file.c 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31 32 33 34

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
35
#include <asm/spu_info.h>
36 37 38 39
#include <asm/uaccess.h>

#include "spufs.h"

40 41
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

42

43 44 45 46
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
47 48 49 50
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->local_store = inode->i_mapping;
51 52 53 54 55 56 57
	return 0;
}

static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
58 59
	struct spu_context *ctx = file->private_data;
	char *local_store;
60 61
	int ret;

62
	spu_acquire(ctx);
63

64 65
	local_store = ctx->ops->get_ls(ctx);
	ret = simple_read_from_buffer(buffer, size, pos, local_store, LS_SIZE);
66

67
	spu_release(ctx);
68 69 70 71 72 73 74 75
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
					size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
76 77
	char *local_store;
	int ret;
78 79 80 81 82

	size = min_t(ssize_t, LS_SIZE - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;
83 84 85 86 87 88 89 90 91

	spu_acquire(ctx);

	local_store = ctx->ops->get_ls(ctx);
	ret = copy_from_user(local_store + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
92 93
}

94 95 96 97 98 99 100 101 102 103 104 105
static struct page *
spufs_mem_mmap_nopage(struct vm_area_struct *vma,
		      unsigned long address, int *type)
{
	struct page *page = NOPAGE_SIGBUS;

	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	offset += vma->vm_pgoff << PAGE_SHIFT;

	spu_acquire(ctx);

106 107 108
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
					& ~(_PAGE_NO_CACHE | _PAGE_GUARDED));
109
		page = vmalloc_to_page(ctx->csa.lscsa->ls + offset);
110 111 112
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
					| _PAGE_NO_CACHE | _PAGE_GUARDED);
113 114
		page = pfn_to_page((ctx->spu->local_store_phys + offset)
				   >> PAGE_SHIFT);
115
	}
116 117 118 119 120
	spu_release(ctx);

	if (type)
		*type = VM_FAULT_MINOR;

121
	page_cache_get(page);
122 123 124 125 126 127 128
	return page;
}

static struct vm_operations_struct spufs_mem_mmap_vmops = {
	.nopage = spufs_mem_mmap_nopage,
};

129 130 131
static int
spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
132 133
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
134

135 136 137 138 139
	/* FIXME: */
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
140 141 142 143 144 145 146
	return 0;
}

static struct file_operations spufs_mem_fops = {
	.open	 = spufs_mem_open,
	.read    = spufs_mem_read,
	.write   = spufs_mem_write,
147
	.llseek  = generic_file_llseek,
148
	.mmap    = spufs_mem_mmap,
149 150
};

151 152
static struct page *spufs_ps_nopage(struct vm_area_struct *vma,
				    unsigned long address,
153 154
				    int *type, unsigned long ps_offs,
				    unsigned long ps_size)
155 156 157 158 159 160 161 162 163
{
	struct page *page = NOPAGE_SIGBUS;
	int fault_type = VM_FAULT_SIGBUS;
	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	unsigned long area;
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
164
	if (offset >= ps_size)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
		goto out;

	ret = spu_acquire_runnable(ctx);
	if (ret)
		goto out;

	area = ctx->spu->problem_phys + ps_offs;
	page = pfn_to_page((area + offset) >> PAGE_SHIFT);
	fault_type = VM_FAULT_MINOR;
	page_cache_get(page);

	spu_release(ctx);

      out:
	if (type)
		*type = fault_type;

	return page;
}

185
#if SPUFS_MMAP_4K
186 187 188
static struct page *spufs_cntl_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
189
	return spufs_ps_nopage(vma, address, type, 0x4000, 0x1000);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
	.nopage = spufs_cntl_mmap_nopage,
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
206
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
207 208 209 210

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
211 212 213
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
214

215
static u64 spufs_cntl_get(void *data)
216
{
217 218
	struct spu_context *ctx = data;
	u64 val;
219

220 221 222 223 224
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
225 226
}

227
static void spufs_cntl_set(void *data, u64 val)
228
{
229 230 231 232 233
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
234 235
}

236
static int spufs_cntl_open(struct inode *inode, struct file *file)
237
{
238 239 240 241 242 243 244 245
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->cntl = inode->i_mapping;
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
246 247 248 249
}

static struct file_operations spufs_cntl_fops = {
	.open = spufs_cntl_open,
250
	.release = simple_attr_close,
251 252
	.read = simple_attr_read,
	.write = simple_attr_write,
253 254 255
	.mmap = spufs_cntl_mmap,
};

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	spu_acquire_saved(ctx);

	ret = simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);

	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

static struct file_operations spufs_regs_fops = {
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
307 308 309
	.llseek  = generic_file_llseek,
};

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	spu_acquire_saved(ctx);

	ret = simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));

	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

static struct file_operations spufs_fpcr_fops = {
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

356 357 358 359 360 361 362 363 364
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

365 366 367 368 369 370 371 372
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
373 374 375
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
376
	struct spu_context *ctx = file->private_data;
377 378
	u32 mbox_data, __user *udata;
	ssize_t count;
379 380 381 382

	if (len < 4)
		return -EINVAL;

383 384 385 386 387
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

388
	spu_acquire(ctx);
389
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
407
	spu_release(ctx);
408

409 410
	if (!count)
		count = -EAGAIN;
411

412
	return count;
413 414 415 416 417 418 419 420 421 422
}

static struct file_operations spufs_mbox_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
423
	struct spu_context *ctx = file->private_data;
424 425 426 427 428
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

429 430 431 432 433
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
434 435 436 437 438 439 440 441 442 443 444 445 446

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_mbox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
447
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
448
{
449 450
	return ctx->ops->ibox_read(ctx, data);
}
451

452 453 454
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
455

456
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
457 458
}

459 460
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
461
{
462 463 464 465
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
480 481 482
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
483
	struct spu_context *ctx = file->private_data;
484 485
	u32 ibox_data, __user *udata;
	ssize_t count;
486 487 488 489

	if (len < 4)
		return -EINVAL;

490 491 492 493 494
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

495
	spu_acquire(ctx);
496

497 498
	/* wait only for the first element */
	count = 0;
499
	if (file->f_flags & O_NONBLOCK) {
500
		if (!spu_ibox_read(ctx, &ibox_data))
501
			count = -EAGAIN;
502
	} else {
503
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
504
	}
505 506
	if (count)
		goto out;
507

508 509 510 511
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
527

528 529
out:
	spu_release(ctx);
530

531
	return count;
532 533 534 535
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
536
	struct spu_context *ctx = file->private_data;
537 538
	unsigned int mask;

539
	poll_wait(file, &ctx->ibox_wq, wait);
540

541 542 543
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
544 545 546 547 548 549 550 551 552 553 554 555 556 557

	return mask;
}

static struct file_operations spufs_ibox_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
558
	struct spu_context *ctx = file->private_data;
559 560 561 562 563
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

564 565 566
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
567 568 569 570 571 572 573 574 575 576 577 578 579

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_ibox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
580
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
581
{
582 583
	return ctx->ops->wbox_write(ctx, data);
}
584

585 586 587 588
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
589

590
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
591 592 593 594

	return ret;
}

595 596
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
597
{
598 599 600 601
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
602 603
}

604 605 606 607 608 609 610 611 612 613 614 615
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
616 617 618
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
619
	struct spu_context *ctx = file->private_data;
620 621
	u32 wbox_data, __user *udata;
	ssize_t count;
622 623 624 625

	if (len < 4)
		return -EINVAL;

626 627 628 629 630
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
631 632
		return -EFAULT;

633 634
	spu_acquire(ctx);

635 636 637 638 639
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
640
	if (file->f_flags & O_NONBLOCK) {
641
		if (!spu_wbox_write(ctx, wbox_data))
642
			count = -EAGAIN;
643
	} else {
644
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
645 646
	}

647 648
	if (count)
		goto out;
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	/* write aѕ much as possible */
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
665 666 667 668
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
669
	struct spu_context *ctx = file->private_data;
670 671
	unsigned int mask;

672
	poll_wait(file, &ctx->wbox_wq, wait);
673

674 675 676
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
677 678 679 680 681 682 683 684 685 686 687 688 689 690

	return mask;
}

static struct file_operations spufs_wbox_fops = {
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
691
	struct spu_context *ctx = file->private_data;
692 693 694 695 696
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

697 698 699
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
700 701 702 703 704 705 706 707 708 709 710 711

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_wbox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

712 713 714 715 716 717 718 719 720 721
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->signal1 = inode->i_mapping;
	return nonseekable_open(inode, file);
}

722 723 724
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
725
	struct spu_context *ctx = file->private_data;
726 727 728 729 730
	u32 data;

	if (len < 4)
		return -EINVAL;

731 732 733 734
	spu_acquire(ctx);
	data = ctx->ops->signal1_read(ctx);
	spu_release(ctx);

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

	return 4;
}

static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

755 756 757
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
758 759 760 761

	return 4;
}

762 763 764
static struct page *spufs_signal1_mmap_nopage(struct vm_area_struct *vma,
					      unsigned long address, int *type)
{
765 766 767 768 769 770 771 772 773 774
#if PAGE_SIZE == 0x1000
	return spufs_ps_nopage(vma, address, type, 0x14000, 0x1000);
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
	return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
#else
#error unsupported page size
#endif
775 776 777 778 779 780 781 782 783 784 785 786 787
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
	.nopage = spufs_signal1_mmap_nopage,
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
788
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
789 790 791 792 793

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

794
static struct file_operations spufs_signal1_fops = {
795
	.open = spufs_signal1_open,
796 797
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
798
	.mmap = spufs_signal1_mmap,
799 800
};

801 802 803 804 805 806 807 808 809 810
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->signal2 = inode->i_mapping;
	return nonseekable_open(inode, file);
}

811 812 813 814 815 816 817 818 819 820 821
static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

822 823 824 825
	spu_acquire(ctx);
	data = ctx->ops->signal2_read(ctx);
	spu_release(ctx);

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

	return 4;
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

846 847 848
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
849 850 851 852

	return 4;
}

853
#if SPUFS_MMAP_4K
854 855 856
static struct page *spufs_signal2_mmap_nopage(struct vm_area_struct *vma,
					      unsigned long address, int *type)
{
857 858 859 860 861 862 863 864 865 866
#if PAGE_SIZE == 0x1000
	return spufs_ps_nopage(vma, address, type, 0x1c000, 0x1000);
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
	return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
#else
#error unsupported page size
#endif
867 868 869 870 871 872 873 874 875 876 877 878 879 880
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
	.nopage = spufs_signal2_mmap_nopage,
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	/* FIXME: */
	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
881
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
882 883 884 885

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
886 887 888
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
889

890
static struct file_operations spufs_signal2_fops = {
891
	.open = spufs_signal2_open,
892 893
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
894
	.mmap = spufs_signal2_mmap,
895 896 897 898 899 900
};

static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

901 902 903
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
904 905 906 907 908
}

static u64 spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
909 910 911 912 913 914 915
	u64 ret;

	spu_acquire(ctx);
	ret = ctx->ops->signal1_type_get(ctx);
	spu_release(ctx);

	return ret;
916 917 918 919 920 921 922 923
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
					spufs_signal1_type_set, "%llu");

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

924 925 926
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
927 928 929 930 931
}

static u64 spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
932 933 934 935 936 937 938
	u64 ret;

	spu_acquire(ctx);
	ret = ctx->ops->signal2_type_get(ctx);
	spu_release(ctx);

	return ret;
939 940 941 942
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
					spufs_signal2_type_set, "%llu");

943
#if SPUFS_MMAP_4K
944 945 946
static struct page *spufs_mss_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
947
	return spufs_ps_nopage(vma, address, type, 0x0000, 0x1000);
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
	.nopage = spufs_mss_mmap_nopage,
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
964
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
965 966 967 968

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
969 970 971
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
972 973 974 975 976 977 978 979 980 981 982 983

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);

	file->private_data = i->i_ctx;
	return nonseekable_open(inode, file);
}

static struct file_operations spufs_mss_fops = {
	.open	 = spufs_mss_open,
	.mmap	 = spufs_mss_mmap,
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
};

static struct page *spufs_psmap_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
	return spufs_ps_nopage(vma, address, type, 0x0000, 0x20000);
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
	.nopage = spufs_psmap_mmap_nopage,
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);

	file->private_data = i->i_ctx;
	return nonseekable_open(inode, file);
}

static struct file_operations spufs_psmap_fops = {
	.open	 = spufs_psmap_open,
	.mmap	 = spufs_psmap_mmap,
1023 1024 1025
};


1026
#if SPUFS_MMAP_4K
1027 1028 1029
static struct page *spufs_mfc_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
1030
	return spufs_ps_nopage(vma, address, type, 0x3000, 0x1000);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
	.nopage = spufs_mfc_mmap_nopage,
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1047
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1048 1049 1050 1051

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1052 1053 1054
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

	file->private_data = ctx;
	return nonseekable_open(inode, file);
}

/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

	spu_acquire_runnable(ctx);
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ctx->tagwait |= 1 << cmd.tag;

out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	poll_wait(file, &ctx->mfc_wq, wait);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1300
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1326
	return spufs_mfc_flush(file, NULL);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

static struct file_operations spufs_mfc_fops = {
	.open	 = spufs_mfc_open,
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1344
	.mmap	 = spufs_mfc_mmap,
1345 1346
};

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

static int spufs_recycle_open(struct inode *inode, struct file *file)
{
	file->private_data = SPUFS_I(inode)->i_ctx;
	return nonseekable_open(inode, file);
}

static ssize_t spufs_recycle_write(struct file *file,
		const char __user *buffer, size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		return -EINVAL;

	if (size < 1)
		return -EINVAL;

	ret = spu_recycle_isolated(ctx);

	if (ret)
		return ret;
	return size;
}

static struct file_operations spufs_recycle_fops = {
	.open	 = spufs_recycle_open,
	.write	 = spufs_recycle_write,
};

1378 1379 1380
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1381 1382 1383
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1384 1385 1386 1387 1388 1389
}

static u64 spufs_npc_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;
1390 1391 1392
	spu_acquire(ctx);
	ret = ctx->ops->npc_read(ctx);
	spu_release(ctx);
1393 1394
	return ret;
}
1395 1396
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
			"0x%llx\n")
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_decr_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->decr.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1418
			"0x%llx\n")
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr_status.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_decr_status_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->decr_status.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1440
			spufs_decr_status_set, "0x%llx\n")
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_event_mask_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->event_mask.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1462
			spufs_event_mask_set, "0x%llx\n")
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static u64 spufs_event_status_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_state *state = &ctx->csa;
	u64 ret = 0;
	u64 stat;

	spu_acquire_saved(ctx);
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
		ret = state->spu_chnldata_RW[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
			NULL, "0x%llx\n")

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_srr0_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->srr0.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1501
			"0x%llx\n")
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static u64 spufs_id_get(void *data)
{
	struct spu_context *ctx = data;
	u64 num;

	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;
	spu_release(ctx);

	return num;
}
Al Viro's avatar
Al Viro committed
1517
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static u64 spufs_object_id_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->object_id;
}

static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		spufs_object_id_set, "0x%llx\n");

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static u64 spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;

	spu_acquire_saved(ctx);
	ret = ctx->csa.priv2.spu_lslr_RW;
	spu_release(ctx);

	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	u32 mbox_stat;
	u32 data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

static struct file_operations spufs_mbox_info_fops = {
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	u32 ibox_stat;
	u32 data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

static struct file_operations spufs_ibox_info_fops = {
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = (wbox_stat & 0x00ff00) >> 8;
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static struct file_operations spufs_wbox_info_fops = {
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static struct file_operations spufs_dma_info_fops = {
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_proxydma_info info;
	int ret = sizeof info;
	struct mfc_cq_sr *qp, *puqp;
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	if (copy_to_user(buf, &info, sizeof info))
		ret = -EFAULT;

	return ret;
}

static struct file_operations spufs_proxydma_info_fops = {
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

1724 1725
struct tree_descr spufs_dir_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
1726
	{ "regs", &spufs_regs_fops,  0666, },
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
1737
	{ "cntl", &spufs_cntl_fops,  0666, },
1738
	{ "fpcr", &spufs_fpcr_fops, 0666, },
1739 1740 1741 1742 1743
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
1744 1745 1746
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
1747
	{ "event_status", &spufs_event_status_ops, 0444, },
1748
	{ "psmap", &spufs_psmap_fops, 0666, },
1749 1750
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1751 1752 1753
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
1754 1755
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
1756 1757
	{},
};
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

struct tree_descr spufs_dir_nosched_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1778
	{ "recycle", &spufs_recycle_fops, 0222, },
1779 1780
	{},
};