

6448 6449
	if (e)
		hl_engine_data_sprintf(e,
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
			"\nCORE  ROT  is_idle  QM_GLBL_STS0  QM_CGM_STS  DMA_CORE_STS0\n"
			"----  ----  -------  ------------  ----------  -------------\n");

	for (i = 0 ; i < NUM_OF_ROT ; i++) {
		engine_idx = GAUDI2_ENGINE_ID_ROT_0 + i;

		offset = i * ROT_OFFSET;

		qm_glbl_sts0 = RREG32(mmROT0_QM_GLBL_STS0 + offset);
		qm_glbl_sts1 = RREG32(mmROT0_QM_GLBL_STS1 + offset);
		qm_cgm_sts = RREG32(mmROT0_QM_CGM_STS + offset);

		is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
		is_idle &= is_eng_idle;

		if (mask && !is_eng_idle)
			set_bit(engine_idx, mask);

6468 6469
		if (e)
			hl_engine_data_sprintf(e, rot_fmt, i, 0, is_eng_idle ? "Y" : "N",
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
					qm_glbl_sts0, qm_cgm_sts, "-");
	}

	return is_idle;
}

static void gaudi2_hw_queues_lock(struct hl_device *hdev)
	__acquires(&gaudi2->hw_queues_lock)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	spin_lock(&gaudi2->hw_queues_lock);
}

static void gaudi2_hw_queues_unlock(struct hl_device *hdev)
	__releases(&gaudi2->hw_queues_lock)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	spin_unlock(&gaudi2->hw_queues_lock);
}

static u32 gaudi2_get_pci_id(struct hl_device *hdev)
{
	return hdev->pdev->device;
}

static int gaudi2_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
		return 0;

	return hl_fw_get_eeprom_data(hdev, data, max_size);
}

static void gaudi2_update_eq_ci(struct hl_device *hdev, u32 val)
{
	WREG32(mmCPU_IF_EQ_RD_OFFS, val);
}

static void *gaudi2_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	if (aggregate) {
		*size = (u32) sizeof(gaudi2->events_stat_aggregate);
		return gaudi2->events_stat_aggregate;
	}

	*size = (u32) sizeof(gaudi2->events_stat);
	return gaudi2->events_stat;
}

static void gaudi2_mmu_vdec_dcore_prepare(struct hl_device *hdev, int dcore_id,
				int dcore_vdec_id, u32 rw_asid, u32 rw_mmu_bp)
{
	u32 offset = (mmDCORE0_VDEC1_BRDG_CTRL_BASE - mmDCORE0_VDEC0_BRDG_CTRL_BASE) *
			dcore_vdec_id + DCORE_OFFSET * dcore_id;

	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid);

	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid);

	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid);

	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid);

	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid);
}

static void gaudi2_mmu_dcore_prepare(struct hl_device *hdev, int dcore_id, u32 asid)
{
	u32 rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
			(asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u32 dcore_offset = dcore_id * DCORE_OFFSET;
	u32 vdec_id, i, ports_offset, reg_val;
	u8 edma_seq_base;

	/* EDMA */
	edma_seq_base = dcore_id * NUM_OF_EDMA_PER_DCORE;
	if (prop->edma_enabled_mask & BIT(edma_seq_base)) {
		WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
		WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);
		WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0);
		WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid);
	}

	if (prop->edma_enabled_mask & BIT(edma_seq_base + 1)) {
		WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
		WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);
		WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid);
		WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0);
	}

	/* Sync Mngr */
	WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV + dcore_offset, asid);
	/*
	 * Sync Mngrs on dcores 1 - 3 are exposed to user, so must use user ASID
	 * for any access type
	 */
	if (dcore_id > 0) {
		reg_val = (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_RD_SHIFT) |
			  (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_WR_SHIFT);
		WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID + dcore_offset, reg_val);
		WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_MMU_BP + dcore_offset, 0);
	}

	WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_MMU_BP + dcore_offset, 0);
	WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_ASID + dcore_offset, rw_asid);

	for (i = 0 ; i < NUM_OF_MME_SBTE_PORTS ; i++) {
		ports_offset = i * DCORE_MME_SBTE_OFFSET;
		WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_MMU_BP +
				dcore_offset + ports_offset, 0);
		WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_ASID +
				dcore_offset + ports_offset, rw_asid);
	}

	for (i = 0 ; i < NUM_OF_MME_WB_PORTS ; i++) {
		ports_offset = i * DCORE_MME_WB_OFFSET;
		WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_MMU_BP +
				dcore_offset + ports_offset, 0);
		WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_ASID +
				dcore_offset + ports_offset, rw_asid);
	}

	WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
	WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);

	/*
	 * Decoders
	 */
	for (vdec_id = 0 ; vdec_id < NUM_OF_DEC_PER_DCORE ; vdec_id++) {
		if (prop->decoder_enabled_mask & BIT(dcore_id * NUM_OF_DEC_PER_DCORE + vdec_id))
			gaudi2_mmu_vdec_dcore_prepare(hdev, dcore_id, vdec_id, rw_asid, 0);
	}
}

static void gudi2_mmu_vdec_shared_prepare(struct hl_device *hdev,
				int shared_vdec_id, u32 rw_asid, u32 rw_mmu_bp)
{
	u32 offset = (mmPCIE_VDEC1_BRDG_CTRL_BASE - mmPCIE_VDEC0_BRDG_CTRL_BASE) * shared_vdec_id;

	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid);

	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid);

	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid);

	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid);

	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid);
}

static void gudi2_mmu_arc_farm_arc_dup_eng_prepare(struct hl_device *hdev, int arc_farm_id,
							u32 rw_asid, u32 rw_mmu_bp)
{
	u32 offset = (mmARC_FARM_ARC1_DUP_ENG_BASE - mmARC_FARM_ARC0_DUP_ENG_BASE) * arc_farm_id;

	WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_MMU_BP + offset, rw_mmu_bp);
	WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_ASID + offset, rw_asid);
}

static void gaudi2_arc_mmu_prepare(struct hl_device *hdev, u32 cpu_id, u32 asid)
{
	u32 reg_base, reg_offset, reg_val = 0;

	reg_base = gaudi2_arc_blocks_bases[cpu_id];

	/* Enable MMU and configure asid for all relevant ARC regions */
	reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_MMU_BP_MASK, 0);
	reg_val |= FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_0_ASID_MASK, asid);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION3_GENERAL);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION4_HBM0_FW);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION5_HBM1_GC_DATA);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION6_HBM2_GC_DATA);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION7_HBM3_GC_DATA);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION9_PCIE);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION10_GENERAL);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION11_GENERAL);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION12_GENERAL);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION13_GENERAL);
	WREG32(reg_base + reg_offset, reg_val);

	reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION14_GENERAL);
	WREG32(reg_base + reg_offset, reg_val);
}

static int gaudi2_arc_mmu_prepare_all(struct hl_device *hdev, u32 asid)
{
	int i;

	if (hdev->fw_components & FW_TYPE_BOOT_CPU)
		return hl_fw_cpucp_engine_core_asid_set(hdev, asid);

	for (i = CPU_ID_SCHED_ARC0 ; i < NUM_OF_ARC_FARMS_ARC ; i++)
		gaudi2_arc_mmu_prepare(hdev, i, asid);

	for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) {
		if (!gaudi2_is_queue_enabled(hdev, i))
			continue;

		gaudi2_arc_mmu_prepare(hdev, gaudi2_queue_id_to_arc_id[i], asid);
	}

	return 0;
}

static int gaudi2_mmu_shared_prepare(struct hl_device *hdev, u32 asid)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u32 rw_asid, offset;
	int rc, i;

	rw_asid = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_MASK, asid) |
			FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_MASK, asid);

	WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_ASID, rw_asid);
	WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP, 0);
	WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_ASID, rw_asid);
	WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_MMU_BP, 0);

	WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_ASID, rw_asid);
	WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP, 0);
	WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_ASID, rw_asid);
	WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_MMU_BP, 0);

	/* ROT */
	for (i = 0 ; i < NUM_OF_ROT ; i++) {
		offset = i * ROT_OFFSET;
		WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_ASID + offset, rw_asid);
		WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0);
		RMWREG32(mmROT0_CPL_QUEUE_AWUSER + offset, asid, MMUBP_ASID_MASK);
		RMWREG32(mmROT0_DESC_HBW_ARUSER_LO + offset, asid, MMUBP_ASID_MASK);
		RMWREG32(mmROT0_DESC_HBW_AWUSER_LO + offset, asid, MMUBP_ASID_MASK);
	}

	/* Shared Decoders are the last bits in the decoders mask */
	if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 0))
		gudi2_mmu_vdec_shared_prepare(hdev, 0, rw_asid, 0);

	if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 1))
		gudi2_mmu_vdec_shared_prepare(hdev, 1, rw_asid, 0);

	/* arc farm arc dup eng */
	for (i = 0 ; i < NUM_OF_ARC_FARMS_ARC ; i++)
		gudi2_mmu_arc_farm_arc_dup_eng_prepare(hdev, i, rw_asid, 0);

	rc = gaudi2_arc_mmu_prepare_all(hdev, asid);
	if (rc)
		return rc;

	return 0;
}

static void gaudi2_tpc_mmu_prepare(struct hl_device *hdev, int dcore, int inst,	u32 offset,
6758
					struct iterate_module_ctx *ctx)
6759
{
6760
	struct gaudi2_tpc_mmu_data *mmu_data = ctx->data;
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804

	WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_MMU_BP + offset, 0);
	WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_ASID + offset, mmu_data->rw_asid);
	WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0);
	WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_ASID + offset, mmu_data->rw_asid);
}

/* zero the MMUBP and set the ASID */
static int gaudi2_mmu_prepare(struct hl_device *hdev, u32 asid)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	struct gaudi2_tpc_mmu_data tpc_mmu_data;
	struct iterate_module_ctx tpc_iter = {
		.fn = &gaudi2_tpc_mmu_prepare,
		.data = &tpc_mmu_data,
	};
	int rc, i;

	if (asid & ~DCORE0_HMMU0_STLB_ASID_ASID_MASK) {
		dev_crit(hdev->dev, "asid %u is too big\n", asid);
		return -EINVAL;
	}

	if (!(gaudi2->hw_cap_initialized & HW_CAP_MMU_MASK))
		return 0;

	rc = gaudi2_mmu_shared_prepare(hdev, asid);
	if (rc)
		return rc;

	/* configure DCORE MMUs */
	tpc_mmu_data.rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
				(asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);
	gaudi2_iterate_tpcs(hdev, &tpc_iter);
	for (i = 0 ; i < NUM_OF_DCORES ; i++)
		gaudi2_mmu_dcore_prepare(hdev, i, asid);

	return 0;
}

static inline bool is_info_event(u32 event)
{
	switch (event) {
	case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE:
6805
	case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S ... GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E:
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
		return true;
	default:
		return false;
	}
}

static void gaudi2_print_irq_info(struct hl_device *hdev, u16 event_type)
{
	char desc[64] = "";
	bool event_valid = false;

	/* return in case of NIC status event - these events are received periodically and not as
	 * an indication to an error, thus not printed.
	 */
	if (event_type >= GAUDI2_EVENT_CPU0_STATUS_NIC0_ENG0 &&
		event_type <= GAUDI2_EVENT_CPU11_STATUS_NIC11_ENG1)
		return;

	if (gaudi2_irq_map_table[event_type].valid) {
		snprintf(desc, sizeof(desc), gaudi2_irq_map_table[event_type].name);
		event_valid = true;
	}

	if (!event_valid)
		snprintf(desc, sizeof(desc), "N/A");

	if (is_info_event(event_type))
		dev_info_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
								event_type, desc);
	else
		dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
								event_type, desc);
}

6840
static bool gaudi2_handle_ecc_event(struct hl_device *hdev, u16 event_type,
6841 6842 6843 6844 6845 6846 6847 6848 6849
		struct hl_eq_ecc_data *ecc_data)
{
	u64 ecc_address = 0, ecc_syndrom = 0;
	u8 memory_wrapper_idx = 0;

	ecc_address = le64_to_cpu(ecc_data->ecc_address);
	ecc_syndrom = le64_to_cpu(ecc_data->ecc_syndrom);
	memory_wrapper_idx = ecc_data->memory_wrapper_idx;

6850 6851 6852 6853 6854
	dev_err(hdev->dev,
		"ECC error detected. address: %#llx. Syndrom: %#llx. block id %u. critical %u.\n",
		ecc_address, ecc_syndrom, memory_wrapper_idx, ecc_data->is_critical);

	return !!ecc_data->is_critical;
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
}

/*
 * gaudi2_queue_idx_dec - decrement queue index (pi/ci) and handle wrap
 *
 * @idx: the current pi/ci value
 * @q_len: the queue length (power of 2)
 *
 * @return the cyclically decremented index
 */
static inline u32 gaudi2_queue_idx_dec(u32 idx, u32 q_len)
{
	u32 mask = q_len - 1;

	/*
	 * modular decrement is equivalent to adding (queue_size -1)
	 * later we take LSBs to make sure the value is in the
	 * range [0, queue_len - 1]
	 */
	return (idx + q_len - 1) & mask;
}

/**
 * gaudi2_print_sw_config_stream_data - print SW config stream data
 *
 * @hdev: pointer to the habanalabs device structure
 * @stream: the QMAN's stream
 * @qman_base: base address of QMAN registers block
 */
static void gaudi2_print_sw_config_stream_data(struct hl_device *hdev,
						u32 stream, u64 qman_base)
{
	u64 cq_ptr_lo, cq_ptr_hi, cq_tsize, cq_ptr;
	u32 cq_ptr_lo_off, size;

	cq_ptr_lo_off = mmDCORE0_TPC0_QM_CQ_PTR_LO_1 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0;

	cq_ptr_lo = qman_base + (mmDCORE0_TPC0_QM_CQ_PTR_LO_0 - mmDCORE0_TPC0_QM_BASE) +
									stream * cq_ptr_lo_off;

	cq_ptr_hi = cq_ptr_lo + (mmDCORE0_TPC0_QM_CQ_PTR_HI_0 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0);

	cq_tsize = cq_ptr_lo + (mmDCORE0_TPC0_QM_CQ_TSIZE_0 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0);

	cq_ptr = (((u64) RREG32(cq_ptr_hi)) << 32) | RREG32(cq_ptr_lo);
	size = RREG32(cq_tsize);
	dev_info(hdev->dev, "stop on err: stream: %u, addr: %#llx, size: %x\n",
		stream, cq_ptr, size);
}

/**
 * gaudi2_print_last_pqes_on_err - print last PQEs on error
 *
 * @hdev: pointer to the habanalabs device structure
 * @qid_base: first QID of the QMAN (out of 4 streams)
 * @stream: the QMAN's stream
 * @qman_base: base address of QMAN registers block
 * @pr_sw_conf: if true print the SW config stream data (CQ PTR and SIZE)
 */
static void gaudi2_print_last_pqes_on_err(struct hl_device *hdev, u32 qid_base, u32 stream,
						u64 qman_base, bool pr_sw_conf)
{
	u32 ci, qm_ci_stream_off;
	struct hl_hw_queue *q;
	u64 pq_ci;
	int i;

	q = &hdev->kernel_queues[qid_base + stream];

	qm_ci_stream_off = mmDCORE0_TPC0_QM_PQ_CI_1 - mmDCORE0_TPC0_QM_PQ_CI_0;
	pq_ci = qman_base + (mmDCORE0_TPC0_QM_PQ_CI_0 - mmDCORE0_TPC0_QM_BASE) +
						stream * qm_ci_stream_off;

	hdev->asic_funcs->hw_queues_lock(hdev);

	if (pr_sw_conf)
		gaudi2_print_sw_config_stream_data(hdev, stream, qman_base);

	ci = RREG32(pq_ci);

	/* we should start printing form ci -1 */
	ci = gaudi2_queue_idx_dec(ci, HL_QUEUE_LENGTH);

	for (i = 0; i < PQ_FETCHER_CACHE_SIZE; i++) {
		struct hl_bd *bd;
		u64 addr;
		u32 len;

		bd = q->kernel_address;
		bd += ci;

		len = le32_to_cpu(bd->len);
		/* len 0 means uninitialized entry- break */
		if (!len)
			break;

		addr = le64_to_cpu(bd->ptr);

		dev_info(hdev->dev, "stop on err PQE(stream %u): ci: %u, addr: %#llx, size: %x\n",
			stream, ci, addr, len);

		/* get previous ci, wrap if needed */
		ci = gaudi2_queue_idx_dec(ci, HL_QUEUE_LENGTH);
	}

	hdev->asic_funcs->hw_queues_unlock(hdev);
}

/**
 * print_qman_data_on_err - extract QMAN data on error
 *
 * @hdev: pointer to the habanalabs device structure
 * @qid_base: first QID of the QMAN (out of 4 streams)
 * @stream: the QMAN's stream
 * @qman_base: base address of QMAN registers block
 *
 * This function attempt to extract as much data as possible on QMAN error.
 * On upper CP print the SW config stream data and last 8 PQEs.
 * On lower CP print SW config data and last PQEs of ALL 4 upper CPs
 */
static void print_qman_data_on_err(struct hl_device *hdev, u32 qid_base, u32 stream, u64 qman_base)
{
	u32 i;

	if (stream != QMAN_STREAMS) {
		gaudi2_print_last_pqes_on_err(hdev, qid_base, stream, qman_base, true);
		return;
	}

	gaudi2_print_sw_config_stream_data(hdev, stream, qman_base);

	for (i = 0 ; i < QMAN_STREAMS ; i++)
		gaudi2_print_last_pqes_on_err(hdev, qid_base, i, qman_base, false);
}

static void gaudi2_handle_qman_err_generic(struct hl_device *hdev, const char *qm_name,
						u64 qman_base, u32 qid_base)
{
6993
	u32 i, j, glbl_sts_val, arb_err_val, num_error_causes;
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
	u64 glbl_sts_addr, arb_err_addr;
	char reg_desc[32];

	glbl_sts_addr = qman_base + (mmDCORE0_TPC0_QM_GLBL_ERR_STS_0 - mmDCORE0_TPC0_QM_BASE);
	arb_err_addr = qman_base + (mmDCORE0_TPC0_QM_ARB_ERR_CAUSE - mmDCORE0_TPC0_QM_BASE);

	/* Iterate through all stream GLBL_ERR_STS registers + Lower CP */
	for (i = 0 ; i < QMAN_STREAMS + 1 ; i++) {
		glbl_sts_val = RREG32(glbl_sts_addr + 4 * i);

		if (!glbl_sts_val)
			continue;

		if (i == QMAN_STREAMS) {
			snprintf(reg_desc, ARRAY_SIZE(reg_desc), "LowerCP");
			num_error_causes = GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE;
		} else {
			snprintf(reg_desc, ARRAY_SIZE(reg_desc), "stream%u", i);
			num_error_causes = GAUDI2_NUM_OF_QM_ERR_CAUSE;
		}

7015 7016
		for (j = 0 ; j < num_error_causes ; j++)
			if (glbl_sts_val & BIT(j))
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
				dev_err_ratelimited(hdev->dev, "%s %s. err cause: %s\n",
						qm_name, reg_desc,
						i == QMAN_STREAMS ?
						gaudi2_qman_lower_cp_error_cause[j] :
						gaudi2_qman_error_cause[j]);

		print_qman_data_on_err(hdev, qid_base, i, qman_base);
	}

	arb_err_val = RREG32(arb_err_addr);

	if (!arb_err_val)
		return;

	for (j = 0 ; j < GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE ; j++) {
		if (arb_err_val & BIT(j))
			dev_err_ratelimited(hdev->dev, "%s ARB_ERR. err cause: %s\n",
						qm_name, gaudi2_qman_arb_error_cause[j]);
	}
}

static void gaudi2_razwi_rr_hbw_shared_printf_info(struct hl_device *hdev,
			u64 rtr_mstr_if_base_addr, bool is_write, char *name,
7040
			bool read_razwi_regs, struct hl_eq_razwi_info *razwi_info,
7041
			enum gaudi2_engine_id id, u64 *event_mask)
7042 7043
{
	u32 razwi_hi, razwi_lo, razwi_xy;
7044 7045
	u16 eng_id = id;
	u8 rd_wr_flag;
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056

	if (is_write) {
		if (read_razwi_regs) {
			razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HI);
			razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_LO);
			razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_XY);
		} else {
			razwi_hi = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_hi_reg);
			razwi_lo = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_lo_reg);
			razwi_xy = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_id_reg);
		}
7057
		rd_wr_flag = HL_RAZWI_WRITE;
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
	} else {
		if (read_razwi_regs) {
			razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HI);
			razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_LO);
			razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_XY);
		} else {
			razwi_hi = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_hi_reg);
			razwi_lo = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_lo_reg);
			razwi_xy = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_id_reg);
		}
7068
		rd_wr_flag = HL_RAZWI_READ;
7069
	}
7070

7071 7072
	hl_handle_razwi(hdev, (u64)razwi_hi << 32 | razwi_lo, &eng_id, 1,
				rd_wr_flag | HL_RAZWI_HBW, event_mask);
7073

7074 7075 7076
	dev_err_ratelimited(hdev->dev,
		"%s-RAZWI SHARED RR HBW %s error, address %#llx, Initiator coordinates 0x%x\n",
		name, is_write ? "WR" : "RD", (u64)razwi_hi << 32 | razwi_lo, razwi_xy);
7077 7078 7079 7080
}

static void gaudi2_razwi_rr_lbw_shared_printf_info(struct hl_device *hdev,
			u64 rtr_mstr_if_base_addr, bool is_write, char *name,
7081
			bool read_razwi_regs, struct hl_eq_razwi_info *razwi_info,
7082
			enum gaudi2_engine_id id, u64 *event_mask)
7083 7084
{
	u32 razwi_addr, razwi_xy;
7085 7086
	u16 eng_id = id;
	u8 rd_wr_flag;
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096

	if (is_write) {
		if (read_razwi_regs) {
			razwi_addr = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI);
			razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_XY);
		} else {
			razwi_addr = le32_to_cpu(razwi_info->lbw.rr_aw_razwi_reg);
			razwi_xy = le32_to_cpu(razwi_info->lbw.rr_aw_razwi_id_reg);
		}

7097
		rd_wr_flag = HL_RAZWI_WRITE;
7098 7099 7100 7101 7102 7103 7104 7105 7106
	} else {
		if (read_razwi_regs) {
			razwi_addr = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI);
			razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_XY);
		} else {
			razwi_addr = le32_to_cpu(razwi_info->lbw.rr_ar_razwi_reg);
			razwi_xy = le32_to_cpu(razwi_info->lbw.rr_ar_razwi_id_reg);
		}

7107 7108 7109
		rd_wr_flag = HL_RAZWI_READ;
	}

7110
	hl_handle_razwi(hdev, razwi_addr, &eng_id, 1, rd_wr_flag | HL_RAZWI_LBW, event_mask);
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
	dev_err_ratelimited(hdev->dev,
				"%s-RAZWI SHARED RR LBW %s error, mstr_if 0x%llx, captured address 0x%x Initiator coordinates 0x%x\n",
				name, is_write ? "WR" : "RD", rtr_mstr_if_base_addr, razwi_addr,
						razwi_xy);
}

static enum gaudi2_engine_id gaudi2_razwi_calc_engine_id(struct hl_device *hdev,
						enum razwi_event_sources module, u8 module_idx)
{
	switch (module) {
	case RAZWI_TPC:
		if (module_idx == (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES))
			return GAUDI2_DCORE0_ENGINE_ID_TPC_6;
		return (((module_idx / NUM_OF_TPC_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) +
				(module_idx % NUM_OF_TPC_PER_DCORE) +
				(GAUDI2_DCORE0_ENGINE_ID_TPC_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0));

	case RAZWI_MME:
		return ((GAUDI2_DCORE0_ENGINE_ID_MME - GAUDI2_DCORE0_ENGINE_ID_EDMA_0) +
			(module_idx * ENGINE_ID_DCORE_OFFSET));

	case RAZWI_EDMA:
		return (((module_idx / NUM_OF_EDMA_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) +
			(module_idx % NUM_OF_EDMA_PER_DCORE));

	case RAZWI_PDMA:
		return (GAUDI2_ENGINE_ID_PDMA_0 + module_idx);

	case RAZWI_NIC:
		return (GAUDI2_ENGINE_ID_NIC0_0 + (NIC_NUMBER_OF_QM_PER_MACRO * module_idx));

	case RAZWI_DEC:
		if (module_idx == 8)
			return GAUDI2_PCIE_ENGINE_ID_DEC_0;

		if (module_idx == 9)
			return GAUDI2_PCIE_ENGINE_ID_DEC_1;
					;
		return (((module_idx / NUM_OF_DEC_PER_DCORE) * ENGINE_ID_DCORE_OFFSET) +
				(module_idx % NUM_OF_DEC_PER_DCORE) +
				(GAUDI2_DCORE0_ENGINE_ID_DEC_0 - GAUDI2_DCORE0_ENGINE_ID_EDMA_0));

	case RAZWI_ROT:
		return GAUDI2_ENGINE_ID_ROT_0 + module_idx;

	default:
		return GAUDI2_ENGINE_ID_SIZE;
7158 7159 7160 7161 7162 7163 7164 7165 7166
	}
}

/*
 * This function handles RR(Range register) hit events.
 * raised be initiators not PSOC RAZWI.
 */
static void gaudi2_ack_module_razwi_event_handler(struct hl_device *hdev,
				enum razwi_event_sources module, u8 module_idx,
7167 7168
				u8 module_sub_idx, struct hl_eq_razwi_info *razwi_info,
				u64 *event_mask)
7169 7170
{
	bool via_sft = false, read_razwi_regs = false;
7171
	u32 rtr_id, dcore_id, dcore_rtr_id, sft_id, eng_id;
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
	u64 rtr_mstr_if_base_addr;
	u32 hbw_shrd_aw = 0, hbw_shrd_ar = 0;
	u32 lbw_shrd_aw = 0, lbw_shrd_ar = 0;
	char initiator_name[64];

	if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX) || !razwi_info)
		read_razwi_regs = true;

	switch (module) {
	case RAZWI_TPC:
		rtr_id = gaudi2_tpc_initiator_rtr_id[module_idx];
		sprintf(initiator_name, "TPC_%u", module_idx);
		break;
	case RAZWI_MME:
		sprintf(initiator_name, "MME_%u", module_idx);
		switch (module_sub_idx) {
		case MME_WAP0:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap0;
			break;
		case MME_WAP1:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap1;
			break;
		case MME_WRITE:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].write;
			break;
		case MME_READ:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].read;
			break;
		case MME_SBTE0:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte0;
			break;
		case MME_SBTE1:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte1;
			break;
		case MME_SBTE2:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte2;
			break;
		case MME_SBTE3:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte3;
			break;
		case MME_SBTE4:
			rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte4;
			break;
		default:
			return;
		}
		break;
	case RAZWI_EDMA:
		sft_id = gaudi2_edma_initiator_sft_id[module_idx].interface_id;
		dcore_id = gaudi2_edma_initiator_sft_id[module_idx].dcore_id;
		via_sft = true;
		sprintf(initiator_name, "EDMA_%u", module_idx);
		break;
	case RAZWI_PDMA:
		rtr_id = gaudi2_pdma_initiator_rtr_id[module_idx];
		sprintf(initiator_name, "PDMA_%u", module_idx);
		break;
	case RAZWI_NIC:
		rtr_id = gaudi2_nic_initiator_rtr_id[module_idx];
		sprintf(initiator_name, "NIC_%u", module_idx);
		break;
	case RAZWI_DEC:
		rtr_id = gaudi2_dec_initiator_rtr_id[module_idx];
		sprintf(initiator_name, "DEC_%u", module_idx);
		break;
	case RAZWI_ROT:
		rtr_id = gaudi2_rot_initiator_rtr_id[module_idx];
		sprintf(initiator_name, "ROT_%u", module_idx);
		break;
	default:
		return;
	}

	if (!read_razwi_regs) {
		if (le32_to_cpu(razwi_info->razwi_happened_mask) & RAZWI_HAPPENED_HBW) {
			hbw_shrd_aw = le32_to_cpu(razwi_info->razwi_happened_mask) &
								RAZWI_HAPPENED_AW;
			hbw_shrd_ar = le32_to_cpu(razwi_info->razwi_happened_mask) &
								RAZWI_HAPPENED_AR;
		} else if (le32_to_cpu(razwi_info->razwi_happened_mask) & RAZWI_HAPPENED_LBW) {
			lbw_shrd_aw = le32_to_cpu(razwi_info->razwi_happened_mask) &
								RAZWI_HAPPENED_AW;
			lbw_shrd_ar = le32_to_cpu(razwi_info->razwi_happened_mask) &
								RAZWI_HAPPENED_AR;
		}
		rtr_mstr_if_base_addr = 0;

		goto dump_info;
	}

	/* Find router mstr_if register base */
	if (via_sft) {
		rtr_mstr_if_base_addr = mmSFT0_HBW_RTR_IF0_RTR_CTRL_BASE +
				dcore_id * SFT_DCORE_OFFSET +
				sft_id * SFT_IF_OFFSET +
				RTR_MSTR_IF_OFFSET;
	} else {
		dcore_id = rtr_id / NUM_OF_RTR_PER_DCORE;
		dcore_rtr_id = rtr_id % NUM_OF_RTR_PER_DCORE;
		rtr_mstr_if_base_addr = mmDCORE0_RTR0_CTRL_BASE +
				dcore_id * DCORE_OFFSET +
				dcore_rtr_id * DCORE_RTR_OFFSET +
				RTR_MSTR_IF_OFFSET;
	}

	/* Find out event cause by reading "RAZWI_HAPPENED" registers */
	hbw_shrd_aw = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED);

	hbw_shrd_ar = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED);

	if (via_sft) {
		/* SFT has separate MSTR_IF for LBW, only there we can
		 * read the LBW razwi related registers
		 */
		u64 base;

		base = mmSFT0_HBW_RTR_IF0_RTR_CTRL_BASE + dcore_id * SFT_DCORE_OFFSET +
				RTR_LBW_MSTR_IF_OFFSET;

		lbw_shrd_aw = RREG32(base + RR_SHRD_LBW_AW_RAZWI_HAPPENED);

		lbw_shrd_ar = RREG32(base + RR_SHRD_LBW_AR_RAZWI_HAPPENED);
	} else {
		lbw_shrd_aw = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED);

		lbw_shrd_ar = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED);
	}

dump_info:
	/* check if there is no RR razwi indication at all */
	if (!hbw_shrd_aw && !hbw_shrd_ar && !lbw_shrd_aw && !lbw_shrd_ar)
		return;

7305
	eng_id = gaudi2_razwi_calc_engine_id(hdev, module, module_idx);
7306 7307
	if (hbw_shrd_aw) {
		gaudi2_razwi_rr_hbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, true,
7308
						initiator_name, read_razwi_regs, razwi_info,
7309
						eng_id, event_mask);
7310 7311 7312 7313 7314 7315 7316 7317

		/* Clear event indication */
		if (read_razwi_regs)
			WREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED, hbw_shrd_aw);
	}

	if (hbw_shrd_ar) {
		gaudi2_razwi_rr_hbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, false,
7318
						initiator_name, read_razwi_regs, razwi_info,
7319
						eng_id, event_mask);
7320 7321 7322 7323 7324 7325 7326 7327

		/* Clear event indication */
		if (read_razwi_regs)
			WREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED, hbw_shrd_ar);
	}

	if (lbw_shrd_aw) {
		gaudi2_razwi_rr_lbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, true,
7328
						initiator_name, read_razwi_regs, razwi_info,
7329
						eng_id, event_mask);
7330 7331 7332 7333 7334 7335 7336 7337

		/* Clear event indication */
		if (read_razwi_regs)
			WREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED, lbw_shrd_aw);
	}

	if (lbw_shrd_ar) {
		gaudi2_razwi_rr_lbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, false,
7338
						initiator_name, read_razwi_regs, razwi_info,
7339
						eng_id, event_mask);
7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354

		/* Clear event indication */
		if (read_razwi_regs)
			WREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED, lbw_shrd_ar);
	}
}

static void gaudi2_check_if_razwi_happened(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u8 mod_idx, sub_mod;

	/* check all TPCs */
	for (mod_idx = 0 ; mod_idx < (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1) ; mod_idx++) {
		if (prop->tpc_enabled_mask & BIT(mod_idx))
7355 7356
			gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, mod_idx, 0, NULL,
								NULL);
7357 7358 7359 7360 7361 7362
	}

	/* check all MMEs */
	for (mod_idx = 0 ; mod_idx < (NUM_OF_MME_PER_DCORE * NUM_OF_DCORES) ; mod_idx++)
		for (sub_mod = MME_WAP0 ; sub_mod < MME_INITIATORS_MAX ; sub_mod++)
			gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mod_idx,
7363
									sub_mod, NULL, NULL);
7364 7365 7366 7367

	/* check all EDMAs */
	for (mod_idx = 0 ; mod_idx < (NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES) ; mod_idx++)
		if (prop->edma_enabled_mask & BIT(mod_idx))
7368 7369
			gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_EDMA, mod_idx, 0, NULL,
								NULL);
7370 7371 7372

	/* check all PDMAs */
	for (mod_idx = 0 ; mod_idx < NUM_OF_PDMA ; mod_idx++)
7373 7374
		gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_PDMA, mod_idx, 0, NULL,
							NULL);
7375 7376 7377 7378 7379

	/* check all NICs */
	for (mod_idx = 0 ; mod_idx < NIC_NUMBER_OF_PORTS ; mod_idx++)
		if (hdev->nic_ports_mask & BIT(mod_idx))
			gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_NIC, mod_idx >> 1, 0,
7380
								NULL, NULL);
7381 7382 7383 7384

	/* check all DECs */
	for (mod_idx = 0 ; mod_idx < NUMBER_OF_DEC ; mod_idx++)
		if (prop->decoder_enabled_mask & BIT(mod_idx))
7385 7386
			gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, mod_idx, 0, NULL,
								NULL);
7387 7388 7389

	/* check all ROTs */
	for (mod_idx = 0 ; mod_idx < NUM_OF_ROT ; mod_idx++)
7390
		gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, mod_idx, 0, NULL, NULL);
7391 7392
}

7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
static const char *gaudi2_get_initiators_name(u32 rtr_id)
{
	switch (rtr_id) {
	case DCORE0_RTR0:
		return "DEC0/1/8/9, TPC24, PDMA0/1, PMMU, PCIE_IF, EDMA0/2, HMMU0/2/4/6, CPU";
	case DCORE0_RTR1:
		return "TPC0/1";
	case DCORE0_RTR2:
		return "TPC2/3";
	case DCORE0_RTR3:
		return "TPC4/5";
	case DCORE0_RTR4:
		return "MME0_SBTE0/1";
	case DCORE0_RTR5:
		return "MME0_WAP0/SBTE2";
	case DCORE0_RTR6:
		return "MME0_CTRL_WR/SBTE3";
	case DCORE0_RTR7:
		return "MME0_WAP1/CTRL_RD/SBTE4";
	case DCORE1_RTR0:
		return "MME1_WAP1/CTRL_RD/SBTE4";
	case DCORE1_RTR1:
		return "MME1_CTRL_WR/SBTE3";
	case DCORE1_RTR2:
		return "MME1_WAP0/SBTE2";
	case DCORE1_RTR3:
		return "MME1_SBTE0/1";
	case DCORE1_RTR4:
		return "TPC10/11";
	case DCORE1_RTR5:
		return "TPC8/9";
	case DCORE1_RTR6:
		return "TPC6/7";
	case DCORE1_RTR7:
		return "DEC2/3, NIC0/1/2/3/4, ARC_FARM, KDMA, EDMA1/3, HMMU1/3/5/7";
	case DCORE2_RTR0:
		return "DEC4/5, NIC5/6/7/8, EDMA4/6, HMMU8/10/12/14, ROT0";
	case DCORE2_RTR1:
		return "TPC16/17";
	case DCORE2_RTR2:
		return "TPC14/15";
	case DCORE2_RTR3:
		return "TPC12/13";
	case DCORE2_RTR4:
		return "MME2_SBTE0/1";
	case DCORE2_RTR5:
		return "MME2_WAP0/SBTE2";
	case DCORE2_RTR6:
		return "MME2_CTRL_WR/SBTE3";
	case DCORE2_RTR7:
		return "MME2_WAP1/CTRL_RD/SBTE4";
	case DCORE3_RTR0:
		return "MME3_WAP1/CTRL_RD/SBTE4";
	case DCORE3_RTR1:
		return "MME3_CTRL_WR/SBTE3";
	case DCORE3_RTR2:
		return "MME3_WAP0/SBTE2";
	case DCORE3_RTR3:
		return "MME3_SBTE0/1";
	case DCORE3_RTR4:
		return "TPC18/19";
	case DCORE3_RTR5:
		return "TPC20/21";
	case DCORE3_RTR6:
		return "TPC22/23";
	case DCORE3_RTR7:
		return "DEC6/7, NIC9/10/11, EDMA5/7, HMMU9/11/13/15, ROT1, PSOC";
	default:
	return "N/A";
	}
}

7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
static u16 gaudi2_get_razwi_initiators(u32 rtr_id, u16 *engines)
{
	switch (rtr_id) {
	case DCORE0_RTR0:
		engines[0] = GAUDI2_DCORE0_ENGINE_ID_DEC_0;
		engines[1] = GAUDI2_DCORE0_ENGINE_ID_DEC_1;
		engines[2] = GAUDI2_PCIE_ENGINE_ID_DEC_0;
		engines[3] = GAUDI2_PCIE_ENGINE_ID_DEC_1;
		engines[4] = GAUDI2_DCORE0_ENGINE_ID_TPC_6;
		engines[5] = GAUDI2_ENGINE_ID_PDMA_0;
		engines[6] = GAUDI2_ENGINE_ID_PDMA_1;
		engines[7] = GAUDI2_ENGINE_ID_PCIE;
		engines[8] = GAUDI2_DCORE0_ENGINE_ID_EDMA_0;
		engines[9] = GAUDI2_DCORE1_ENGINE_ID_EDMA_0;
		engines[10] = GAUDI2_ENGINE_ID_PSOC;
		return 11;

	case DCORE0_RTR1:
		engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_0;
		engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_1;
		return 2;

	case DCORE0_RTR2:
		engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_2;
		engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_3;
		return 2;

	case DCORE0_RTR3:
		engines[0] = GAUDI2_DCORE0_ENGINE_ID_TPC_4;
		engines[1] = GAUDI2_DCORE0_ENGINE_ID_TPC_5;
		return 2;

	case DCORE0_RTR4:
	case DCORE0_RTR5:
	case DCORE0_RTR6:
	case DCORE0_RTR7:
		engines[0] = GAUDI2_DCORE0_ENGINE_ID_MME;
		return 1;

	case DCORE1_RTR0:
	case DCORE1_RTR1:
	case DCORE1_RTR2:
	case DCORE1_RTR3:
		engines[0] = GAUDI2_DCORE1_ENGINE_ID_MME;
		return 1;

	case DCORE1_RTR4:
		engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_4;
		engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_5;
		return 2;

	case DCORE1_RTR5:
		engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_2;
		engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_3;
		return 2;

	case DCORE1_RTR6:
		engines[0] = GAUDI2_DCORE1_ENGINE_ID_TPC_0;
		engines[1] = GAUDI2_DCORE1_ENGINE_ID_TPC_1;
		return 2;

	case DCORE1_RTR7:
		engines[0] = GAUDI2_DCORE1_ENGINE_ID_DEC_0;
		engines[1] = GAUDI2_DCORE1_ENGINE_ID_DEC_1;
		engines[2] = GAUDI2_ENGINE_ID_NIC0_0;
		engines[3] = GAUDI2_ENGINE_ID_NIC1_0;
		engines[4] = GAUDI2_ENGINE_ID_NIC2_0;
		engines[5] = GAUDI2_ENGINE_ID_NIC3_0;
		engines[6] = GAUDI2_ENGINE_ID_NIC4_0;
		engines[7] = GAUDI2_ENGINE_ID_ARC_FARM;
		engines[8] = GAUDI2_ENGINE_ID_KDMA;
		engines[9] = GAUDI2_DCORE0_ENGINE_ID_EDMA_1;
		engines[10] = GAUDI2_DCORE1_ENGINE_ID_EDMA_1;
		return 11;

	case DCORE2_RTR0:
		engines[0] = GAUDI2_DCORE2_ENGINE_ID_DEC_0;
		engines[1] = GAUDI2_DCORE2_ENGINE_ID_DEC_1;
		engines[2] = GAUDI2_ENGINE_ID_NIC5_0;
		engines[3] = GAUDI2_ENGINE_ID_NIC6_0;
		engines[4] = GAUDI2_ENGINE_ID_NIC7_0;
		engines[5] = GAUDI2_ENGINE_ID_NIC8_0;
		engines[6] = GAUDI2_DCORE2_ENGINE_ID_EDMA_0;
		engines[7] = GAUDI2_DCORE3_ENGINE_ID_EDMA_0;
		engines[8] = GAUDI2_ENGINE_ID_ROT_0;
		return 9;

	case DCORE2_RTR1:
		engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_4;
		engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_5;
		return 2;

	case DCORE2_RTR2:
		engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_2;
		engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_3;
		return 2;

	case DCORE2_RTR3:
		engines[0] = GAUDI2_DCORE2_ENGINE_ID_TPC_0;
		engines[1] = GAUDI2_DCORE2_ENGINE_ID_TPC_1;
		return 2;

	case DCORE2_RTR4:
	case DCORE2_RTR5:
	case DCORE2_RTR6:
	case DCORE2_RTR7:
		engines[0] = GAUDI2_DCORE2_ENGINE_ID_MME;
		return 1;
	case DCORE3_RTR0:
	case DCORE3_RTR1:
	case DCORE3_RTR2:
	case DCORE3_RTR3:
		engines[0] = GAUDI2_DCORE3_ENGINE_ID_MME;
		return 1;
	case DCORE3_RTR4:
		engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_0;
		engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_1;
		return 2;
	case DCORE3_RTR5:
		engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_2;
		engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_3;
		return 2;
	case DCORE3_RTR6:
		engines[0] = GAUDI2_DCORE3_ENGINE_ID_TPC_4;
		engines[1] = GAUDI2_DCORE3_ENGINE_ID_TPC_5;
		return 2;
	case DCORE3_RTR7:
		engines[0] = GAUDI2_DCORE3_ENGINE_ID_DEC_0;
		engines[1] = GAUDI2_DCORE3_ENGINE_ID_DEC_1;
		engines[2] = GAUDI2_ENGINE_ID_NIC9_0;
		engines[3] = GAUDI2_ENGINE_ID_NIC10_0;
		engines[4] = GAUDI2_ENGINE_ID_NIC11_0;
		engines[5] = GAUDI2_DCORE2_ENGINE_ID_EDMA_1;
		engines[6] = GAUDI2_DCORE3_ENGINE_ID_EDMA_1;
		engines[7] = GAUDI2_ENGINE_ID_ROT_1;
		engines[8] = GAUDI2_ENGINE_ID_ROT_0;
		return 9;
	default:
		return 0;
	}
}

7607
static void gaudi2_razwi_unmapped_addr_hbw_printf_info(struct hl_device *hdev, u32 rtr_id,
7608 7609
							u64 rtr_ctrl_base_addr, bool is_write,
							u64 *event_mask)
7610
{
7611
	u16 engines[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR], num_of_eng;
7612
	u32 razwi_hi, razwi_lo;
7613 7614 7615
	u8 rd_wr_flag;

	num_of_eng = gaudi2_get_razwi_initiators(rtr_id, &engines[0]);
7616 7617 7618 7619

	if (is_write) {
		razwi_hi = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_ADDR_HI);
		razwi_lo = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_ADDR_LO);
7620
		rd_wr_flag = HL_RAZWI_WRITE;
7621 7622 7623 7624 7625 7626

		/* Clear set indication */
		WREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_SET, 0x1);
	} else {
		razwi_hi = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_ADDR_HI);
		razwi_lo = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_ADDR_LO);
7627
		rd_wr_flag = HL_RAZWI_READ;
7628 7629 7630 7631

		/* Clear set indication */
		WREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_SET, 0x1);
	}
7632

7633 7634
	hl_handle_razwi(hdev, (u64)razwi_hi << 32 | razwi_lo, &engines[0], num_of_eng,
				rd_wr_flag | HL_RAZWI_HBW, event_mask);
7635 7636 7637 7638 7639 7640
	dev_err_ratelimited(hdev->dev,
		"RAZWI PSOC unmapped HBW %s error, rtr id %u, address %#llx\n",
		is_write ? "WR" : "RD", rtr_id, (u64)razwi_hi << 32 | razwi_lo);

	dev_err_ratelimited(hdev->dev,
		"Initiators: %s\n", gaudi2_get_initiators_name(rtr_id));
7641 7642
}

7643
static void gaudi2_razwi_unmapped_addr_lbw_printf_info(struct hl_device *hdev, u32 rtr_id,
7644 7645
							u64 rtr_ctrl_base_addr, bool is_write,
							u64 *event_mask)
7646
{
7647
	u16 engines[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR], num_of_eng;
7648
	u32 razwi_addr;
7649 7650 7651
	u8 rd_wr_flag;

	num_of_eng = gaudi2_get_razwi_initiators(rtr_id, &engines[0]);
7652 7653 7654

	if (is_write) {
		razwi_addr = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_ADDR);
7655
		rd_wr_flag = HL_RAZWI_WRITE;
7656 7657 7658 7659 7660

		/* Clear set indication */
		WREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_SET, 0x1);
	} else {
		razwi_addr = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_ADDR);
7661
		rd_wr_flag = HL_RAZWI_READ;
7662 7663 7664 7665

		/* Clear set indication */
		WREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_SET, 0x1);
	}
7666

7667 7668
	hl_handle_razwi(hdev, razwi_addr, &engines[0], num_of_eng, rd_wr_flag | HL_RAZWI_LBW,
			event_mask);
7669 7670 7671 7672 7673 7674
	dev_err_ratelimited(hdev->dev,
		"RAZWI PSOC unmapped LBW %s error, rtr id %u, address %#x\n",
		is_write ? "WR" : "RD", rtr_id, razwi_addr);

	dev_err_ratelimited(hdev->dev,
		"Initiators: %s\n", gaudi2_get_initiators_name(rtr_id));
7675 7676 7677
}

/* PSOC RAZWI interrupt occurs only when trying to access a bad address */
7678
static void gaudi2_ack_psoc_razwi_event_handler(struct hl_device *hdev, u64 *event_mask)
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
{
	u32 hbw_aw_set, hbw_ar_set, lbw_aw_set, lbw_ar_set, rtr_id, dcore_id, dcore_rtr_id, xy,
								razwi_mask_info, razwi_intr = 0;
	int rtr_map_arr_len = NUM_OF_RTR_PER_DCORE * NUM_OF_DCORES;
	u64 rtr_ctrl_base_addr;

	if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX)) {
		razwi_intr = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT);
		if (!razwi_intr)
			return;
	}

	razwi_mask_info = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_MASK_INFO);
7692
	xy = FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_L_MASK, razwi_mask_info);
7693 7694

	dev_err_ratelimited(hdev->dev,
7695 7696 7697 7698 7699 7700 7701
		"PSOC RAZWI interrupt: Mask %d, AR %d, AW %d, AXUSER_L 0x%x AXUSER_H 0x%x\n",
		FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_MASK_MASK, razwi_mask_info),
		FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AR_MASK, razwi_mask_info),
		FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AW_MASK, razwi_mask_info),
		xy,
		FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_H_MASK, razwi_mask_info));

7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
	if (xy == 0) {
		dev_err_ratelimited(hdev->dev,
				"PSOC RAZWI interrupt: received event from 0 rtr coordinates\n");
		goto clear;
	}

	/* Find router id by router coordinates */
	for (rtr_id = 0 ; rtr_id < rtr_map_arr_len ; rtr_id++)
		if (rtr_coordinates_to_rtr_id[rtr_id] == xy)
			break;

	if (rtr_id == rtr_map_arr_len) {
		dev_err_ratelimited(hdev->dev,
				"PSOC RAZWI interrupt: invalid rtr coordinates (0x%x)\n", xy);
		goto clear;
	}

	/* Find router mstr_if register base */
	dcore_id = rtr_id / NUM_OF_RTR_PER_DCORE;
	dcore_rtr_id = rtr_id % NUM_OF_RTR_PER_DCORE;
	rtr_ctrl_base_addr = mmDCORE0_RTR0_CTRL_BASE + dcore_id * DCORE_OFFSET +
				dcore_rtr_id * DCORE_RTR_OFFSET;

	hbw_aw_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_SET);
	hbw_ar_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_SET);
	lbw_aw_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_SET);
	lbw_ar_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_SET);

	if (hbw_aw_set)
7731
		gaudi2_razwi_unmapped_addr_hbw_printf_info(hdev, rtr_id,
7732
						rtr_ctrl_base_addr, true, event_mask);
7733 7734

	if (hbw_ar_set)
7735
		gaudi2_razwi_unmapped_addr_hbw_printf_info(hdev, rtr_id,
7736
						rtr_ctrl_base_addr, false, event_mask);
7737 7738

	if (lbw_aw_set)
7739
		gaudi2_razwi_unmapped_addr_lbw_printf_info(hdev, rtr_id,
7740
						rtr_ctrl_base_addr, true, event_mask);
7741 7742

	if (lbw_ar_set)
7743
		gaudi2_razwi_unmapped_addr_lbw_printf_info(hdev, rtr_id,
7744
						rtr_ctrl_base_addr, false, event_mask);
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769

clear:
	/* Clear Interrupts only on pldm or if f/w doesn't handle interrupts */
	if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX))
		WREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT, razwi_intr);
}

static void _gaudi2_handle_qm_sei_err(struct hl_device *hdev, u64 qman_base)
{
	u32 i, sts_val, sts_clr_val = 0;

	sts_val = RREG32(qman_base + QM_SEI_STATUS_OFFSET);

	for (i = 0 ; i < GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE ; i++) {
		if (sts_val & BIT(i)) {
			dev_err_ratelimited(hdev->dev, "QM SEI. err cause: %s\n",
						gaudi2_qm_sei_error_cause[i]);
			sts_clr_val |= BIT(i);
		}
	}

	WREG32(qman_base + QM_SEI_STATUS_OFFSET, sts_clr_val);
}

static void gaudi2_handle_qm_sei_err(struct hl_device *hdev, u16 event_type,
7770
					struct hl_eq_razwi_info *razwi_info, u64 *event_mask)
7771
{
7772
	enum razwi_event_sources module;
7773 7774 7775 7776 7777 7778 7779 7780 7781
	u64 qman_base;
	u8 index;

	switch (event_type) {
	case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC23_AXI_ERR_RSP:
		index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP;
		qman_base = mmDCORE0_TPC0_QM_BASE +
				(index / NUM_OF_TPC_PER_DCORE) * DCORE_OFFSET +
				(index % NUM_OF_TPC_PER_DCORE) * DCORE_TPC_OFFSET;
7782
		module = RAZWI_TPC;
7783 7784 7785
		break;
	case GAUDI2_EVENT_TPC24_AXI_ERR_RSP:
		qman_base = mmDCORE0_TPC6_QM_BASE;
7786
		module = RAZWI_TPC;
7787 7788 7789 7790 7791 7792 7793 7794 7795
		break;
	case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE:
	case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE:
	case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE:
	case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE:
		index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) /
				(GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE -
						GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE);
		qman_base = mmDCORE0_MME_QM_BASE + index * DCORE_OFFSET;
7796
		module = RAZWI_MME;
7797 7798 7799 7800 7801
		break;
	case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP:
	case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP:
		index = event_type - GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP;
		qman_base = mmPDMA0_QM_BASE + index * PDMA_OFFSET;
7802
		module = RAZWI_PDMA;
7803 7804 7805 7806 7807
		break;
	case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE:
	case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE:
		index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE;
		qman_base = mmROT0_QM_BASE + index * ROT_OFFSET;
7808
		module = RAZWI_ROT;
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
		break;
	default:
		return;
	}

	_gaudi2_handle_qm_sei_err(hdev, qman_base);

	/* There is a single event per NIC macro, so should check its both QMAN blocks */
	if (event_type >= GAUDI2_EVENT_NIC0_AXI_ERROR_RESPONSE &&
			event_type <= GAUDI2_EVENT_NIC11_AXI_ERROR_RESPONSE)
		_gaudi2_handle_qm_sei_err(hdev, qman_base + NIC_QM_OFFSET);

	/* check if RAZWI happened */
	if (razwi_info)
7823
		gaudi2_ack_module_razwi_event_handler(hdev, module, 0, 0, razwi_info, event_mask);
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
}

static void gaudi2_handle_qman_err(struct hl_device *hdev, u16 event_type)
{
	u32 qid_base;
	u64 qman_base;
	char desc[32];
	u8 index;

	switch (event_type) {
	case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_TPC5_QM:
		index = event_type - GAUDI2_EVENT_TPC0_QM;
		qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 + index * QMAN_STREAMS;
		qman_base = mmDCORE0_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE0_TPC%d_QM", index);
		break;
	case GAUDI2_EVENT_TPC6_QM ... GAUDI2_EVENT_TPC11_QM:
		index = event_type - GAUDI2_EVENT_TPC6_QM;
		qid_base = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 + index * QMAN_STREAMS;
		qman_base = mmDCORE1_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE1_TPC%d_QM", index);
		break;
	case GAUDI2_EVENT_TPC12_QM ... GAUDI2_EVENT_TPC17_QM:
		index = event_type - GAUDI2_EVENT_TPC12_QM;
		qid_base = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 + index * QMAN_STREAMS;
		qman_base = mmDCORE2_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE2_TPC%d_QM", index);
		break;
	case GAUDI2_EVENT_TPC18_QM ... GAUDI2_EVENT_TPC23_QM:
		index = event_type - GAUDI2_EVENT_TPC18_QM;
		qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 + index * QMAN_STREAMS;
		qman_base = mmDCORE3_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE3_TPC%d_QM", index);
		break;
	case GAUDI2_EVENT_TPC24_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0;
		qman_base = mmDCORE0_TPC6_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE0_TPC6_QM");
		break;
	case GAUDI2_EVENT_MME0_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0;
		qman_base = mmDCORE0_MME_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE0_MME_QM");
		break;
	case GAUDI2_EVENT_MME1_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0;
		qman_base = mmDCORE1_MME_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE1_MME_QM");
		break;
	case GAUDI2_EVENT_MME2_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0;
		qman_base = mmDCORE2_MME_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE2_MME_QM");
		break;
	case GAUDI2_EVENT_MME3_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0;
		qman_base = mmDCORE3_MME_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE3_MME_QM");
		break;
	case GAUDI2_EVENT_HDMA0_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0;
		qman_base = mmDCORE0_EDMA0_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE0_EDMA0_QM");
		break;
	case GAUDI2_EVENT_HDMA1_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0;
		qman_base = mmDCORE0_EDMA1_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE0_EDMA1_QM");
		break;
	case GAUDI2_EVENT_HDMA2_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0;
		qman_base = mmDCORE1_EDMA0_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE1_EDMA0_QM");
		break;
	case GAUDI2_EVENT_HDMA3_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0;
		qman_base = mmDCORE1_EDMA1_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE1_EDMA1_QM");
		break;
	case GAUDI2_EVENT_HDMA4_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0;
		qman_base = mmDCORE2_EDMA0_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE2_EDMA0_QM");
		break;
	case GAUDI2_EVENT_HDMA5_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0;
		qman_base = mmDCORE2_EDMA1_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE2_EDMA1_QM");
		break;
	case GAUDI2_EVENT_HDMA6_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0;
		qman_base = mmDCORE3_EDMA0_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE3_EDMA0_QM");
		break;
	case GAUDI2_EVENT_HDMA7_QM:
		qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0;
		qman_base = mmDCORE3_EDMA1_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE3_EDMA1_QM");
		break;
	case GAUDI2_EVENT_PDMA0_QM:
		qid_base = GAUDI2_QUEUE_ID_PDMA_0_0;
		qman_base = mmPDMA0_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "PDMA0_QM");
		break;
	case GAUDI2_EVENT_PDMA1_QM:
		qid_base = GAUDI2_QUEUE_ID_PDMA_1_0;
		qman_base = mmPDMA1_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "PDMA1_QM");
		break;
	case GAUDI2_EVENT_ROTATOR0_ROT0_QM:
		qid_base = GAUDI2_QUEUE_ID_ROT_0_0;
		qman_base = mmROT0_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "ROTATOR0_QM");
		break;
	case GAUDI2_EVENT_ROTATOR1_ROT1_QM:
		qid_base = GAUDI2_QUEUE_ID_ROT_1_0;
		qman_base = mmROT1_QM_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "ROTATOR1_QM");
		break;
	default:
		return;
	}

	gaudi2_handle_qman_err_generic(hdev, desc, qman_base, qid_base);

	/* Handle EDMA QM SEI here because there is no AXI error response event for EDMA */
	if (event_type >= GAUDI2_EVENT_HDMA2_QM && event_type <= GAUDI2_EVENT_HDMA5_QM)
		_gaudi2_handle_qm_sei_err(hdev, qman_base);
}

static void gaudi2_handle_arc_farm_sei_err(struct hl_device *hdev)
{
	u32 i, sts_val, sts_clr_val = 0;

	sts_val = RREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_STS);

	for (i = 0 ; i < GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE ; i++) {
		if (sts_val & BIT(i)) {
			dev_err_ratelimited(hdev->dev, "ARC SEI. err cause: %s\n",
						gaudi2_arc_sei_error_cause[i]);
			sts_clr_val |= BIT(i);
		}
	}

	WREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_CLR, sts_clr_val);
}

static void gaudi2_handle_cpu_sei_err(struct hl_device *hdev)
{
	u32 i, sts_val, sts_clr_val = 0;

	sts_val = RREG32(mmCPU_IF_CPU_SEI_INTR_STS);

	for (i = 0 ; i < GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE ; i++) {
		if (sts_val & BIT(i)) {
			dev_err_ratelimited(hdev->dev, "CPU SEI. err cause: %s\n",
						gaudi2_cpu_sei_error_cause[i]);
			sts_clr_val |= BIT(i);
		}
	}

	WREG32(mmCPU_IF_CPU_SEI_INTR_CLR, sts_clr_val);
}

static void gaudi2_handle_rot_err(struct hl_device *hdev, u8 rot_index,
7989 7990
					struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause,
					u64 *event_mask)
7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001
{
	u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data);
	int i;

	for (i = 0 ; i < GAUDI2_NUM_OF_ROT_ERR_CAUSE ; i++)
		if (intr_cause_data & BIT(i))
			dev_err_ratelimited(hdev->dev, "ROT%u. err cause: %s\n",
						rot_index, guadi2_rot_error_cause[i]);

	/* check if RAZWI happened */
	gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, rot_index, 0,
8002
						&razwi_with_intr_cause->razwi_info, event_mask);
8003 8004 8005
}

static void gaudi2_tpc_ack_interrupts(struct hl_device *hdev, u8 tpc_index, char *interrupt_name,
8006 8007
					struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause,
					u64 *event_mask)
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
{
	u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data);
	int i;

	for (i = 0 ; i < GAUDI2_NUM_OF_TPC_INTR_CAUSE ; i++)
		if (intr_cause_data & BIT(i))
			dev_err_ratelimited(hdev->dev, "TPC%d_%s interrupt cause: %s\n",
					tpc_index, interrupt_name, gaudi2_tpc_interrupts_cause[i]);

	/* check if RAZWI happened */
	gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, tpc_index, 0,
8019
						&razwi_with_intr_cause->razwi_info, event_mask);
8020 8021 8022
}

static void gaudi2_handle_dec_err(struct hl_device *hdev, u8 dec_index, const char *interrupt_name,
8023
				struct hl_eq_razwi_info *razwi_info, u64 *event_mask)
8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048
{
	u32 sts_addr, sts_val, sts_clr_val = 0;
	int i;

	if (dec_index < NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES)
		/* DCORE DEC */
		sts_addr = mmDCORE0_VDEC0_BRDG_CTRL_CAUSE_INTR +
				DCORE_OFFSET * (dec_index / NUM_OF_DEC_PER_DCORE) +
				DCORE_VDEC_OFFSET * (dec_index % NUM_OF_DEC_PER_DCORE);
	else
		/* PCIE DEC */
		sts_addr = mmPCIE_VDEC0_BRDG_CTRL_CAUSE_INTR + PCIE_VDEC_OFFSET *
				(dec_index - NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES);

	sts_val = RREG32(sts_addr);

	for (i = 0 ; i < GAUDI2_NUM_OF_DEC_ERR_CAUSE ; i++) {
		if (sts_val & BIT(i)) {
			dev_err_ratelimited(hdev->dev, "DEC%u_%s err cause: %s\n",
					dec_index, interrupt_name, gaudi2_dec_error_cause[i]);
			sts_clr_val |= BIT(i);
		}
	}

	/* check if RAZWI happened */
8049 8050
	gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, dec_index, 0, razwi_info,
						event_mask);
8051 8052 8053 8054 8055 8056

	/* Write 1 clear errors */
	WREG32(sts_addr, sts_clr_val);
}

static void gaudi2_handle_mme_err(struct hl_device *hdev, u8 mme_index, const char *interrupt_name,
8057
				struct hl_eq_razwi_info *razwi_info, u64 *event_mask)
8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076
{
	u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0;
	int i;

	sts_addr = mmDCORE0_MME_CTRL_LO_INTR_CAUSE + DCORE_OFFSET * mme_index;
	sts_clr_addr = mmDCORE0_MME_CTRL_LO_INTR_CLEAR + DCORE_OFFSET * mme_index;

	sts_val = RREG32(sts_addr);

	for (i = 0 ; i < GAUDI2_NUM_OF_MME_ERR_CAUSE ; i++) {
		if (sts_val & BIT(i)) {
			dev_err_ratelimited(hdev->dev, "MME%u_%s err cause: %s\n",
					mme_index, interrupt_name, guadi2_mme_error_cause[i]);
			sts_clr_val |= BIT(i);
		}
	}

	/* check if RAZWI happened */
	for (i = MME_WRITE ; i < MME_INITIATORS_MAX ; i++)
8077 8078
		gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, i, razwi_info,
							event_mask);
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094

	WREG32(sts_clr_addr, sts_clr_val);
}

static void gaudi2_handle_mme_sbte_err(struct hl_device *hdev, u8 mme_index, u8 sbte_index,
					u64 intr_cause_data)
{
	int i;

	for (i = 0 ; i < GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE ; i++)
		if (intr_cause_data & BIT(i))
			dev_err_ratelimited(hdev->dev, "MME%uSBTE%u_AXI_ERR_RSP err cause: %s\n",
					mme_index, sbte_index, guadi2_mme_sbte_error_cause[i]);
}

static void gaudi2_handle_mme_wap_err(struct hl_device *hdev, u8 mme_index,
8095
					struct hl_eq_razwi_info *razwi_info, u64 *event_mask)
8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114
{
	u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0;
	int i;

	sts_addr = mmDCORE0_MME_ACC_INTR_CAUSE + DCORE_OFFSET * mme_index;
	sts_clr_addr = mmDCORE0_MME_ACC_INTR_CLEAR + DCORE_OFFSET * mme_index;

	sts_val = RREG32(sts_addr);

	for (i = 0 ; i < GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE ; i++) {
		if (sts_val & BIT(i)) {
			dev_err_ratelimited(hdev->dev,
					"MME%u_WAP_SOURCE_RESULT_INVALID err cause: %s\n",
					mme_index, guadi2_mme_wap_error_cause[i]);
			sts_clr_val |= BIT(i);
		}
	}

	/* check if RAZWI happened on WAP0/1 */
8115 8116 8117 8118
	gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP0, razwi_info,
						event_mask);
	gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP1, razwi_info,
						event_mask);
8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147

	WREG32(sts_clr_addr, sts_clr_val);
}

static void gaudi2_handle_kdma_core_event(struct hl_device *hdev, u64 intr_cause_data)
{
	int i;

	/* If an AXI read or write error is received, an error is reported and
	 * interrupt message is sent. Due to an HW errata, when reading the cause
	 * register of the KDMA engine, the reported error is always HBW even if
	 * the actual error caused by a LBW KDMA transaction.
	 */
	for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++)
		if (intr_cause_data & BIT(i))
			dev_err_ratelimited(hdev->dev, "kdma core err cause: %s\n",
						gaudi2_kdma_core_interrupts_cause[i]);
}

static void gaudi2_handle_dma_core_event(struct hl_device *hdev, u64 intr_cause_data)
{
	int i;

	for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++)
		if (intr_cause_data & BIT(i))
			dev_err_ratelimited(hdev->dev, "dma core err cause: %s\n",
						gaudi2_dma_core_interrupts_cause[i]);
}

8148
static void gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(struct hl_device *hdev, u64 *event_mask)
8149 8150 8151 8152 8153 8154
{
	u32 mstr_if_base_addr = mmPCIE_MSTR_RR_MSTR_IF_RR_SHRD_HBW_BASE, razwi_happened_addr;

	razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED;
	if (RREG32(razwi_happened_addr)) {
		gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE", true,
8155
							NULL, GAUDI2_ENGINE_ID_PCIE, event_mask);
8156 8157 8158 8159 8160 8161
		WREG32(razwi_happened_addr, 0x1);
	}

	razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED;
	if (RREG32(razwi_happened_addr)) {
		gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE", true,
8162
							NULL, GAUDI2_ENGINE_ID_PCIE, event_mask);
8163 8164 8165 8166 8167 8168
		WREG32(razwi_happened_addr, 0x1);
	}

	razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED;
	if (RREG32(razwi_happened_addr)) {
		gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE", true,
8169
							NULL, GAUDI2_ENGINE_ID_PCIE, event_mask);
8170 8171 8172 8173 8174 8175
		WREG32(razwi_happened_addr, 0x1);
	}

	razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED;
	if (RREG32(razwi_happened_addr)) {
		gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE", true,
8176
							NULL, GAUDI2_ENGINE_ID_PCIE, event_mask);
8177 8178 8179 8180
		WREG32(razwi_happened_addr, 0x1);
	}
}

8181 8182
static void gaudi2_print_pcie_addr_dec_info(struct hl_device *hdev, u64 intr_cause_data,
						u64 *event_mask)
8183 8184 8185
{
	int i;

8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
	for (i = 0 ; i < GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE ; i++) {
		if (!(intr_cause_data & BIT_ULL(i)))
			continue;

		dev_err_ratelimited(hdev->dev, "PCIE ADDR DEC Error: %s\n",
					gaudi2_pcie_addr_dec_error_cause[i]);

		switch (intr_cause_data & BIT_ULL(i)) {
		case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_AXI_LBW_ERR_INTR_MASK:
			break;
		case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_BAD_ACCESS_INTR_MASK:
8197
			gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(hdev, event_mask);
8198 8199 8200
			break;
		}
	}
8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
}

static void gaudi2_handle_pif_fatal(struct hl_device *hdev, u64 intr_cause_data)

{
	int i;

	for (i = 0 ; i < GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE ; i++) {
		if (intr_cause_data & BIT_ULL(i))
			dev_err_ratelimited(hdev->dev, "PMMU PIF err cause: %s\n",
					gaudi2_pmmu_fatal_interrupts_cause[i]);
	}
}

static void gaudi2_handle_hif_fatal(struct hl_device *hdev, u16 event_type, u64 intr_cause_data)
{
	u32 dcore_id, hif_id;
	int i;

	dcore_id = (event_type - GAUDI2_EVENT_HIF0_FATAL) / 4;
	hif_id = (event_type - GAUDI2_EVENT_HIF0_FATAL) % 4;

	for (i = 0 ; i < GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE ; i++) {
		if (intr_cause_data & BIT_ULL(i))
			dev_err_ratelimited(hdev->dev, "DCORE%u_HIF%u: %s\n", dcore_id, hif_id,
					gaudi2_hif_fatal_interrupts_cause[i]);
	}
}

8230 8231
static void gaudi2_handle_page_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu,
					u64 *event_mask)
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
{
	u32 valid, val;
	u64 addr;

	valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID));

	if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_PAGE_ERR_VALID_ENTRY_MASK))
		return;

	val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE));
	addr = val & DCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA_63_32_MASK;
	addr <<= 32;
	addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA));

	dev_err_ratelimited(hdev->dev, "%s page fault on va 0x%llx\n",
				is_pmmu ? "PMMU" : "HMMU", addr);
8248
	hl_handle_page_fault(hdev, addr, 0, is_pmmu, event_mask);
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273

	WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE), 0);
}

static void gaudi2_handle_access_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu)
{
	u32 valid, val;
	u64 addr;

	valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID));

	if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_ACCESS_ERR_VALID_ENTRY_MASK))
		return;

	val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE));
	addr = val & DCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA_63_32_MASK;
	addr <<= 32;
	addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA));

	dev_err_ratelimited(hdev->dev, "%s access error on va 0x%llx\n",
				is_pmmu ? "PMMU" : "HMMU", addr);
	WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE), 0);
}

static void gaudi2_handle_mmu_spi_sei_generic(struct hl_device *hdev, const char *mmu_name,
8274
						u64 mmu_base, bool is_pmmu, u64 *event_mask)
8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
{
	u32 spi_sei_cause, interrupt_clr = 0x0;
	int i;

	spi_sei_cause = RREG32(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET);

	for (i = 0 ; i < GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE ; i++) {
		if (spi_sei_cause & BIT(i)) {
			dev_err_ratelimited(hdev->dev, "%s SPI_SEI ERR. err cause: %s\n",
						mmu_name, gaudi2_mmu_spi_sei[i].cause);

			if (i == 0)
8287
				gaudi2_handle_page_error(hdev, mmu_base, is_pmmu, event_mask);
8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302
			else if (i == 1)
				gaudi2_handle_access_error(hdev, mmu_base, is_pmmu);

			if (gaudi2_mmu_spi_sei[i].clear_bit >= 0)
				interrupt_clr |= BIT(gaudi2_mmu_spi_sei[i].clear_bit);
		}
	}

	/* Clear cause */
	WREG32_AND(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET, ~spi_sei_cause);

	/* Clear interrupt */
	WREG32(mmu_base + MMU_INTERRUPT_CLR_OFFSET, interrupt_clr);
}

8303
static void gaudi2_handle_sm_err(struct hl_device *hdev, u8 sm_index)
8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351
{
	u32 sei_cause_addr, sei_cause_val, sei_cause_cause, sei_cause_log;
	u32 cq_intr_addr, cq_intr_val, cq_intr_queue_index;
	int i;

	sei_cause_addr = mmDCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE + DCORE_OFFSET * sm_index;
	cq_intr_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_INTR + DCORE_OFFSET * sm_index;

	sei_cause_val = RREG32(sei_cause_addr);
	sei_cause_cause = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_CAUSE_MASK, sei_cause_val);
	cq_intr_val = RREG32(cq_intr_addr);

	/* SEI interrupt */
	if (sei_cause_cause) {
		/* There are corresponding SEI_CAUSE_log bits for every SEI_CAUSE_cause bit */
		sei_cause_log = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_LOG_MASK,
					sei_cause_val);

		for (i = 0 ; i < GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE ; i++) {
			if (!(sei_cause_cause & BIT(i)))
				continue;

			dev_err_ratelimited(hdev->dev, "SM%u SEI ERR. err cause: %s. %s: 0x%X\n",
					sm_index,
					gaudi2_sm_sei_cause[i].cause_name,
					gaudi2_sm_sei_cause[i].log_name,
					sei_cause_log & gaudi2_sm_sei_cause[i].log_mask);
			break;
		}

		/* Clear SM_SEI_CAUSE */
		WREG32(sei_cause_addr, 0);
	}

	/* CQ interrupt */
	if (cq_intr_val & DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_SEC_INTR_MASK) {
		cq_intr_queue_index =
				FIELD_GET(DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_INTR_QUEUE_INDEX_MASK,
					cq_intr_val);

		dev_err_ratelimited(hdev->dev, "SM%u err. err cause: CQ_INTR. queue index: %u\n",
				sm_index, cq_intr_queue_index);

		/* Clear CQ_INTR */
		WREG32(cq_intr_addr, 0);
	}
}

8352
static void gaudi2_handle_mmu_spi_sei_err(struct hl_device *hdev, u16 event_type, u64 *event_mask)
8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
{
	bool is_pmmu = false;
	char desc[32];
	u64 mmu_base;
	u8 index;

	switch (event_type) {
	case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU3_SECURITY_ERROR:
		index = (event_type - GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM) / 3;
		mmu_base = mmDCORE0_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE0_HMMU%d", index);
		break;
	case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_3_AXI_ERR_RSP:
		index = (event_type - GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP);
		mmu_base = mmDCORE0_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE0_HMMU%d", index);
		break;
	case GAUDI2_EVENT_HMMU8_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU11_SECURITY_ERROR:
		index = (event_type - GAUDI2_EVENT_HMMU8_PAGE_FAULT_WR_PERM) / 3;
		mmu_base = mmDCORE1_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE1_HMMU%d", index);
		break;
	case GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_11_AXI_ERR_RSP:
		index = (event_type - GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP);
		mmu_base = mmDCORE1_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE1_HMMU%d", index);
		break;
	case GAUDI2_EVENT_HMMU7_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU4_SECURITY_ERROR:
		index = (event_type - GAUDI2_EVENT_HMMU7_PAGE_FAULT_WR_PERM) / 3;
		mmu_base = mmDCORE2_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE2_HMMU%d", index);
		break;
	case GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_4_AXI_ERR_RSP:
		index = (event_type - GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP);
		mmu_base = mmDCORE2_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE2_HMMU%d", index);
		break;
	case GAUDI2_EVENT_HMMU15_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR:
		index = (event_type - GAUDI2_EVENT_HMMU15_PAGE_FAULT_WR_PERM) / 3;
		mmu_base = mmDCORE3_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE3_HMMU%d", index);
		break;
	case GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP:
		index = (event_type - GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP);
		mmu_base = mmDCORE3_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
		snprintf(desc, ARRAY_SIZE(desc), "DCORE3_HMMU%d", index);
		break;
	case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR:
	case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0:
		is_pmmu = true;
		mmu_base = mmPMMU_HBW_MMU_BASE;
		snprintf(desc, ARRAY_SIZE(desc), "PMMU");
		break;
	default:
		return;
	}

8410
	gaudi2_handle_mmu_spi_sei_generic(hdev, desc, mmu_base, is_pmmu, event_mask);
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534
}


/* returns true if hard reset is required (ECC DERR or Read parity), false otherwise (ECC SERR) */
static bool gaudi2_hbm_sei_handle_read_err(struct hl_device *hdev,
			struct hl_eq_hbm_sei_read_err_intr_info *rd_err_data, u32 err_cnt)
{
	u32 addr, beat, beat_shift;
	bool rc = false;

	dev_err_ratelimited(hdev->dev,
			"READ ERROR count: ECC SERR: %d, ECC DERR: %d, RD_PARITY: %d\n",
			FIELD_GET(HBM_ECC_SERR_CNTR_MASK, err_cnt),
			FIELD_GET(HBM_ECC_DERR_CNTR_MASK, err_cnt),
			FIELD_GET(HBM_RD_PARITY_CNTR_MASK, err_cnt));

	addr = le32_to_cpu(rd_err_data->dbg_rd_err_addr.rd_addr_val);
	dev_err_ratelimited(hdev->dev,
			"READ ERROR address: sid(%u), bg(%u), ba(%u), col(%u), row(%u)\n",
			FIELD_GET(HBM_RD_ADDR_SID_MASK, addr),
			FIELD_GET(HBM_RD_ADDR_BG_MASK, addr),
			FIELD_GET(HBM_RD_ADDR_BA_MASK, addr),
			FIELD_GET(HBM_RD_ADDR_COL_MASK, addr),
			FIELD_GET(HBM_RD_ADDR_ROW_MASK, addr));

	/* For each beat (RDQS edge), look for possible errors and print relevant info */
	for (beat = 0 ; beat < 4 ; beat++) {
		if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
			(HBM_RD_ERR_SERR_BEAT0_MASK << beat))
			dev_err_ratelimited(hdev->dev, "Beat%d ECC SERR: DM: %#x, Syndrome: %#x\n",
						beat,
						le32_to_cpu(rd_err_data->dbg_rd_err_dm),
						le32_to_cpu(rd_err_data->dbg_rd_err_syndrome));

		if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
			(HBM_RD_ERR_DERR_BEAT0_MASK << beat)) {
			dev_err_ratelimited(hdev->dev, "Beat%d ECC DERR: DM: %#x, Syndrome: %#x\n",
						beat,
						le32_to_cpu(rd_err_data->dbg_rd_err_dm),
						le32_to_cpu(rd_err_data->dbg_rd_err_syndrome));
			rc |= true;
		}

		beat_shift = beat * HBM_RD_ERR_BEAT_SHIFT;
		if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
			(HBM_RD_ERR_PAR_ERR_BEAT0_MASK << beat_shift)) {
			dev_err_ratelimited(hdev->dev,
					"Beat%d read PARITY: DM: %#x, PAR data: %#x\n",
					beat,
					le32_to_cpu(rd_err_data->dbg_rd_err_dm),
					(le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
						(HBM_RD_ERR_PAR_DATA_BEAT0_MASK << beat_shift)) >>
						(HBM_RD_ERR_PAR_DATA_BEAT0_SHIFT + beat_shift));
			rc |= true;
		}

		dev_err_ratelimited(hdev->dev, "Beat%d DQ data:\n", beat);
		dev_err_ratelimited(hdev->dev, "\t0x%08x\n",
					le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2]));
		dev_err_ratelimited(hdev->dev, "\t0x%08x\n",
					le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2 + 1]));
	}

	return rc;
}

static void gaudi2_hbm_sei_print_wr_par_info(struct hl_device *hdev,
			struct hl_eq_hbm_sei_wr_par_intr_info *wr_par_err_data, u32 err_cnt)
{
	struct hbm_sei_wr_cmd_address *wr_cmd_addr = wr_par_err_data->dbg_last_wr_cmds;
	u32 i, curr_addr, derr = wr_par_err_data->dbg_derr;

	dev_err_ratelimited(hdev->dev, "WRITE PARITY ERROR count: %d\n", err_cnt);

	dev_err_ratelimited(hdev->dev, "CK-0 DERR: 0x%02x, CK-1 DERR: 0x%02x\n",
				derr & 0x3, derr & 0xc);

	/* JIRA H6-3286 - the following prints may not be valid */
	dev_err_ratelimited(hdev->dev, "Last latched write commands addresses:\n");
	for (i = 0 ; i < HBM_WR_PAR_CMD_LIFO_LEN ; i++) {
		curr_addr = le32_to_cpu(wr_cmd_addr[i].dbg_wr_cmd_addr);
		dev_err_ratelimited(hdev->dev,
				"\twrite cmd[%u]: Address: SID(%u) BG(%u) BA(%u) COL(%u).\n",
				i,
				FIELD_GET(WR_PAR_LAST_CMD_SID_MASK, curr_addr),
				FIELD_GET(WR_PAR_LAST_CMD_BG_MASK, curr_addr),
				FIELD_GET(WR_PAR_LAST_CMD_BA_MASK, curr_addr),
				FIELD_GET(WR_PAR_LAST_CMD_COL_MASK, curr_addr));
	}
}

static void gaudi2_hbm_sei_print_ca_par_info(struct hl_device *hdev,
		struct hl_eq_hbm_sei_ca_par_intr_info *ca_par_err_data, u32 err_cnt)
{
	__le32 *col_cmd = ca_par_err_data->dbg_col;
	__le16 *row_cmd = ca_par_err_data->dbg_row;
	u32 i;

	dev_err_ratelimited(hdev->dev, "CA ERROR count: %d\n", err_cnt);

	dev_err_ratelimited(hdev->dev, "Last latched C&R bus commands:\n");
	for (i = 0 ; i < HBM_CA_ERR_CMD_LIFO_LEN ; i++)
		dev_err_ratelimited(hdev->dev, "cmd%u: ROW(0x%04x) COL(0x%05x)\n", i,
			le16_to_cpu(row_cmd[i]) & (u16)GENMASK(13, 0),
			le32_to_cpu(col_cmd[i]) & (u32)GENMASK(17, 0));
}

/* Returns true if hard reset is needed or false otherwise */
static bool gaudi2_handle_hbm_mc_sei_err(struct hl_device *hdev, u16 event_type,
					struct hl_eq_hbm_sei_data *sei_data)
{
	bool require_hard_reset = false;
	u32 hbm_id, mc_id, cause_idx;

	hbm_id = (event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 4;
	mc_id = ((event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 2) % 2;

	cause_idx = sei_data->hdr.sei_cause;
	if (cause_idx > GAUDI2_NUM_OF_HBM_SEI_CAUSE - 1) {
		dev_err_ratelimited(hdev->dev, "Invalid HBM SEI event cause (%d) provided by FW\n",
					cause_idx);
		return true;
	}

8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
	if (sei_data->hdr.is_critical)
		dev_err(hdev->dev,
			"System Critical Error Interrupt - HBM(%u) MC(%u) MC_CH(%u) MC_PC(%u). Error cause: %s\n",
			hbm_id, mc_id, sei_data->hdr.mc_channel, sei_data->hdr.mc_pseudo_channel,
			hbm_mc_sei_cause[cause_idx]);

	else
		dev_err_ratelimited(hdev->dev,
			"System Non-Critical Error Interrupt - HBM(%u) MC(%u) MC_CH(%u) MC_PC(%u). Error cause: %s\n",
			hbm_id, mc_id, sei_data->hdr.mc_channel, sei_data->hdr.mc_pseudo_channel,
			hbm_mc_sei_cause[cause_idx]);
8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583

	/* Print error-specific info */
	switch (cause_idx) {
	case HBM_SEI_CATTRIP:
		require_hard_reset = true;
		break;

	case  HBM_SEI_CMD_PARITY_EVEN:
		gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_even_info,
						le32_to_cpu(sei_data->hdr.cnt));
		require_hard_reset = true;
		break;

	case  HBM_SEI_CMD_PARITY_ODD:
		gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_odd_info,
						le32_to_cpu(sei_data->hdr.cnt));
		require_hard_reset = true;
		break;

	case HBM_SEI_WRITE_DATA_PARITY_ERR:
		gaudi2_hbm_sei_print_wr_par_info(hdev, &sei_data->wr_parity_info,
						le32_to_cpu(sei_data->hdr.cnt));
		require_hard_reset = true;
		break;

	case HBM_SEI_READ_ERR:
		/* Unlike other SEI events, read error requires further processing of the
		 * raw data in order to determine the root cause.
		 */
		require_hard_reset = gaudi2_hbm_sei_handle_read_err(hdev,
								&sei_data->read_err_info,
								le32_to_cpu(sei_data->hdr.cnt));
		break;

	default:
		break;
	}

8584 8585
	require_hard_reset |= !!sei_data->hdr.is_critical;

8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605
	return require_hard_reset;
}

static void gaudi2_handle_hbm_cattrip(struct hl_device *hdev, u64 intr_cause_data)
{
	dev_err(hdev->dev,
		"HBM catastrophic temperature error (CATTRIP) cause %#llx\n",
		intr_cause_data);
}

static void gaudi2_handle_hbm_mc_spi(struct hl_device *hdev, u64 intr_cause_data)
{
	u32 i;

	for (i = 0 ; i < GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE ; i++)
		if (intr_cause_data & hbm_mc_spi[i].mask)
			dev_dbg(hdev->dev, "HBM spi event: notification cause(%s)\n",
				hbm_mc_spi[i].cause);
}

8606
static void gaudi2_print_clk_change_info(struct hl_device *hdev, u16 event_type, u64 *event_mask)
8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
{
	ktime_t zero_time = ktime_set(0, 0);

	mutex_lock(&hdev->clk_throttling.lock);

	switch (event_type) {
	case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S:
		hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_POWER;
		hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_POWER;
		hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get();
		hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time;
		dev_info_ratelimited(hdev->dev, "Clock throttling due to power consumption\n");
		break;

	case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E:
		hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_POWER;
		hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get();
		dev_info_ratelimited(hdev->dev, "Power envelop is safe, back to optimal clock\n");
		break;

	case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S:
		hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_THERMAL;
		hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_THERMAL;
		hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get();
		hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time;
8632
		*event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8633 8634 8635 8636 8637 8638
		dev_info_ratelimited(hdev->dev, "Clock throttling due to overheating\n");
		break;

	case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E:
		hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_THERMAL;
		hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get();
8639
		*event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655
		dev_info_ratelimited(hdev->dev, "Thermal envelop is safe, back to optimal clock\n");
		break;

	default:
		dev_err(hdev->dev, "Received invalid clock change event %d\n", event_type);
		break;
	}

	mutex_unlock(&hdev->clk_throttling.lock);
}

static void gaudi2_print_out_of_sync_info(struct hl_device *hdev,
					struct cpucp_pkt_sync_err *sync_err)
{
	struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];

8656 8657
	dev_err(hdev->dev, "Out of sync with FW, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d\n",
		le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), q->pi, atomic_read(&q->ci));
8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722
}

static void gaudi2_handle_pcie_p2p_msix(struct hl_device *hdev)
{
	u32 p2p_intr, msix_gw_intr;

	p2p_intr = RREG32(mmPCIE_WRAP_P2P_INTR);
	msix_gw_intr = RREG32(mmPCIE_WRAP_MSIX_GW_INTR);

	if (p2p_intr) {
		dev_err_ratelimited(hdev->dev,
			"pcie p2p transaction terminated due to security, req_id(0x%x)\n",
			RREG32(mmPCIE_WRAP_P2P_REQ_ID));

		WREG32(mmPCIE_WRAP_P2P_INTR, 0x1);
	}

	if (msix_gw_intr) {
		dev_err_ratelimited(hdev->dev,
			"pcie msi-x gen denied due to vector num check failure, vec(0x%X)\n",
			RREG32(mmPCIE_WRAP_MSIX_GW_VEC));

		WREG32(mmPCIE_WRAP_MSIX_GW_INTR, 0x1);
	}
}

static void gaudi2_handle_pcie_drain(struct hl_device *hdev,
			struct hl_eq_pcie_drain_ind_data *drain_data)
{
	u64 lbw_rd, lbw_wr, hbw_rd, hbw_wr, cause;

	cause = le64_to_cpu(drain_data->intr_cause.intr_cause_data);
	lbw_rd = le64_to_cpu(drain_data->drain_rd_addr_lbw);
	lbw_wr = le64_to_cpu(drain_data->drain_wr_addr_lbw);
	hbw_rd = le64_to_cpu(drain_data->drain_rd_addr_hbw);
	hbw_wr = le64_to_cpu(drain_data->drain_wr_addr_hbw);

	if (cause & BIT_ULL(0))
		dev_err_ratelimited(hdev->dev,
			"PCIE AXI drain LBW completed, read_err %u, write_err %u\n",
			!!lbw_rd, !!lbw_wr);

	if (cause & BIT_ULL(1))
		dev_err_ratelimited(hdev->dev,
			"PCIE AXI drain HBW completed, raddr %#llx, waddr %#llx\n",
			hbw_rd, hbw_wr);
}

static void gaudi2_handle_psoc_drain(struct hl_device *hdev, u64 intr_cause_data)
{
	int i;

	for (i = 0 ; i < GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE ; i++) {
		if (intr_cause_data & BIT_ULL(i))
			dev_err_ratelimited(hdev->dev, "PSOC %s completed\n",
				gaudi2_psoc_axi_drain_interrupts_cause[i]);
	}
}

static void gaudi2_print_cpu_pkt_failure_info(struct hl_device *hdev,
					struct cpucp_pkt_sync_err *sync_err)
{
	struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];

	dev_warn(hdev->dev,
8723 8724
		"FW reported sanity check failure, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%d\n",
		le32_to_cpu(sync_err->pi), le32_to_cpu(sync_err->ci), q->pi, atomic_read(&q->ci));
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
}

static void hl_arc_event_handle(struct hl_device *hdev,
					struct hl_eq_engine_arc_intr_data *data)
{
	struct hl_engine_arc_dccm_queue_full_irq *q;
	u32 intr_type, engine_id;
	u64 payload;

	intr_type = le32_to_cpu(data->intr_type);
	engine_id = le32_to_cpu(data->engine_id);
	payload = le64_to_cpu(data->payload);

	switch (intr_type) {
	case ENGINE_ARC_DCCM_QUEUE_FULL_IRQ:
		q = (struct hl_engine_arc_dccm_queue_full_irq *) &payload;

		dev_err_ratelimited(hdev->dev,
				"ARC DCCM Full event: EngId: %u, Intr_type: %u, Qidx: %u\n",
				engine_id, intr_type, q->queue_index);
		break;
	default:
		dev_err_ratelimited(hdev->dev, "Unknown ARC event type\n");
	}
}

static void gaudi2_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry)
{
8753
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
8754
	bool reset_required = false, is_critical = false;
8755
	u32 ctl, reset_flags = HL_DRV_RESET_HARD;
8756
	int index, sbte_index;
8757
	u64 event_mask = 0;
8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778
	u16 event_type;

	ctl = le32_to_cpu(eq_entry->hdr.ctl);
	event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT);

	if (event_type >= GAUDI2_EVENT_SIZE) {
		dev_err(hdev->dev, "Event type %u exceeds maximum of %u",
				event_type, GAUDI2_EVENT_SIZE - 1);
		return;
	}

	gaudi2->events_stat[event_type]++;
	gaudi2->events_stat_aggregate[event_type]++;

	gaudi2_print_irq_info(hdev, event_type);

	switch (event_type) {
	case GAUDI2_EVENT_PCIE_CORE_SERR ... GAUDI2_EVENT_ARC0_ECC_DERR:
		fallthrough;
	case GAUDI2_EVENT_ROTATOR0_SERR ... GAUDI2_EVENT_ROTATOR1_DERR:
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
8779
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8780
		reset_required = gaudi2_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data);
8781
		is_critical = eq_entry->ecc_data.is_critical;
8782 8783 8784 8785 8786 8787 8788 8789
		break;

	case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_PDMA1_QM:
		fallthrough;
	case GAUDI2_EVENT_ROTATOR0_ROT0_QM ... GAUDI2_EVENT_ROTATOR1_ROT1_QM:
		fallthrough;
	case GAUDI2_EVENT_NIC0_QM0 ... GAUDI2_EVENT_NIC11_QM1:
		gaudi2_handle_qman_err(hdev, event_type);
8790
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8791 8792 8793 8794 8795
		break;

	case GAUDI2_EVENT_ARC_AXI_ERROR_RESPONSE_0:
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
		gaudi2_handle_arc_farm_sei_err(hdev);
8796
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8797 8798 8799 8800
		break;

	case GAUDI2_EVENT_CPU_AXI_ERR_RSP:
		gaudi2_handle_cpu_sei_err(hdev);
8801
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8802 8803 8804 8805 8806
		break;

	case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP:
	case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP:
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
8807
		gaudi2_handle_qm_sei_err(hdev, event_type, &eq_entry->razwi_info, &event_mask);
8808
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8809 8810 8811 8812 8813
		break;

	case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE:
	case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE:
		index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE;
8814 8815
		gaudi2_handle_rot_err(hdev, index, &eq_entry->razwi_with_intr_cause, &event_mask);
		gaudi2_handle_qm_sei_err(hdev, event_type, NULL, &event_mask);
8816
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8817 8818 8819 8820 8821
		break;

	case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC24_AXI_ERR_RSP:
		index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP;
		gaudi2_tpc_ack_interrupts(hdev, index, "AXI_ERR_RSP",
8822 8823
						&eq_entry->razwi_with_intr_cause, &event_mask);
		gaudi2_handle_qm_sei_err(hdev, event_type, NULL, &event_mask);
8824
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8825 8826 8827 8828
		break;

	case GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE ... GAUDI2_EVENT_DEC9_AXI_ERR_RSPONSE:
		index = event_type - GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE;
8829 8830
		gaudi2_handle_dec_err(hdev, index, "AXI_ERR_RESPONSE", &eq_entry->razwi_info,
					&event_mask);
8831
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860
		break;

	case GAUDI2_EVENT_TPC0_KERNEL_ERR:
	case GAUDI2_EVENT_TPC1_KERNEL_ERR:
	case GAUDI2_EVENT_TPC2_KERNEL_ERR:
	case GAUDI2_EVENT_TPC3_KERNEL_ERR:
	case GAUDI2_EVENT_TPC4_KERNEL_ERR:
	case GAUDI2_EVENT_TPC5_KERNEL_ERR:
	case GAUDI2_EVENT_TPC6_KERNEL_ERR:
	case GAUDI2_EVENT_TPC7_KERNEL_ERR:
	case GAUDI2_EVENT_TPC8_KERNEL_ERR:
	case GAUDI2_EVENT_TPC9_KERNEL_ERR:
	case GAUDI2_EVENT_TPC10_KERNEL_ERR:
	case GAUDI2_EVENT_TPC11_KERNEL_ERR:
	case GAUDI2_EVENT_TPC12_KERNEL_ERR:
	case GAUDI2_EVENT_TPC13_KERNEL_ERR:
	case GAUDI2_EVENT_TPC14_KERNEL_ERR:
	case GAUDI2_EVENT_TPC15_KERNEL_ERR:
	case GAUDI2_EVENT_TPC16_KERNEL_ERR:
	case GAUDI2_EVENT_TPC17_KERNEL_ERR:
	case GAUDI2_EVENT_TPC18_KERNEL_ERR:
	case GAUDI2_EVENT_TPC19_KERNEL_ERR:
	case GAUDI2_EVENT_TPC20_KERNEL_ERR:
	case GAUDI2_EVENT_TPC21_KERNEL_ERR:
	case GAUDI2_EVENT_TPC22_KERNEL_ERR:
	case GAUDI2_EVENT_TPC23_KERNEL_ERR:
	case GAUDI2_EVENT_TPC24_KERNEL_ERR:
		index = (event_type - GAUDI2_EVENT_TPC0_KERNEL_ERR) /
			(GAUDI2_EVENT_TPC1_KERNEL_ERR - GAUDI2_EVENT_TPC0_KERNEL_ERR);
8861 8862
		gaudi2_tpc_ack_interrupts(hdev, index, "KRN_ERR", &eq_entry->razwi_with_intr_cause,
						&event_mask);
8863
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877
		break;

	case GAUDI2_EVENT_DEC0_SPI:
	case GAUDI2_EVENT_DEC1_SPI:
	case GAUDI2_EVENT_DEC2_SPI:
	case GAUDI2_EVENT_DEC3_SPI:
	case GAUDI2_EVENT_DEC4_SPI:
	case GAUDI2_EVENT_DEC5_SPI:
	case GAUDI2_EVENT_DEC6_SPI:
	case GAUDI2_EVENT_DEC7_SPI:
	case GAUDI2_EVENT_DEC8_SPI:
	case GAUDI2_EVENT_DEC9_SPI:
		index = (event_type - GAUDI2_EVENT_DEC0_SPI) /
				(GAUDI2_EVENT_DEC1_SPI - GAUDI2_EVENT_DEC0_SPI);
8878
		gaudi2_handle_dec_err(hdev, index, "SPI", &eq_entry->razwi_info, &event_mask);
8879
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8880 8881 8882 8883 8884 8885 8886 8887 8888 8889
		break;

	case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE:
	case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE:
	case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE:
	case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE:
		index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) /
				(GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE -
						GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE);
		gaudi2_handle_mme_err(hdev, index,
8890 8891
				"CTRL_AXI_ERROR_RESPONSE", &eq_entry->razwi_info, &event_mask);
		gaudi2_handle_qm_sei_err(hdev, event_type, NULL, &event_mask);
8892
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8893 8894 8895 8896 8897 8898 8899 8900 8901
		break;

	case GAUDI2_EVENT_MME0_QMAN_SW_ERROR:
	case GAUDI2_EVENT_MME1_QMAN_SW_ERROR:
	case GAUDI2_EVENT_MME2_QMAN_SW_ERROR:
	case GAUDI2_EVENT_MME3_QMAN_SW_ERROR:
		index = (event_type - GAUDI2_EVENT_MME0_QMAN_SW_ERROR) /
				(GAUDI2_EVENT_MME1_QMAN_SW_ERROR -
					GAUDI2_EVENT_MME0_QMAN_SW_ERROR);
8902 8903
		gaudi2_handle_mme_err(hdev, index, "QMAN_SW_ERROR", &eq_entry->razwi_info,
					&event_mask);
8904
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8905 8906 8907 8908 8909 8910 8911 8912 8913
		break;

	case GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID:
	case GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID:
	case GAUDI2_EVENT_MME2_WAP_SOURCE_RESULT_INVALID:
	case GAUDI2_EVENT_MME3_WAP_SOURCE_RESULT_INVALID:
		index = (event_type - GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID) /
				(GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID -
					GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID);
8914
		gaudi2_handle_mme_wap_err(hdev, index, &eq_entry->razwi_info, &event_mask);
8915
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8916 8917 8918 8919 8920 8921
		break;

	case GAUDI2_EVENT_KDMA_CH0_AXI_ERR_RSP:
	case GAUDI2_EVENT_KDMA0_CORE:
		gaudi2_handle_kdma_core_event(hdev,
					le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
8922
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8923 8924 8925 8926 8927
		break;

	case GAUDI2_EVENT_HDMA2_CORE ... GAUDI2_EVENT_PDMA1_CORE:
		gaudi2_handle_dma_core_event(hdev,
					le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
8928
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8929 8930 8931 8932
		break;

	case GAUDI2_EVENT_PCIE_ADDR_DEC_ERR:
		gaudi2_print_pcie_addr_dec_info(hdev,
8933
				le64_to_cpu(eq_entry->intr_cause.intr_cause_data), &event_mask);
8934
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
8935
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8936 8937 8938 8939
		break;

	case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR:
	case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP:
8940
	case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR:
8941
	case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0:
8942
		gaudi2_handle_mmu_spi_sei_err(hdev, event_type, &event_mask);
8943
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
8944
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8945 8946 8947 8948 8949 8950
		break;

	case GAUDI2_EVENT_HIF0_FATAL ... GAUDI2_EVENT_HIF12_FATAL:
		gaudi2_handle_hif_fatal(hdev, event_type,
				le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
8951
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8952 8953 8954 8955 8956 8957
		break;

	case GAUDI2_EVENT_PMMU_FATAL_0:
		gaudi2_handle_pif_fatal(hdev,
				le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
8958
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8959 8960 8961
		break;

	case GAUDI2_EVENT_PSOC63_RAZWI_OR_PID_MIN_MAX_INTERRUPT:
8962
		gaudi2_ack_psoc_razwi_event_handler(hdev, &event_mask);
8963
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
8964 8965 8966
		break;

	case GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE ... GAUDI2_EVENT_HBM5_MC1_SEI_NON_SEVERE:
8967
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8968 8969
		if (gaudi2_handle_hbm_mc_sei_err(hdev, event_type, &eq_entry->sei_data)) {
			reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
8970
			reset_required = true;
8971 8972 8973 8974 8975
		}
		break;

	case GAUDI2_EVENT_HBM_CATTRIP_0 ... GAUDI2_EVENT_HBM_CATTRIP_5:
		gaudi2_handle_hbm_cattrip(hdev, le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
8976
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8977 8978 8979 8980
		break;

	case GAUDI2_EVENT_HBM0_MC0_SPI ... GAUDI2_EVENT_HBM5_MC1_SPI:
		gaudi2_handle_hbm_mc_spi(hdev, le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
8981
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8982 8983 8984 8985
		break;

	case GAUDI2_EVENT_PCIE_DRAIN_COMPLETE:
		gaudi2_handle_pcie_drain(hdev, &eq_entry->pcie_drain_ind_data);
8986
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8987 8988 8989 8990
		break;

	case GAUDI2_EVENT_PSOC59_RPM_ERROR_OR_DRAIN:
		gaudi2_handle_psoc_drain(hdev, le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
8991
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8992 8993 8994 8995
		break;

	case GAUDI2_EVENT_CPU_AXI_ECC:
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
8996
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
8997 8998 8999
		break;
	case GAUDI2_EVENT_CPU_L2_RAM_ECC:
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
9000
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013
		break;
	case GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME0_SBTE4_AXI_ERR_RSP:
	case GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME1_SBTE4_AXI_ERR_RSP:
	case GAUDI2_EVENT_MME2_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME2_SBTE4_AXI_ERR_RSP:
	case GAUDI2_EVENT_MME3_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME3_SBTE4_AXI_ERR_RSP:
		index = (event_type - GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP) /
				(GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP -
					GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP);
		sbte_index = (event_type - GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP) %
				(GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP -
					GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP);
		gaudi2_handle_mme_sbte_err(hdev, index, sbte_index,
						le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
9014
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
9015 9016 9017
		break;
	case GAUDI2_EVENT_VM0_ALARM_A ... GAUDI2_EVENT_VM3_ALARM_B:
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
9018
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9019 9020
		break;
	case GAUDI2_EVENT_PSOC_AXI_ERR_RSP:
9021 9022
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
		break;
9023
	case GAUDI2_EVENT_PSOC_PRSTN_FALL:
9024
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9025 9026 9027
		break;
	case GAUDI2_EVENT_PCIE_APB_TIMEOUT:
		reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
9028
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9029 9030
		break;
	case GAUDI2_EVENT_PCIE_FATAL_ERR:
9031
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082
		break;
	case GAUDI2_EVENT_TPC0_BMON_SPMU:
	case GAUDI2_EVENT_TPC1_BMON_SPMU:
	case GAUDI2_EVENT_TPC2_BMON_SPMU:
	case GAUDI2_EVENT_TPC3_BMON_SPMU:
	case GAUDI2_EVENT_TPC4_BMON_SPMU:
	case GAUDI2_EVENT_TPC5_BMON_SPMU:
	case GAUDI2_EVENT_TPC6_BMON_SPMU:
	case GAUDI2_EVENT_TPC7_BMON_SPMU:
	case GAUDI2_EVENT_TPC8_BMON_SPMU:
	case GAUDI2_EVENT_TPC9_BMON_SPMU:
	case GAUDI2_EVENT_TPC10_BMON_SPMU:
	case GAUDI2_EVENT_TPC11_BMON_SPMU:
	case GAUDI2_EVENT_TPC12_BMON_SPMU:
	case GAUDI2_EVENT_TPC13_BMON_SPMU:
	case GAUDI2_EVENT_TPC14_BMON_SPMU:
	case GAUDI2_EVENT_TPC15_BMON_SPMU:
	case GAUDI2_EVENT_TPC16_BMON_SPMU:
	case GAUDI2_EVENT_TPC17_BMON_SPMU:
	case GAUDI2_EVENT_TPC18_BMON_SPMU:
	case GAUDI2_EVENT_TPC19_BMON_SPMU:
	case GAUDI2_EVENT_TPC20_BMON_SPMU:
	case GAUDI2_EVENT_TPC21_BMON_SPMU:
	case GAUDI2_EVENT_TPC22_BMON_SPMU:
	case GAUDI2_EVENT_TPC23_BMON_SPMU:
	case GAUDI2_EVENT_TPC24_BMON_SPMU:
	case GAUDI2_EVENT_MME0_CTRL_BMON_SPMU:
	case GAUDI2_EVENT_MME0_SBTE_BMON_SPMU:
	case GAUDI2_EVENT_MME0_WAP_BMON_SPMU:
	case GAUDI2_EVENT_MME1_CTRL_BMON_SPMU:
	case GAUDI2_EVENT_MME1_SBTE_BMON_SPMU:
	case GAUDI2_EVENT_MME1_WAP_BMON_SPMU:
	case GAUDI2_EVENT_MME2_CTRL_BMON_SPMU:
	case GAUDI2_EVENT_MME2_SBTE_BMON_SPMU:
	case GAUDI2_EVENT_MME2_WAP_BMON_SPMU:
	case GAUDI2_EVENT_MME3_CTRL_BMON_SPMU:
	case GAUDI2_EVENT_MME3_SBTE_BMON_SPMU:
	case GAUDI2_EVENT_MME3_WAP_BMON_SPMU:
	case GAUDI2_EVENT_HDMA2_BM_SPMU ... GAUDI2_EVENT_PDMA1_BM_SPMU:
		fallthrough;
	case GAUDI2_EVENT_DEC0_BMON_SPMU:
	case GAUDI2_EVENT_DEC1_BMON_SPMU:
	case GAUDI2_EVENT_DEC2_BMON_SPMU:
	case GAUDI2_EVENT_DEC3_BMON_SPMU:
	case GAUDI2_EVENT_DEC4_BMON_SPMU:
	case GAUDI2_EVENT_DEC5_BMON_SPMU:
	case GAUDI2_EVENT_DEC6_BMON_SPMU:
	case GAUDI2_EVENT_DEC7_BMON_SPMU:
	case GAUDI2_EVENT_DEC8_BMON_SPMU:
	case GAUDI2_EVENT_DEC9_BMON_SPMU:
	case GAUDI2_EVENT_ROTATOR0_BMON_SPMU ... GAUDI2_EVENT_SM3_BMON_SPMU:
9083
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
9084 9085 9086 9087 9088 9089
		break;

	case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S:
	case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E:
	case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S:
	case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E:
9090
		gaudi2_print_clk_change_info(hdev, event_type, &event_mask);
9091 9092 9093 9094
		break;

	case GAUDI2_EVENT_CPU_PKT_QUEUE_OUT_SYNC:
		gaudi2_print_out_of_sync_info(hdev, &eq_entry->pkt_sync_err);
9095
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9096 9097 9098
		break;

	case GAUDI2_EVENT_PCIE_FLR_REQUESTED:
9099
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9100 9101 9102 9103 9104
		/* Do nothing- FW will handle it */
		break;

	case GAUDI2_EVENT_PCIE_P2P_MSIX:
		gaudi2_handle_pcie_p2p_msix(hdev);
9105
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
9106 9107 9108 9109
		break;

	case GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE ... GAUDI2_EVENT_SM3_AXI_ERROR_RESPONSE:
		index = event_type - GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE;
9110
		gaudi2_handle_sm_err(hdev, index);
9111
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
9112 9113 9114
		break;

	case GAUDI2_EVENT_PSOC_MME_PLL_LOCK_ERR ... GAUDI2_EVENT_DCORE2_HBM_PLL_LOCK_ERR:
9115
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9116 9117 9118 9119 9120
		break;

	case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE:
		dev_info(hdev->dev, "CPLD shutdown cause, reset reason: 0x%llx\n",
						le64_to_cpu(eq_entry->data[0]));
9121
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9122 9123 9124 9125
		break;
	case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_EVENT:
		dev_err(hdev->dev, "CPLD shutdown event, reset reason: 0x%llx\n",
						le64_to_cpu(eq_entry->data[0]));
9126
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9127 9128 9129 9130
		break;

	case GAUDI2_EVENT_CPU_PKT_SANITY_FAILED:
		gaudi2_print_cpu_pkt_failure_info(hdev, &eq_entry->pkt_sync_err);
9131
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
9132 9133 9134 9135
		break;

	case GAUDI2_EVENT_ARC_DCCM_FULL:
		hl_arc_event_handle(hdev, &eq_entry->arc_data);
9136
		event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
9137 9138
		break;

9139 9140 9141 9142 9143
	case GAUDI2_EVENT_CPU_FP32_NOT_SUPPORTED:
		event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
		is_critical = true;
		break;

9144 9145 9146 9147 9148 9149
	default:
		if (gaudi2_irq_map_table[event_type].valid)
			dev_err_ratelimited(hdev->dev, "Cannot find handler for event %d\n",
						event_type);
	}

9150 9151 9152
	if ((gaudi2_irq_map_table[event_type].reset || reset_required) &&
				(hdev->hard_reset_on_fw_events ||
				(hdev->asic_prop.fw_security_enabled && is_critical)))
9153 9154 9155 9156 9157 9158
		goto reset_device;

	/* Send unmask irq only for interrupts not classified as MSG */
	if (!gaudi2_irq_map_table[event_type].msg)
		hl_fw_unmask_irq(hdev, event_type);

9159 9160 9161
	if (event_mask)
		hl_notifier_event_send_all(hdev, event_mask);

9162 9163 9164
	return;

reset_device:
9165
	if (hdev->asic_prop.fw_security_enabled && is_critical) {
9166 9167
		reset_flags |= HL_DRV_RESET_BYPASS_REQ_TO_FW;
		event_mask |= HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
9168
	} else {
9169
		reset_flags |= HL_DRV_RESET_DELAY;
9170
	}
9171 9172
	event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
	hl_device_cond_reset(hdev, reset_flags, event_mask);
9173 9174
}

9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201
static int gaudi2_memset_memory_chunk_using_edma_qm(struct hl_device *hdev,
			struct packet_lin_dma *lin_dma_pkt, dma_addr_t pkt_dma_addr,
			u32 hw_queue_id, u32 size, u64 addr, u32 val)
{
	u32 ctl, pkt_size;
	int rc = 0;

	ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_LIN_DMA);
	ctl |= FIELD_PREP(GAUDI2_PKT_LIN_DMA_CTL_MEMSET_MASK, 1);
	ctl |= FIELD_PREP(GAUDI2_PKT_LIN_DMA_CTL_WRCOMP_MASK, 1);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 1);

	lin_dma_pkt->ctl = cpu_to_le32(ctl);
	lin_dma_pkt->src_addr = cpu_to_le64(val);
	lin_dma_pkt->dst_addr = cpu_to_le64(addr);
	lin_dma_pkt->tsize = cpu_to_le32(size);

	pkt_size = sizeof(struct packet_lin_dma);

	rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, pkt_dma_addr);
	if (rc)
		dev_err(hdev->dev, "Failed to send lin dma packet to H/W queue %d\n",
				hw_queue_id);

	return rc;
}

9202 9203
static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val)
{
9204 9205 9206 9207 9208 9209
	u32 edma_queues_id[] = {GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0,
					GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0,
					GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0,
					GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0};
	u32 chunk_size, dcore, edma_idx, sob_offset, sob_addr, comp_val,
		old_mmubp, mmubp, num_of_pkts, busy, pkt_size;
9210
	u64 comp_addr, cur_addr = addr, end_addr = addr + size;
9211 9212 9213 9214 9215 9216 9217 9218 9219
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	void *lin_dma_pkts_arr;
	dma_addr_t pkt_dma_addr;
	int rc = 0, dma_num = 0;

	if (prop->edma_enabled_mask == 0) {
		dev_info(hdev->dev, "non of the EDMA engines is enabled - skip dram scrubbing\n");
		return -EIO;
	}
9220 9221 9222 9223 9224 9225 9226 9227 9228

	sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4;
	sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
	comp_addr = CFG_BASE + sob_addr;
	comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) |
		FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1);
	mmubp = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_MASK, 1) |
		FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_MASK, 1);

9229 9230 9231 9232 9233 9234 9235 9236
	/* Calculate how many lin dma pkts we'll need */
	num_of_pkts = div64_u64(round_up(size, SZ_2G), SZ_2G);
	pkt_size = sizeof(struct packet_lin_dma);

	lin_dma_pkts_arr = hl_asic_dma_alloc_coherent(hdev, pkt_size * num_of_pkts,
					&pkt_dma_addr, GFP_KERNEL);
	if (!lin_dma_pkts_arr)
		return -ENOMEM;
9237 9238 9239 9240

	/*
	 * set mmu bypass for the scrubbing - all ddmas are configured the same so save
	 * only the first one to restore later
9241 9242
	 * also set the sob addr for all edma cores for completion.
	 * set QM as trusted to allow it to access physical address with MMU bp.
9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254
	 */
	old_mmubp = RREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP);
	for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
		for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
			u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET;
			u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;

			if (!(prop->edma_enabled_mask & BIT(edma_bit)))
				continue;

			WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP +
					edma_offset, mmubp);
9255 9256 9257 9258 9259 9260 9261 9262
			WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset,
					lower_32_bits(comp_addr));
			WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset,
					upper_32_bits(comp_addr));
			WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset,
					comp_val);
			gaudi2_qman_set_test_mode(hdev,
					edma_queues_id[dcore] + 4 * edma_idx, true);
9263 9264 9265
		}
	}

9266
	WREG32(sob_addr, 0);
9267

9268
	while (cur_addr < end_addr) {
9269 9270 9271 9272 9273 9274 9275 9276 9277
		for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
			for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
				u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;

				if (!(prop->edma_enabled_mask & BIT(edma_bit)))
					continue;

				chunk_size = min_t(u64, SZ_2G, end_addr - cur_addr);

9278 9279 9280 9281 9282 9283 9284
				rc = gaudi2_memset_memory_chunk_using_edma_qm(hdev,
					(struct packet_lin_dma *)lin_dma_pkts_arr + dma_num,
					pkt_dma_addr + dma_num * pkt_size,
					edma_queues_id[dcore] + edma_idx * 4,
					chunk_size, cur_addr, val);
				if (rc)
					goto end;
9285 9286 9287 9288

				dma_num++;
				cur_addr += chunk_size;
				if (cur_addr == end_addr)
9289
					break;
9290 9291
			}
		}
9292 9293 9294 9295 9296 9297
	}

	rc = hl_poll_timeout(hdev, sob_addr, busy, (busy == dma_num), 1000, 1000000);
	if (rc) {
		dev_err(hdev->dev, "DMA Timeout during HBM scrubbing\n");
		goto end;
9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308
	}
end:
	for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
		for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
			u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET;
			u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;

			if (!(prop->edma_enabled_mask & BIT(edma_bit)))
				continue;

			WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + edma_offset, old_mmubp);
9309 9310 9311 9312 9313
			WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset, 0);
			WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset, 0);
			WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset, 0);
			gaudi2_qman_set_test_mode(hdev,
					edma_queues_id[dcore] + 4 * edma_idx, false);
9314 9315 9316 9317
		}
	}

	WREG32(sob_addr, 0);
9318 9319
	hl_asic_dma_free_coherent(hdev, pkt_size * num_of_pkts, lin_dma_pkts_arr, pkt_dma_addr);

9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389
	return rc;
}

static int gaudi2_scrub_device_dram(struct hl_device *hdev, u64 val)
{
	int rc;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u64 size = prop->dram_end_address - prop->dram_user_base_address;

	rc = gaudi2_memset_device_memory(hdev, prop->dram_user_base_address, size, val);

	if (rc)
		dev_err(hdev->dev, "Failed to scrub dram, address: 0x%llx size: %llu\n",
				prop->dram_user_base_address, size);
	return rc;
}

static int gaudi2_scrub_device_mem(struct hl_device *hdev)
{
	int rc;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u64 val = hdev->memory_scrub_val;
	u64 addr, size;

	if (!hdev->memory_scrub)
		return 0;

	/* scrub SRAM */
	addr = prop->sram_user_base_address;
	size = hdev->pldm ? 0x10000 : (prop->sram_size - SRAM_USER_BASE_OFFSET);
	dev_dbg(hdev->dev, "Scrubbing SRAM: 0x%09llx - 0x%09llx, val: 0x%llx\n",
			addr, addr + size, val);
	rc = gaudi2_memset_device_memory(hdev, addr, size, val);
	if (rc) {
		dev_err(hdev->dev, "scrubbing SRAM failed (%d)\n", rc);
		return rc;
	}

	/* scrub DRAM */
	rc = gaudi2_scrub_device_dram(hdev, val);
	if (rc) {
		dev_err(hdev->dev, "scrubbing DRAM failed (%d)\n", rc);
		return rc;
	}
	return 0;
}

static void gaudi2_restore_user_sm_registers(struct hl_device *hdev)
{
	u64 addr, mon_sts_addr, mon_cfg_addr, cq_lbw_l_addr, cq_lbw_h_addr,
		cq_lbw_data_addr, cq_base_l_addr, cq_base_h_addr, cq_size_addr;
	u32 val, size, offset;
	int dcore_id;

	offset = hdev->asic_prop.first_available_cq[0] * 4;
	cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset;
	cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + offset;
	cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + offset;
	cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + offset;
	cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + offset;
	cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + offset;
	size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 -
			(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset);

	/* memset dcore0 CQ registers */
	gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0);
	gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0);
	gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0);
	gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0);
	gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0);
9390
	gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0);
9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575

	cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + DCORE_OFFSET;
	cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + DCORE_OFFSET;
	cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + DCORE_OFFSET;
	cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + DCORE_OFFSET;
	cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + DCORE_OFFSET;
	cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + DCORE_OFFSET;
	size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 - mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0;

	for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
		gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0);
		gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0);
		gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0);
		gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0);
		gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0);
		gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0);

		cq_lbw_l_addr += DCORE_OFFSET;
		cq_lbw_h_addr += DCORE_OFFSET;
		cq_lbw_data_addr += DCORE_OFFSET;
		cq_base_l_addr += DCORE_OFFSET;
		cq_base_h_addr += DCORE_OFFSET;
		cq_size_addr += DCORE_OFFSET;
	}

	offset = hdev->asic_prop.first_available_user_mon[0] * 4;
	addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset;
	val = 1 << DCORE0_SYNC_MNGR_OBJS_MON_STATUS_PROT_SHIFT;
	size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - (mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset);

	/* memset dcore0 monitors */
	gaudi2_memset_device_lbw(hdev, addr, size, val);

	addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + offset;
	gaudi2_memset_device_lbw(hdev, addr, size, 0);

	mon_sts_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + DCORE_OFFSET;
	mon_cfg_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + DCORE_OFFSET;
	size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0;

	for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
		gaudi2_memset_device_lbw(hdev, mon_sts_addr, size, val);
		gaudi2_memset_device_lbw(hdev, mon_cfg_addr, size, 0);
		mon_sts_addr += DCORE_OFFSET;
		mon_cfg_addr += DCORE_OFFSET;
	}

	offset = hdev->asic_prop.first_available_user_sob[0] * 4;
	addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset;
	val = 0;
	size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 -
			(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset);

	/* memset dcore0 sobs */
	gaudi2_memset_device_lbw(hdev, addr, size, val);

	addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + DCORE_OFFSET;
	size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 - mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0;

	for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
		gaudi2_memset_device_lbw(hdev, addr, size, val);
		addr += DCORE_OFFSET;
	}

	/* Flush all WREG to prevent race */
	val = RREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset);
}

static void gaudi2_restore_user_qm_registers(struct hl_device *hdev)
{
	u32 reg_base, hw_queue_id;

	for (hw_queue_id = GAUDI2_QUEUE_ID_PDMA_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_ROT_1_0;
							hw_queue_id += NUM_OF_PQ_PER_QMAN) {
		if (!gaudi2_is_queue_enabled(hdev, hw_queue_id))
			continue;

		gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false);

		reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
		WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0);
	}

	/* Flush all WREG to prevent race */
	RREG32(mmPDMA0_QM_ARB_CFG_0);
}

static void gaudi2_restore_nic_qm_registers(struct hl_device *hdev)
{
	u32 reg_base, hw_queue_id;

	for (hw_queue_id = GAUDI2_QUEUE_ID_NIC_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_NIC_23_3;
							hw_queue_id += NUM_OF_PQ_PER_QMAN) {
		if (!gaudi2_is_queue_enabled(hdev, hw_queue_id))
			continue;

		gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false);

		reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
		WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0);
	}

	/* Flush all WREG to prevent race */
	RREG32(mmPDMA0_QM_ARB_CFG_0);
}

static int gaudi2_context_switch(struct hl_device *hdev, u32 asid)
{
	return 0;
}

static void gaudi2_restore_phase_topology(struct hl_device *hdev)
{
}

static void gaudi2_init_block_instances(struct hl_device *hdev, u32 block_idx,
						struct dup_block_ctx *cfg_ctx)
{
	u64 block_base = cfg_ctx->base + block_idx * cfg_ctx->block_off;
	u8 seq;
	int i;

	for (i = 0 ; i < cfg_ctx->instances ; i++) {
		seq = block_idx * cfg_ctx->instances + i;

		/* skip disabled instance */
		if (!(cfg_ctx->enabled_mask & BIT_ULL(seq)))
			continue;

		cfg_ctx->instance_cfg_fn(hdev, block_base + i * cfg_ctx->instance_off,
					cfg_ctx->data);
	}
}

static void gaudi2_init_blocks_with_mask(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx,
						u64 mask)
{
	int i;

	cfg_ctx->enabled_mask = mask;

	for (i = 0 ; i < cfg_ctx->blocks ; i++)
		gaudi2_init_block_instances(hdev, i, cfg_ctx);
}

void gaudi2_init_blocks(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx)
{
	gaudi2_init_blocks_with_mask(hdev, cfg_ctx, U64_MAX);
}

static int gaudi2_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size, void *blob_addr)
{
	void *host_mem_virtual_addr;
	dma_addr_t host_mem_dma_addr;
	u64 reserved_va_base;
	u32 pos, size_left, size_to_dma;
	struct hl_ctx *ctx;
	int rc = 0;

	/* Fetch the ctx */
	ctx = hl_get_compute_ctx(hdev);
	if (!ctx) {
		dev_err(hdev->dev, "No ctx available\n");
		return -EINVAL;
	}

	/* Allocate buffers for read and for poll */
	host_mem_virtual_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &host_mem_dma_addr,
								GFP_KERNEL | __GFP_ZERO);
	if (host_mem_virtual_addr == NULL) {
		dev_err(hdev->dev, "Failed to allocate memory for KDMA read\n");
		rc = -ENOMEM;
		goto put_ctx;
	}

	/* Reserve VM region on asic side */
	reserved_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, SZ_2M,
						HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
	if (!reserved_va_base) {
		dev_err(hdev->dev, "Failed to reserve vmem on asic\n");
		rc = -ENOMEM;
		goto free_data_buffer;
	}

	/* Create mapping on asic side */
9576
	mutex_lock(&hdev->mmu_lock);
9577 9578 9579 9580
	rc = hl_mmu_map_contiguous(ctx, reserved_va_base, host_mem_dma_addr, SZ_2M);
	hl_mmu_invalidate_cache_range(hdev, false,
				      MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV,
				      ctx->asid, reserved_va_base, SZ_2M);
9581
	mutex_unlock(&hdev->mmu_lock);
9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613
	if (rc) {
		dev_err(hdev->dev, "Failed to create mapping on asic mmu\n");
		goto unreserve_va;
	}

	/* Enable MMU on KDMA */
	gaudi2_kdma_set_mmbp_asid(hdev, false, ctx->asid);

	pos = 0;
	size_left = size;
	size_to_dma = SZ_2M;

	while (size_left > 0) {
		if (size_left < SZ_2M)
			size_to_dma = size_left;

		rc = gaudi2_send_job_to_kdma(hdev, addr, reserved_va_base, size_to_dma, false);
		if (rc)
			break;

		memcpy(blob_addr + pos, host_mem_virtual_addr, size_to_dma);

		if (size_left <= SZ_2M)
			break;

		pos += SZ_2M;
		addr += SZ_2M;
		size_left -= SZ_2M;
	}

	gaudi2_kdma_set_mmbp_asid(hdev, true, HL_KERNEL_ASID_ID);

9614
	mutex_lock(&hdev->mmu_lock);
9615 9616 9617
	hl_mmu_unmap_contiguous(ctx, reserved_va_base, SZ_2M);
	hl_mmu_invalidate_cache_range(hdev, false, MMU_OP_USERPTR,
				      ctx->asid, reserved_va_base, SZ_2M);
9618
	mutex_unlock(&hdev->mmu_lock);
9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670
unreserve_va:
	hl_unreserve_va_block(hdev, ctx, reserved_va_base, SZ_2M);
free_data_buffer:
	hl_asic_dma_free_coherent(hdev, SZ_2M, host_mem_virtual_addr, host_mem_dma_addr);
put_ctx:
	hl_ctx_put(ctx);

	return rc;
}

static int gaudi2_internal_cb_pool_init(struct hl_device *hdev, struct hl_ctx *ctx)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int min_alloc_order, rc;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU))
		return 0;

	hdev->internal_cb_pool_virt_addr = hl_asic_dma_alloc_coherent(hdev,
								HOST_SPACE_INTERNAL_CB_SZ,
								&hdev->internal_cb_pool_dma_addr,
								GFP_KERNEL | __GFP_ZERO);

	if (!hdev->internal_cb_pool_virt_addr)
		return -ENOMEM;

	min_alloc_order = ilog2(min(gaudi2_get_signal_cb_size(hdev),
					gaudi2_get_wait_cb_size(hdev)));

	hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1);
	if (!hdev->internal_cb_pool) {
		dev_err(hdev->dev, "Failed to create internal CB pool\n");
		rc = -ENOMEM;
		goto free_internal_cb_pool;
	}

	rc = gen_pool_add(hdev->internal_cb_pool, (uintptr_t) hdev->internal_cb_pool_virt_addr,
				HOST_SPACE_INTERNAL_CB_SZ, -1);
	if (rc) {
		dev_err(hdev->dev, "Failed to add memory to internal CB pool\n");
		rc = -EFAULT;
		goto destroy_internal_cb_pool;
	}

	hdev->internal_cb_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST,
					HOST_SPACE_INTERNAL_CB_SZ, HL_MMU_VA_ALIGNMENT_NOT_NEEDED);

	if (!hdev->internal_cb_va_base) {
		rc = -ENOMEM;
		goto destroy_internal_cb_pool;
	}

9671
	mutex_lock(&hdev->mmu_lock);
9672 9673 9674
	rc = hl_mmu_map_contiguous(ctx, hdev->internal_cb_va_base, hdev->internal_cb_pool_dma_addr,
					HOST_SPACE_INTERNAL_CB_SZ);
	hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR);
9675
	mutex_unlock(&hdev->mmu_lock);
9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699

	if (rc)
		goto unreserve_internal_cb_pool;

	return 0;

unreserve_internal_cb_pool:
	hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
destroy_internal_cb_pool:
	gen_pool_destroy(hdev->internal_cb_pool);
free_internal_cb_pool:
	hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr,
					hdev->internal_cb_pool_dma_addr);

	return rc;
}

static void gaudi2_internal_cb_pool_fini(struct hl_device *hdev, struct hl_ctx *ctx)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU))
		return;

9700
	mutex_lock(&hdev->mmu_lock);
9701 9702 9703
	hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
	hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
	hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
9704
	mutex_unlock(&hdev->mmu_lock);
9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717

	gen_pool_destroy(hdev->internal_cb_pool);

	hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr,
					hdev->internal_cb_pool_dma_addr);
}

static void gaudi2_restore_user_registers(struct hl_device *hdev)
{
	gaudi2_restore_user_sm_registers(hdev);
	gaudi2_restore_user_qm_registers(hdev);
}

9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746
static int gaudi2_map_virtual_msix_doorbell_memory(struct hl_ctx *ctx)
{
	struct hl_device *hdev = ctx->hdev;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int rc;

	rc = hl_mmu_map_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START,
				gaudi2->virt_msix_db_dma_addr, prop->pmmu.page_size, true);
	if (rc)
		dev_err(hdev->dev, "Failed to map VA %#llx for virtual MSI-X doorbell memory\n",
			RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START);

	return rc;
}

static void gaudi2_unmap_virtual_msix_doorbell_memory(struct hl_ctx *ctx)
{
	struct hl_device *hdev = ctx->hdev;
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	int rc;

	rc = hl_mmu_unmap_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START,
				prop->pmmu.page_size, true);
	if (rc)
		dev_err(hdev->dev, "Failed to unmap VA %#llx of virtual MSI-X doorbell memory\n",
			RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START);
}

9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762
static int gaudi2_ctx_init(struct hl_ctx *ctx)
{
	int rc;

	rc = gaudi2_mmu_prepare(ctx->hdev, ctx->asid);
	if (rc)
		return rc;

	/* No need to clear user registers if the device has just
	 * performed reset, we restore only nic qm registers
	 */
	if (ctx->hdev->reset_upon_device_release)
		gaudi2_restore_nic_qm_registers(ctx->hdev);
	else
		gaudi2_restore_user_registers(ctx->hdev);

9763 9764 9765 9766 9767 9768 9769 9770 9771
	rc = gaudi2_internal_cb_pool_init(ctx->hdev, ctx);
	if (rc)
		return rc;

	rc = gaudi2_map_virtual_msix_doorbell_memory(ctx);
	if (rc)
		gaudi2_internal_cb_pool_fini(ctx->hdev, ctx);

	return rc;
9772 9773 9774 9775 9776 9777 9778 9779
}

static void gaudi2_ctx_fini(struct hl_ctx *ctx)
{
	if (ctx->asid == HL_KERNEL_ASID_ID)
		return;

	gaudi2_internal_cb_pool_fini(ctx->hdev, ctx);
9780 9781

	gaudi2_unmap_virtual_msix_doorbell_memory(ctx);
9782 9783 9784 9785 9786 9787
}

static int gaudi2_pre_schedule_cs(struct hl_cs *cs)
{
	struct hl_device *hdev = cs->ctx->hdev;
	int index = cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
9788
	u32 mon_payload, sob_id, mon_id;
9789 9790 9791 9792 9793

	if (!cs_needs_completion(cs))
		return 0;

	/*
9794
	 * First 64 SOB/MON are reserved for driver for QMAN auto completion
9795 9796 9797 9798 9799 9800
	 * mechanism. Each SOB/MON pair are used for a pending CS with the same
	 * cyclic index. The SOB value is increased when each of the CS jobs is
	 * completed. When the SOB reaches the number of CS jobs, the monitor
	 * generates MSI-X interrupt.
	 */

9801
	sob_id = mon_id = index;
9802 9803 9804
	mon_payload = (1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) |
				(1 << CQ_ENTRY_READY_SHIFT) | index;

9805 9806
	gaudi2_arm_cq_monitor(hdev, sob_id, mon_id, GAUDI2_RESERVED_CQ_CS_COMPLETION, mon_payload,
				cs->jobs_cnt);
9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817

	return 0;
}

static u32 gaudi2_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx)
{
	return HL_INVALID_QUEUE;
}

static u32 gaudi2_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb)
{
9818
	struct hl_cb *cb = data;
9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910
	struct packet_msg_short *pkt;
	u32 value, ctl, pkt_size = sizeof(*pkt);

	pkt = (struct packet_msg_short *) (uintptr_t) (cb->kernel_address + size);
	memset(pkt, 0, pkt_size);

	/* Inc by 1, Mode ADD */
	value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_SYNC_VAL_MASK, 1);
	value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_MOD_MASK, 1);

	ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, sob_id * 4);
	ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 1); /* SOB base */
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, eb);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);

	pkt->value = cpu_to_le32(value);
	pkt->ctl = cpu_to_le32(ctl);

	return size + pkt_size;
}

static u32 gaudi2_add_mon_msg_short(struct packet_msg_short *pkt, u32 value, u16 addr)
{
	u32 ctl, pkt_size = sizeof(*pkt);

	memset(pkt, 0, pkt_size);

	ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr);
	ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0);  /* MON base */
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 0);

	pkt->value = cpu_to_le32(value);
	pkt->ctl = cpu_to_le32(ctl);

	return pkt_size;
}

static u32 gaudi2_add_arm_monitor_pkt(struct hl_device *hdev, struct packet_msg_short *pkt,
					u16 sob_base, u8 sob_mask, u16 sob_val, u16 addr)
{
	u32 ctl, value, pkt_size = sizeof(*pkt);
	u8 mask;

	if (hl_gen_sob_mask(sob_base, sob_mask, &mask)) {
		dev_err(hdev->dev, "sob_base %u (mask %#x) is not valid\n", sob_base, sob_mask);
		return 0;
	}

	memset(pkt, 0, pkt_size);

	value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_GID_MASK, sob_base / 8);
	value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_VAL_MASK, sob_val);
	value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MODE_MASK, 0); /* GREATER OR EQUAL*/
	value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MASK_MASK, mask);

	ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr);
	ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);

	pkt->value = cpu_to_le32(value);
	pkt->ctl = cpu_to_le32(ctl);

	return pkt_size;
}

static u32 gaudi2_add_fence_pkt(struct packet_fence *pkt)
{
	u32 ctl, cfg, pkt_size = sizeof(*pkt);

	memset(pkt, 0, pkt_size);

	cfg = FIELD_PREP(GAUDI2_PKT_FENCE_CFG_DEC_VAL_MASK, 1);
	cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_TARGET_VAL_MASK, 1);
	cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_ID_MASK, 2);

	ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_FENCE);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
	ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);

	pkt->cfg = cpu_to_le32(cfg);
	pkt->ctl = cpu_to_le32(ctl);

	return pkt_size;
}

static u32 gaudi2_gen_wait_cb(struct hl_device *hdev, struct hl_gen_wait_properties *prop)
{
9911
	struct hl_cb *cb = prop->data;
9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962
	void *buf = (void *) (uintptr_t) (cb->kernel_address);

	u64 monitor_base, fence_addr = 0;
	u32 stream_index, size = prop->size;
	u16 msg_addr_offset;

	stream_index = prop->q_idx % 4;
	fence_addr = CFG_BASE + gaudi2_qm_blocks_bases[prop->q_idx] +
			QM_FENCE2_OFFSET + stream_index * 4;

	/*
	 * monitor_base should be the content of the base0 address registers,
	 * so it will be added to the msg short offsets
	 */
	monitor_base = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0;

	/* First monitor config packet: low address of the sync */
	msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + prop->mon_id * 4) -
				monitor_base;

	size += gaudi2_add_mon_msg_short(buf + size, (u32) fence_addr, msg_addr_offset);

	/* Second monitor config packet: high address of the sync */
	msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + prop->mon_id * 4) -
				monitor_base;

	size += gaudi2_add_mon_msg_short(buf + size, (u32) (fence_addr >> 32), msg_addr_offset);

	/*
	 * Third monitor config packet: the payload, i.e. what to write when the
	 * sync triggers
	 */
	msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + prop->mon_id * 4) -
				monitor_base;

	size += gaudi2_add_mon_msg_short(buf + size, 1, msg_addr_offset);

	/* Fourth monitor config packet: bind the monitor to a sync object */
	msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + prop->mon_id * 4) - monitor_base;

	size += gaudi2_add_arm_monitor_pkt(hdev, buf + size, prop->sob_base, prop->sob_mask,
						prop->sob_val, msg_addr_offset);

	/* Fence packet */
	size += gaudi2_add_fence_pkt(buf + size);

	return size;
}

static void gaudi2_reset_sob(struct hl_device *hdev, void *data)
{
9963
	struct hl_hw_sob *hw_sob = data;
9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205

	dev_dbg(hdev->dev, "reset SOB, q_idx: %d, sob_id: %d\n", hw_sob->q_idx, hw_sob->sob_id);

	WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + hw_sob->sob_id * 4, 0);

	kref_init(&hw_sob->kref);
}

static void gaudi2_reset_sob_group(struct hl_device *hdev, u16 sob_group)
{
}

static u64 gaudi2_get_device_time(struct hl_device *hdev)
{
	u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32;

	return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL);
}

static int gaudi2_collective_wait_init_cs(struct hl_cs *cs)
{
	return 0;
}

static int gaudi2_collective_wait_create_jobs(struct hl_device *hdev, struct hl_ctx *ctx,
					struct hl_cs *cs, u32 wait_queue_id,
					u32 collective_engine_id, u32 encaps_signal_offset)
{
	return -EINVAL;
}

/*
 * hl_mmu_scramble - converts a dram (non power of 2) page-size aligned address
 *                   to DMMU page-size address (64MB) before mapping it in
 *                   the MMU.
 * The operation is performed on both the virtual and physical addresses.
 * for device with 6 HBMs the scramble is:
 * (addr[47:0] / 48M) * 64M + addr % 48M + addr[63:48]
 *
 * Example:
 * =============================================================================
 * Allocated DRAM  Reserved VA      scrambled VA for MMU mapping    Scrambled PA
 * Phys address                                                     in MMU last
 *                                                                    HOP
 * =============================================================================
 * PA1 0x3000000  VA1 0x9C000000  SVA1= (VA1/48M)*64M 0xD0000000  <- PA1/48M 0x1
 * PA2 0x9000000  VA2 0x9F000000  SVA2= (VA2/48M)*64M 0xD4000000  <- PA2/48M 0x3
 * =============================================================================
 */
static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u32 divisor, mod_va;
	u64 div_va;

	/* accept any address in the DRAM address space */
	if (hl_mem_area_inside_range(raw_addr, sizeof(raw_addr), DRAM_PHYS_BASE,
									VA_HBM_SPACE_END)) {

		divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE;
		div_va = div_u64_rem(raw_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK, divisor, &mod_va);
		return (raw_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) |
			(div_va << GAUDI2_HBM_MMU_SCRM_DIV_SHIFT) |
			(mod_va << GAUDI2_HBM_MMU_SCRM_MOD_SHIFT);
	}

	return raw_addr;
}

static u64 gaudi2_mmu_descramble_addr(struct hl_device *hdev, u64 scrambled_addr)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u32 divisor, mod_va;
	u64 div_va;

	/* accept any address in the DRAM address space */
	if (hl_mem_area_inside_range(scrambled_addr, sizeof(scrambled_addr), DRAM_PHYS_BASE,
									VA_HBM_SPACE_END)) {

		divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE;
		div_va = div_u64_rem(scrambled_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK,
					PAGE_SIZE_64MB, &mod_va);

		return ((scrambled_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) +
					(div_va * divisor + mod_va));
	}

	return scrambled_addr;
}

static u32 gaudi2_get_dec_base_addr(struct hl_device *hdev, u32 core_id)
{
	u32 base = 0, dcore_id, dec_id;

	if (core_id >= NUMBER_OF_DEC) {
		dev_err(hdev->dev, "Unexpected core number %d for DEC\n", core_id);
		goto out;
	}

	if (core_id < 8) {
		dcore_id = core_id / NUM_OF_DEC_PER_DCORE;
		dec_id = core_id % NUM_OF_DEC_PER_DCORE;

		base = mmDCORE0_DEC0_CMD_BASE + dcore_id * DCORE_OFFSET +
				dec_id * DCORE_VDEC_OFFSET;
	} else {
		/* PCIe Shared Decoder */
		base = mmPCIE_DEC0_CMD_BASE + ((core_id % 8) * PCIE_VDEC_OFFSET);
	}
out:
	return base;
}

static int gaudi2_get_hw_block_id(struct hl_device *hdev, u64 block_addr,
				u32 *block_size, u32 *block_id)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	int i;

	for (i = 0 ; i < NUM_USER_MAPPED_BLOCKS ; i++) {
		if (block_addr == CFG_BASE + gaudi2->mapped_blocks[i].address) {
			*block_id = i;
			if (block_size)
				*block_size = gaudi2->mapped_blocks[i].size;
			return 0;
		}
	}

	dev_err(hdev->dev, "Invalid block address %#llx", block_addr);

	return -EINVAL;
}

static int gaudi2_block_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
			u32 block_id, u32 block_size)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u64 offset_in_bar;
	u64 address;
	int rc;

	if (block_id >= NUM_USER_MAPPED_BLOCKS) {
		dev_err(hdev->dev, "Invalid block id %u", block_id);
		return -EINVAL;
	}

	/* we allow mapping only an entire block */
	if (block_size != gaudi2->mapped_blocks[block_id].size) {
		dev_err(hdev->dev, "Invalid block size %u", block_size);
		return -EINVAL;
	}

	offset_in_bar = CFG_BASE + gaudi2->mapped_blocks[block_id].address - STM_FLASH_BASE_ADDR;

	address = pci_resource_start(hdev->pdev, SRAM_CFG_BAR_ID) + offset_in_bar;

	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
			VM_DONTCOPY | VM_NORESERVE;

	rc = remap_pfn_range(vma, vma->vm_start, address >> PAGE_SHIFT,
			block_size, vma->vm_page_prot);
	if (rc)
		dev_err(hdev->dev, "remap_pfn_range error %d", rc);

	return rc;
}

static void gaudi2_enable_events_from_fw(struct hl_device *hdev)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

	struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
	u32 irq_handler_offset = le32_to_cpu(dyn_regs->gic_host_ints_irq);

	if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)
		WREG32(irq_handler_offset,
			gaudi2_irq_map_table[GAUDI2_EVENT_CPU_INTS_REGISTER].cpu_id);
}

static int gaudi2_get_mmu_base(struct hl_device *hdev, u64 mmu_id, u32 *mmu_base)
{
	switch (mmu_id) {
	case HW_CAP_DCORE0_DMMU0:
		*mmu_base = mmDCORE0_HMMU0_MMU_BASE;
		break;
	case HW_CAP_DCORE0_DMMU1:
		*mmu_base = mmDCORE0_HMMU1_MMU_BASE;
		break;
	case HW_CAP_DCORE0_DMMU2:
		*mmu_base = mmDCORE0_HMMU2_MMU_BASE;
		break;
	case HW_CAP_DCORE0_DMMU3:
		*mmu_base = mmDCORE0_HMMU3_MMU_BASE;
		break;
	case HW_CAP_DCORE1_DMMU0:
		*mmu_base = mmDCORE1_HMMU0_MMU_BASE;
		break;
	case HW_CAP_DCORE1_DMMU1:
		*mmu_base = mmDCORE1_HMMU1_MMU_BASE;
		break;
	case HW_CAP_DCORE1_DMMU2:
		*mmu_base = mmDCORE1_HMMU2_MMU_BASE;
		break;
	case HW_CAP_DCORE1_DMMU3:
		*mmu_base = mmDCORE1_HMMU3_MMU_BASE;
		break;
	case HW_CAP_DCORE2_DMMU0:
		*mmu_base = mmDCORE2_HMMU0_MMU_BASE;
		break;
	case HW_CAP_DCORE2_DMMU1:
		*mmu_base = mmDCORE2_HMMU1_MMU_BASE;
		break;
	case HW_CAP_DCORE2_DMMU2:
		*mmu_base = mmDCORE2_HMMU2_MMU_BASE;
		break;
	case HW_CAP_DCORE2_DMMU3:
		*mmu_base = mmDCORE2_HMMU3_MMU_BASE;
		break;
	case HW_CAP_DCORE3_DMMU0:
		*mmu_base = mmDCORE3_HMMU0_MMU_BASE;
		break;
	case HW_CAP_DCORE3_DMMU1:
		*mmu_base = mmDCORE3_HMMU1_MMU_BASE;
		break;
	case HW_CAP_DCORE3_DMMU2:
		*mmu_base = mmDCORE3_HMMU2_MMU_BASE;
		break;
	case HW_CAP_DCORE3_DMMU3:
		*mmu_base = mmDCORE3_HMMU3_MMU_BASE;
		break;
	case HW_CAP_PMMU:
		*mmu_base = mmPMMU_HBW_MMU_BASE;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static void gaudi2_ack_mmu_error(struct hl_device *hdev, u64 mmu_id)
{
10206
	bool is_pmmu = (mmu_id == HW_CAP_PMMU);
10207 10208 10209 10210 10211 10212 10213 10214 10215
	struct gaudi2_device *gaudi2 = hdev->asic_specific;
	u32 mmu_base;

	if (!(gaudi2->hw_cap_initialized & mmu_id))
		return;

	if (gaudi2_get_mmu_base(hdev, mmu_id, &mmu_base))
		return;

10216
	gaudi2_handle_page_error(hdev, mmu_base, is_pmmu, NULL);
10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362
	gaudi2_handle_access_error(hdev, mmu_base, is_pmmu);
}

static int gaudi2_ack_mmu_page_fault_or_access_error(struct hl_device *hdev, u64 mmu_cap_mask)
{
	u32 i, mmu_id, num_of_hmmus = NUM_OF_HMMU_PER_DCORE * NUM_OF_DCORES;

	/* check all HMMUs */
	for (i = 0 ; i < num_of_hmmus ; i++) {
		mmu_id = HW_CAP_DCORE0_DMMU0 << i;

		if (mmu_cap_mask & mmu_id)
			gaudi2_ack_mmu_error(hdev, mmu_id);
	}

	/* check PMMU */
	if (mmu_cap_mask & HW_CAP_PMMU)
		gaudi2_ack_mmu_error(hdev, HW_CAP_PMMU);

	return 0;
}

static void gaudi2_get_msi_info(__le32 *table)
{
	table[CPUCP_EVENT_QUEUE_MSI_TYPE] = cpu_to_le32(GAUDI2_EVENT_QUEUE_MSIX_IDX);
}

static int gaudi2_map_pll_idx_to_fw_idx(u32 pll_idx)
{
	switch (pll_idx) {
	case HL_GAUDI2_CPU_PLL: return CPU_PLL;
	case HL_GAUDI2_PCI_PLL: return PCI_PLL;
	case HL_GAUDI2_NIC_PLL: return NIC_PLL;
	case HL_GAUDI2_DMA_PLL: return DMA_PLL;
	case HL_GAUDI2_MESH_PLL: return MESH_PLL;
	case HL_GAUDI2_MME_PLL: return MME_PLL;
	case HL_GAUDI2_TPC_PLL: return TPC_PLL;
	case HL_GAUDI2_IF_PLL: return IF_PLL;
	case HL_GAUDI2_SRAM_PLL: return SRAM_PLL;
	case HL_GAUDI2_HBM_PLL: return HBM_PLL;
	case HL_GAUDI2_VID_PLL: return VID_PLL;
	case HL_GAUDI2_MSS_PLL: return MSS_PLL;
	default: return -EINVAL;
	}
}

static int gaudi2_gen_sync_to_engine_map(struct hl_device *hdev, struct hl_sync_to_engine_map *map)
{
	/* Not implemented */
	return 0;
}

static int gaudi2_monitor_valid(struct hl_mon_state_dump *mon)
{
	/* Not implemented */
	return 0;
}

static int gaudi2_print_single_monitor(char **buf, size_t *size, size_t *offset,
				struct hl_device *hdev, struct hl_mon_state_dump *mon)
{
	/* Not implemented */
	return 0;
}


static int gaudi2_print_fences_single_engine(struct hl_device *hdev, u64 base_offset,
				u64 status_base_offset, enum hl_sync_engine_type engine_type,
				u32 engine_id, char **buf, size_t *size, size_t *offset)
{
	/* Not implemented */
	return 0;
}


static struct hl_state_dump_specs_funcs gaudi2_state_dump_funcs = {
	.monitor_valid = gaudi2_monitor_valid,
	.print_single_monitor = gaudi2_print_single_monitor,
	.gen_sync_to_engine_map = gaudi2_gen_sync_to_engine_map,
	.print_fences_single_engine = gaudi2_print_fences_single_engine,
};

static void gaudi2_state_dump_init(struct hl_device *hdev)
{
	/* Not implemented */
	hdev->state_dump_specs.props = gaudi2_state_dump_specs_props;
	hdev->state_dump_specs.funcs = gaudi2_state_dump_funcs;
}

static u32 gaudi2_get_sob_addr(struct hl_device *hdev, u32 sob_id)
{
	return 0;
}

static u32 *gaudi2_get_stream_master_qid_arr(void)
{
	return NULL;
}

static void gaudi2_add_device_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
				struct attribute_group *dev_vrm_attr_grp)
{
	hl_sysfs_add_dev_clk_attr(hdev, dev_clk_attr_grp);
	hl_sysfs_add_dev_vrm_attr(hdev, dev_vrm_attr_grp);
}

static int gaudi2_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
					u32 page_size, u32 *real_page_size, bool is_dram_addr)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;

	/* for host pages the page size must be  */
	if (!is_dram_addr) {
		if (page_size % mmu_prop->page_size)
			goto page_size_err;

		*real_page_size = mmu_prop->page_size;
		return 0;
	}

	if ((page_size % prop->dram_page_size) || (prop->dram_page_size > mmu_prop->page_size))
		goto page_size_err;

	/*
	 * MMU page size is different from DRAM page size (more precisely, DMMU page is greater
	 * than DRAM page size).
	 * for this reason work with the DRAM page size and let the MMU scrambling routine handle
	 * this mismatch when calculating the address to place in the MMU page table.
	 * (in that case also make sure that the dram_page_size is not greater than the
	 * mmu page size)
	 */
	*real_page_size = prop->dram_page_size;

	return 0;

page_size_err:
	dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
							page_size, mmu_prop->page_size >> 10);
	return -EFAULT;
}

static int gaudi2_get_monitor_dump(struct hl_device *hdev, void *data)
{
	return -EOPNOTSUPP;
}

10363 10364 10365 10366
int gaudi2_send_device_activity(struct hl_device *hdev, bool open)
{
	struct gaudi2_device *gaudi2 = hdev->asic_specific;

10367
	if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
10368 10369 10370 10371 10372
		return 0;

	return hl_fw_send_device_activity(hdev, open);
}

10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416
static const struct hl_asic_funcs gaudi2_funcs = {
	.early_init = gaudi2_early_init,
	.early_fini = gaudi2_early_fini,
	.late_init = gaudi2_late_init,
	.late_fini = gaudi2_late_fini,
	.sw_init = gaudi2_sw_init,
	.sw_fini = gaudi2_sw_fini,
	.hw_init = gaudi2_hw_init,
	.hw_fini = gaudi2_hw_fini,
	.halt_engines = gaudi2_halt_engines,
	.suspend = gaudi2_suspend,
	.resume = gaudi2_resume,
	.mmap = gaudi2_mmap,
	.ring_doorbell = gaudi2_ring_doorbell,
	.pqe_write = gaudi2_pqe_write,
	.asic_dma_alloc_coherent = gaudi2_dma_alloc_coherent,
	.asic_dma_free_coherent = gaudi2_dma_free_coherent,
	.scrub_device_mem = gaudi2_scrub_device_mem,
	.scrub_device_dram = gaudi2_scrub_device_dram,
	.get_int_queue_base = NULL,
	.test_queues = gaudi2_test_queues,
	.asic_dma_pool_zalloc = gaudi2_dma_pool_zalloc,
	.asic_dma_pool_free = gaudi2_dma_pool_free,
	.cpu_accessible_dma_pool_alloc = gaudi2_cpu_accessible_dma_pool_alloc,
	.cpu_accessible_dma_pool_free = gaudi2_cpu_accessible_dma_pool_free,
	.asic_dma_unmap_single = gaudi2_dma_unmap_single,
	.asic_dma_map_single = gaudi2_dma_map_single,
	.hl_dma_unmap_sgtable = hl_dma_unmap_sgtable,
	.cs_parser = gaudi2_cs_parser,
	.asic_dma_map_sgtable = hl_dma_map_sgtable,
	.add_end_of_cb_packets = NULL,
	.update_eq_ci = gaudi2_update_eq_ci,
	.context_switch = gaudi2_context_switch,
	.restore_phase_topology = gaudi2_restore_phase_topology,
	.debugfs_read_dma = gaudi2_debugfs_read_dma,
	.add_device_attr = gaudi2_add_device_attr,
	.handle_eqe = gaudi2_handle_eqe,
	.get_events_stat = gaudi2_get_events_stat,
	.read_pte = NULL,
	.write_pte = NULL,
	.mmu_invalidate_cache = gaudi2_mmu_invalidate_cache,
	.mmu_invalidate_cache_range = gaudi2_mmu_invalidate_cache_range,
	.mmu_prefetch_cache_range = NULL,
	.send_heartbeat = gaudi2_send_heartbeat,
10417
	.debug_coresight = gaudi2_debug_coresight,
10418
	.is_device_idle = gaudi2_is_device_idle,
10419
	.compute_reset_late_init = gaudi2_compute_reset_late_init,
10420 10421 10422 10423 10424 10425 10426 10427 10428 10429
	.hw_queues_lock = gaudi2_hw_queues_lock,
	.hw_queues_unlock = gaudi2_hw_queues_unlock,
	.get_pci_id = gaudi2_get_pci_id,
	.get_eeprom_data = gaudi2_get_eeprom_data,
	.get_monitor_dump = gaudi2_get_monitor_dump,
	.send_cpu_message = gaudi2_send_cpu_message,
	.pci_bars_map = gaudi2_pci_bars_map,
	.init_iatu = gaudi2_init_iatu,
	.rreg = hl_rreg,
	.wreg = hl_wreg,
10430
	.halt_coresight = gaudi2_halt_coresight,
10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443
	.ctx_init = gaudi2_ctx_init,
	.ctx_fini = gaudi2_ctx_fini,
	.pre_schedule_cs = gaudi2_pre_schedule_cs,
	.get_queue_id_for_cq = gaudi2_get_queue_id_for_cq,
	.load_firmware_to_device = NULL,
	.load_boot_fit_to_device = NULL,
	.get_signal_cb_size = gaudi2_get_signal_cb_size,
	.get_wait_cb_size = gaudi2_get_wait_cb_size,
	.gen_signal_cb = gaudi2_gen_signal_cb,
	.gen_wait_cb = gaudi2_gen_wait_cb,
	.reset_sob = gaudi2_reset_sob,
	.reset_sob_group = gaudi2_reset_sob_group,
	.get_device_time = gaudi2_get_device_time,
10444
	.pb_print_security_errors = gaudi2_pb_print_security_errors,
10445 10446 10447 10448 10449
	.collective_wait_init_cs = gaudi2_collective_wait_init_cs,
	.collective_wait_create_jobs = gaudi2_collective_wait_create_jobs,
	.get_dec_base_addr = gaudi2_get_dec_base_addr,
	.scramble_addr = gaudi2_mmu_scramble_addr,
	.descramble_addr = gaudi2_mmu_descramble_addr,
10450
	.ack_protection_bits_errors = gaudi2_ack_protection_bits_errors,
10451 10452 10453 10454 10455 10456
	.get_hw_block_id = gaudi2_get_hw_block_id,
	.hw_block_mmap = gaudi2_block_mmap,
	.enable_events_from_fw = gaudi2_enable_events_from_fw,
	.ack_mmu_errors = gaudi2_ack_mmu_page_fault_or_access_error,
	.get_msi_info = gaudi2_get_msi_info,
	.map_pll_idx_to_fw_idx = gaudi2_map_pll_idx_to_fw_idx,
10457
	.init_firmware_preload_params = gaudi2_init_firmware_preload_params,
10458 10459 10460 10461 10462 10463 10464 10465 10466 10467
	.init_firmware_loader = gaudi2_init_firmware_loader,
	.init_cpu_scrambler_dram = gaudi2_init_scrambler_hbm,
	.state_dump_init = gaudi2_state_dump_init,
	.get_sob_addr = &gaudi2_get_sob_addr,
	.set_pci_memory_regions = gaudi2_set_pci_memory_regions,
	.get_stream_master_qid_arr = gaudi2_get_stream_master_qid_arr,
	.check_if_razwi_happened = gaudi2_check_if_razwi_happened,
	.mmu_get_real_page_size = gaudi2_mmu_get_real_page_size,
	.access_dev_mem = hl_access_dev_mem,
	.set_dram_bar_base = gaudi2_set_hbm_bar_base,
10468
	.set_engine_cores = gaudi2_set_engine_cores,
10469
	.send_device_activity = gaudi2_send_device_activity,
10470 10471 10472 10473 10474 10475
};

void gaudi2_set_asic_funcs(struct hl_device *hdev)
{
	hdev->asic_funcs = &gaudi2_funcs;
}