extent_io.c 197 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10 11 12 13 14
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32
#include "compression.h"
33 34 35

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
36
static struct bio_set btrfs_bioset;
37

38 39 40 41 42
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

43
#ifdef CONFIG_BTRFS_DEBUG
44
static LIST_HEAD(states);
45
static DEFINE_SPINLOCK(leak_lock);
46

47 48 49
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
50 51 52
{
	unsigned long flags;

53
	spin_lock_irqsave(lock, flags);
54
	list_add(new, head);
55
	spin_unlock_irqrestore(lock, flags);
56 57
}

58 59
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
60 61 62
{
	unsigned long flags;

63
	spin_lock_irqsave(lock, flags);
64
	list_del(entry);
65
	spin_unlock_irqrestore(lock, flags);
66 67
}

68
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
69 70
{
	struct extent_buffer *eb;
71
	unsigned long flags;
72

73 74 75 76 77 78 79
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

80
	WARN_ON(!list_empty(&fs_info->allocated_ebs));
81 82 83 84
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
85 86 87 88
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
89 90 91
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
92
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
93 94 95 96 97 98
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

99 100
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
101
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
102 103
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
104
		       refcount_read(&state->refs));
105 106 107 108
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
109

110 111
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
112
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
113
		struct extent_io_tree *tree, u64 start, u64 end)
114
{
115 116 117 118 119 120 121 122 123 124 125 126
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
127
}
128
#else
129 130
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
131
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
132
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
Chris Mason's avatar
Chris Mason committed
133
#endif
134 135 136 137 138 139 140

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

141 142 143 144 145 146
/*
 * Structure to record info about the bio being assembled, and other info like
 * how many bytes are there before stripe/ordered extent boundary.
 */
struct btrfs_bio_ctrl {
	struct bio *bio;
147
	int mirror_num;
148
	enum btrfs_compression_type compress_type;
149 150 151 152
	u32 len_to_stripe_boundary;
	u32 len_to_oe_boundary;
};

153
struct extent_page_data {
154
	struct btrfs_bio_ctrl bio_ctrl;
155 156 157
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
158 159
	unsigned int extent_locked:1;

160
	/* tells the submit_bio code to use REQ_SYNC */
161
	unsigned int sync_io:1;
162 163
};

164
static int add_extent_changeset(struct extent_state *state, u32 bits,
165 166 167 168 169 170
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
171
		return 0;
172
	if (set && (state->state & bits) == bits)
173
		return 0;
174
	if (!set && (state->state & bits) == 0)
175
		return 0;
176
	changeset->bytes_changed += state->end - state->start + 1;
177
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
178
			GFP_ATOMIC);
179
	return ret;
180 181
}

182
static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
183
{
184 185 186 187 188 189 190 191 192 193
	struct bio *bio;
	struct inode *inode;
	int mirror_num;

	if (!bio_ctrl->bio)
		return;

	bio = bio_ctrl->bio;
	inode = bio_first_page_all(bio)->mapping->host;
	mirror_num = bio_ctrl->mirror_num;
194

195 196
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
197

198 199 200 201
	if (!is_data_inode(inode))
		btrfs_submit_metadata_bio(inode, bio, mirror_num);
	else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
		btrfs_submit_data_write_bio(inode, bio, mirror_num);
202
	else
203 204
		btrfs_submit_data_read_bio(inode, bio, mirror_num,
					   bio_ctrl->compress_type);
205

206 207
	/* The bio is owned by the bi_end_io handler now */
	bio_ctrl->bio = NULL;
208 209
}

210
/*
211
 * Submit or fail the current bio in an extent_page_data structure.
212
 */
213
static void submit_write_bio(struct extent_page_data *epd, int ret)
214
{
215
	struct bio *bio = epd->bio_ctrl.bio;
216

217 218 219 220 221 222 223
	if (!bio)
		return;

	if (ret) {
		ASSERT(ret < 0);
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
224 225
		/* The bio is owned by the bi_end_io handler now */
		epd->bio_ctrl.bio = NULL;
226
	} else {
227
		submit_one_bio(&epd->bio_ctrl);
228 229
	}
}
230

231
int __init extent_state_cache_init(void)
232
{
233
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
234
			sizeof(struct extent_state), 0,
235
			SLAB_MEM_SPREAD, NULL);
236 237
	if (!extent_state_cache)
		return -ENOMEM;
238 239
	return 0;
}
240

241 242
int __init extent_io_init(void)
{
243
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
244
			sizeof(struct extent_buffer), 0,
245
			SLAB_MEM_SPREAD, NULL);
246
	if (!extent_buffer_cache)
247
		return -ENOMEM;
248

249
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
250
			offsetof(struct btrfs_bio, bio),
251
			BIOSET_NEED_BVECS))
252
		goto free_buffer_cache;
253

254
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
255 256
		goto free_bioset;

257 258
	return 0;

259
free_bioset:
260
	bioset_exit(&btrfs_bioset);
261

262 263 264
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
265 266
	return -ENOMEM;
}
267

268 269 270
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
271 272 273
	kmem_cache_destroy(extent_state_cache);
}

274
void __cold extent_io_exit(void)
275
{
276 277 278 279 280
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
281
	kmem_cache_destroy(extent_buffer_cache);
282
	bioset_exit(&btrfs_bioset);
283 284
}

285 286 287 288 289 290 291 292 293
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

294
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
295 296
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
297
{
298
	tree->fs_info = fs_info;
299
	tree->state = RB_ROOT;
300
	tree->dirty_bytes = 0;
301
	spin_lock_init(&tree->lock);
302
	tree->private_data = private_data;
303
	tree->owner = owner;
304 305
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

337
static struct extent_state *alloc_extent_state(gfp_t mask)
338 339 340
{
	struct extent_state *state;

341 342 343 344 345
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
346
	state = kmem_cache_alloc(extent_state_cache, mask);
347
	if (!state)
348 349
		return state;
	state->state = 0;
350
	state->failrec = NULL;
351
	RB_CLEAR_NODE(&state->rb_node);
352
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
353
	refcount_set(&state->refs, 1);
354
	init_waitqueue_head(&state->wq);
355
	trace_alloc_extent_state(state, mask, _RET_IP_);
356 357 358
	return state;
}

359
void free_extent_state(struct extent_state *state)
360 361 362
{
	if (!state)
		return;
363
	if (refcount_dec_and_test(&state->refs)) {
364
		WARN_ON(extent_state_in_tree(state));
365
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
366
		trace_free_extent_state(state, _RET_IP_);
367 368 369 370
		kmem_cache_free(extent_state_cache, state);
	}
}

371
/**
372 373
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
374
 *
375 376 377 378 379 380 381
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
382 383 384 385 386 387 388
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
389
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
390
				      struct rb_node **next_ret,
391
				      struct rb_node **prev_ret,
392 393
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
394
{
395
	struct rb_root *root = &tree->state;
396
	struct rb_node **n = &root->rb_node;
397 398 399 400 401
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

402 403 404
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
405 406 407
		prev_entry = entry;

		if (offset < entry->start)
408
			n = &(*n)->rb_left;
409
		else if (offset > entry->end)
410
			n = &(*n)->rb_right;
411
		else
412
			return *n;
413 414
	}

415 416 417 418 419
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

420
	if (next_ret) {
421
		orig_prev = prev;
422
		while (prev && offset > prev_entry->end) {
423 424 425
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
426
		*next_ret = prev;
427 428 429
		prev = orig_prev;
	}

430
	if (prev_ret) {
431
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
432
		while (prev && offset < prev_entry->start) {
433 434 435
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
436
		*prev_ret = prev;
437 438 439 440
	}
	return NULL;
}

441 442 443 444 445
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
446
{
447
	struct rb_node *next= NULL;
448
	struct rb_node *ret;
449

450
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
451
	if (!ret)
452
		return next;
453 454 455
	return ret;
}

456 457 458 459 460 461
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

462 463 464 465 466 467 468 469 470
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
471 472
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
473 474 475 476
{
	struct extent_state *other;
	struct rb_node *other_node;

Nikolay Borisov's avatar
Nikolay Borisov committed
477
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
478
		return;
479 480 481 482 483 484

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
485 486 487 488
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
489 490
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
491
			RB_CLEAR_NODE(&other->rb_node);
492 493 494 495 496 497 498 499
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
500 501 502 503
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
504 505
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
506
			RB_CLEAR_NODE(&other->rb_node);
507
			free_extent_state(other);
508 509 510 511
		}
	}
}

512
static void set_state_bits(struct extent_io_tree *tree,
513
			   struct extent_state *state, u32 bits,
514
			   struct extent_changeset *changeset);
515

516 517 518 519 520 521 522 523 524 525 526
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
527
			struct extent_state *state,
528 529
			struct rb_node ***node_in,
			struct rb_node **parent_in,
530
			u32 bits, struct extent_changeset *changeset)
531
{
532 533
	struct rb_node **node;
	struct rb_node *parent;
534
	const u64 end = state->end;
Josef Bacik's avatar
Josef Bacik committed
535

536
	set_state_bits(tree, state, bits, changeset);
537

538 539 540 541 542
	/* Caller provides the exact tree location */
	if (node_in && parent_in) {
		node = *node_in;
		parent = *parent_in;
		goto insert_new;
543
	}
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

	node = &tree->state.rb_node;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (end < entry->start) {
			node = &(*node)->rb_left;
		} else if (end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			btrfs_err(tree->fs_info,
			       "found node %llu %llu on insert of %llu %llu",
559
			       entry->start, entry->end, state->start, end);
560 561 562 563 564 565 566 567
			return -EEXIST;
		}
	}

insert_new:
	rb_link_node(&state->rb_node, parent, node);
	rb_insert_color(&state->rb_node, &tree->state);

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
589 590
	struct rb_node *parent = NULL;
	struct rb_node **node;
Josef Bacik's avatar
Josef Bacik committed
591

592 593
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
Josef Bacik's avatar
Josef Bacik committed
594

595 596 597 598 599
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	parent = &orig->rb_node;
	node = &parent;
	while (*node) {
		struct tree_entry *entry;

		parent = *node;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (prealloc->end < entry->start) {
			node = &(*node)->rb_left;
		} else if (prealloc->end > entry->end) {
			node = &(*node)->rb_right;
		} else {
			free_extent_state(prealloc);
			return -EEXIST;
		}
616
	}
617 618 619 620

	rb_link_node(&prealloc->rb_node, parent, node);
	rb_insert_color(&prealloc->rb_node, &tree->state);

621 622 623
	return 0;
}

624 625 626 627 628 629 630 631 632
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

633 634
/*
 * utility function to clear some bits in an extent state struct.
635
 * it will optionally wake up anyone waiting on this state (wake == 1).
636 637 638 639
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
640 641
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
642
					    u32 bits, int wake,
643
					    struct extent_changeset *changeset)
644
{
645
	struct extent_state *next;
646
	u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
647
	int ret;
648

649
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
650 651 652 653
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
654 655 656 657

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

658 659
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
660
	state->state &= ~bits_to_clear;
661 662
	if (wake)
		wake_up(&state->wq);
663
	if (state->state == 0) {
664
		next = next_state(state);
665
		if (extent_state_in_tree(state)) {
666
			rb_erase(&state->rb_node, &tree->state);
667
			RB_CLEAR_NODE(&state->rb_node);
668 669 670 671 672 673
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
674
		next = next_state(state);
675
	}
676
	return next;
677 678
}

679 680 681 682 683 684 685 686 687
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

688
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
689
{
690
	btrfs_panic(tree->fs_info, err,
691
	"locking error: extent tree was modified by another thread while locked");
692 693
}

694 695 696 697 698 699 700 701 702 703
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
704
 * This takes the tree lock, and returns 0 on success and < 0 on error.
705
 */
706
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
707 708 709
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
710 711
{
	struct extent_state *state;
712
	struct extent_state *cached;
713 714
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
715
	u64 last_end;
716
	int err;
717
	int clear = 0;
718

719
	btrfs_debug_check_extent_io_range(tree, start, end);
720
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
721

722 723 724
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

725 726 727
	if (delete)
		bits |= ~EXTENT_CTLBITS;

Nikolay Borisov's avatar
Nikolay Borisov committed
728
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
729
		clear = 1;
730
again:
731
	if (!prealloc && gfpflags_allow_blocking(mask)) {
732 733 734 735 736 737 738
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
739 740 741
		prealloc = alloc_extent_state(mask);
	}

742
	spin_lock(&tree->lock);
743 744
	if (cached_state) {
		cached = *cached_state;
745 746 747 748 749 750

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

751 752
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
753
			if (clear)
754
				refcount_dec(&cached->refs);
755
			state = cached;
756
			goto hit_next;
757
		}
758 759
		if (clear)
			free_extent_state(cached);
760
	}
761 762 763 764
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
765
	node = tree_search(tree, start);
766 767 768
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
769
hit_next:
770 771 772
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
773
	last_end = state->end;
774

775
	/* the state doesn't have the wanted bits, go ahead */
776 777
	if (!(state->state & bits)) {
		state = next_state(state);
778
		goto next;
779
	}
780

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
798 799
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
800
		err = split_state(tree, state, prealloc, start);
801 802 803
		if (err)
			extent_io_tree_panic(tree, err);

804 805 806 807
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
808
			state = clear_state_bit(tree, state, bits, wake, changeset);
809
			goto next;
810 811 812 813 814 815 816 817 818 819
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
820 821
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
822
		err = split_state(tree, state, prealloc, end + 1);
823 824 825
		if (err)
			extent_io_tree_panic(tree, err);

826 827
		if (wake)
			wake_up(&state->wq);
828

829
		clear_state_bit(tree, prealloc, bits, wake, changeset);
Josef Bacik's avatar
Josef Bacik committed
830

831 832 833
		prealloc = NULL;
		goto out;
	}
834

835
	state = clear_state_bit(tree, state, bits, wake, changeset);
836
next:
837 838 839
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
840
	if (start <= end && state && !need_resched())
841
		goto hit_next;
842 843 844 845

search_again:
	if (start > end)
		goto out;
846
	spin_unlock(&tree->lock);
847
	if (gfpflags_allow_blocking(mask))
848 849
		cond_resched();
	goto again;
850 851 852 853 854 855 856 857

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

858 859
}

860 861
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
862 863
		__releases(tree->lock)
		__acquires(tree->lock)
864 865 866
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
867
	spin_unlock(&tree->lock);
868
	schedule();
869
	spin_lock(&tree->lock);
870 871 872 873 874 875 876 877
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
878
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
879
			    u32 bits)
880 881 882 883
{
	struct extent_state *state;
	struct rb_node *node;

884
	btrfs_debug_check_extent_io_range(tree, start, end);
885

886
	spin_lock(&tree->lock);
887 888 889 890 891 892
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
893
		node = tree_search(tree, start);
894
process_node:
895 896 897 898 899 900 901 902 903 904
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
905
			refcount_inc(&state->refs);
906 907 908 909 910 911 912 913 914
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

915 916 917 918
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
919 920
	}
out:
921
	spin_unlock(&tree->lock);
922 923
}

924
static void set_state_bits(struct extent_io_tree *tree,
925
			   struct extent_state *state,
926
			   u32 bits, struct extent_changeset *changeset)
927
{
928
	u32 bits_to_set = bits & ~EXTENT_CTLBITS;
929
	int ret;
Josef Bacik's avatar
Josef Bacik committed
930

931 932 933
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

934
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
935 936 937
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
938 939
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
940
	state->state |= bits_to_set;
941 942
}

943 944
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
945
				 unsigned flags)
946 947
{
	if (cached_ptr && !(*cached_ptr)) {
948
		if (!flags || (state->state & flags)) {
949
			*cached_ptr = state;
950
			refcount_inc(&state->refs);
951 952 953 954
		}
	}
}

955 956 957 958
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
Nikolay Borisov's avatar
Nikolay Borisov committed
959
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
960 961
}

962
/*
963 964
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
965
 *
966 967 968
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
969
 *
970
 * [start, end] is inclusive This takes the tree lock.
971
 */
972 973
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
974 975
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
976 977 978 979
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
980 981
	struct rb_node **p;
	struct rb_node *parent;
982 983 984
	int err = 0;
	u64 last_start;
	u64 last_end;
985

986
	btrfs_debug_check_extent_io_range(tree, start, end);
987
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
988

989 990 991 992
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
993
again:
994
	if (!prealloc && gfpflags_allow_blocking(mask)) {
995 996 997 998 999 1000 1001
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1002 1003 1004
		prealloc = alloc_extent_state(mask);
	}

1005
	spin_lock(&tree->lock);
1006 1007
	if (cached_state && *cached_state) {
		state = *cached_state;
1008
		if (state->start <= start && state->end > start &&
1009
		    extent_state_in_tree(state)) {
1010 1011 1012 1013
			node = &state->rb_node;
			goto hit_next;
		}
	}
1014 1015 1016 1017
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1018
	node = tree_search_for_insert(tree, start, &p, &parent);
1019
	if (!node) {
1020 1021
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1022 1023
		prealloc->start = start;
		prealloc->end = end;
1024
		err = insert_state(tree, prealloc, &p, &parent, bits, changeset);
1025 1026 1027
		if (err)
			extent_io_tree_panic(tree, err);

1028
		cache_state(prealloc, cached_state);
1029 1030 1031 1032
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
Chris Mason's avatar
Chris Mason committed
1033
hit_next:
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1044
		if (state->state & exclusive_bits) {
1045 1046 1047 1048
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1049

1050
		set_state_bits(tree, state, bits, changeset);
1051
		cache_state(state, cached_state);
1052
		merge_state(tree, state);
1053 1054 1055
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1056 1057 1058 1059
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1080
		if (state->state & exclusive_bits) {
1081 1082 1083 1084
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1096 1097
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1098
		err = split_state(tree, state, prealloc, start);
1099 1100 1101
		if (err)
			extent_io_tree_panic(tree, err);

1102 1103 1104 1105
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1106
			set_state_bits(tree, state, bits, changeset);
1107
			cache_state(state, cached_state);
1108
			merge_state(tree, state);
1109 1110 1111
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1112 1113 1114 1115
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
1131
			this_end = last_start - 1;
1132 1133 1134

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1135 1136 1137 1138 1139

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1140 1141
		prealloc->start = start;
		prealloc->end = this_end;
1142
		err = insert_state(tree, prealloc, NULL, NULL, bits, changeset);
1143 1144 1145
		if (err)
			extent_io_tree_panic(tree, err);

Josef Bacik's avatar
Josef Bacik committed
1146 1147
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1158
		if (state->state & exclusive_bits) {
1159 1160 1161 1162
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1163 1164 1165

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1166
		err = split_state(tree, state, prealloc, end + 1);
1167 1168
		if (err)
			extent_io_tree_panic(tree, err);
1169

1170
		set_state_bits(tree, prealloc, bits, changeset);
1171
		cache_state(prealloc, cached_state);
1172 1173 1174 1175 1176
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1177 1178 1179 1180 1181 1182 1183
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1184 1185

out:
1186
	spin_unlock(&tree->lock);
1187 1188 1189 1190 1191 1192 1193
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

1194
/**
Liu Bo's avatar
Liu Bo committed
1195 1196
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
1197 1198 1199 1200 1201
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1202
 * @cached_state:	state that we're going to cache
1203 1204 1205 1206 1207 1208
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1209 1210
 *
 * All allocations are done with GFP_NOFS.
1211 1212
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1213
		       u32 bits, u32 clear_bits,
1214
		       struct extent_state **cached_state)
1215 1216 1217 1218
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1219 1220
	struct rb_node **p;
	struct rb_node *parent;
1221 1222 1223
	int err = 0;
	u64 last_start;
	u64 last_end;
1224
	bool first_iteration = true;
1225

1226
	btrfs_debug_check_extent_io_range(tree, start, end);
1227 1228
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1229

1230
again:
1231
	if (!prealloc) {
1232 1233 1234 1235 1236 1237 1238
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1239
		prealloc = alloc_extent_state(GFP_NOFS);
1240
		if (!prealloc && !first_iteration)
1241 1242 1243 1244
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1245 1246 1247
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1248
		    extent_state_in_tree(state)) {
1249 1250 1251 1252 1253
			node = &state->rb_node;
			goto hit_next;
		}
	}

1254 1255 1256 1257
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1258
	node = tree_search_for_insert(tree, start, &p, &parent);
1259 1260
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1261 1262 1263 1264
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1265 1266
		prealloc->start = start;
		prealloc->end = end;
1267
		err = insert_state(tree, prealloc, &p, &parent, bits, NULL);
1268 1269
		if (err)
			extent_io_tree_panic(tree, err);
1270 1271
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1286
		set_state_bits(tree, state, bits, NULL);
1287
		cache_state(state, cached_state);
1288
		state = clear_state_bit(tree, state, clear_bits, 0, NULL);
1289 1290 1291
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1292 1293 1294
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1316 1317 1318 1319
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1320
		err = split_state(tree, state, prealloc, start);
1321 1322
		if (err)
			extent_io_tree_panic(tree, err);
1323 1324 1325 1326
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1327
			set_state_bits(tree, state, bits, NULL);
1328
			cache_state(state, cached_state);
1329
			state = clear_state_bit(tree, state, clear_bits, 0, NULL);
1330 1331 1332
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1333 1334 1335
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1354 1355 1356 1357
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1358 1359 1360 1361 1362

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1363 1364
		prealloc->start = start;
		prealloc->end = this_end;
1365
		err = insert_state(tree, prealloc, NULL, NULL, bits, NULL);
1366 1367
		if (err)
			extent_io_tree_panic(tree, err);
1368
		cache_state(prealloc, cached_state);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1381 1382 1383 1384
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1385 1386

		err = split_state(tree, state, prealloc, end + 1);
1387 1388
		if (err)
			extent_io_tree_panic(tree, err);
1389

1390
		set_state_bits(tree, prealloc, bits, NULL);
1391
		cache_state(prealloc, cached_state);
1392
		clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
1393 1394 1395 1396 1397 1398 1399 1400
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1401
	cond_resched();
1402
	first_iteration = false;
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1413
/* wrappers around set/clear extent bit */
1414
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1415
			   u32 bits, struct extent_changeset *changeset)
1416 1417 1418 1419 1420 1421 1422 1423 1424
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1425 1426
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1427 1428
}

1429
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1430
			   u32 bits)
1431
{
1432 1433
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1434 1435
}

1436
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1437
		     u32 bits, int wake, int delete,
1438
		     struct extent_state **cached)
1439 1440
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1441
				  cached, GFP_NOFS, NULL);
1442 1443 1444
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1445
		u32 bits, struct extent_changeset *changeset)
1446 1447 1448 1449 1450 1451 1452
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1453
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1454 1455 1456
				  changeset);
}

Chris Mason's avatar
Chris Mason committed
1457 1458 1459 1460
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1461
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1462
		     struct extent_state **cached_state)
1463 1464 1465
{
	int err;
	u64 failed_start;
1466

1467
	while (1) {
1468 1469 1470
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1471
		if (err == -EEXIST) {
1472 1473
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1474
		} else
1475 1476 1477 1478 1479 1480
			break;
		WARN_ON(start > end);
	}
	return err;
}

1481
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1482 1483 1484 1485
{
	int err;
	u64 failed_start;

1486 1487
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Yan Zheng's avatar
Yan Zheng committed
1488 1489 1490
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1491
					 EXTENT_LOCKED, 1, 0, NULL);
1492
		return 0;
Yan Zheng's avatar
Yan Zheng committed
1493
	}
1494 1495 1496
	return 1;
}

1497
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1498
{
1499 1500
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1501 1502 1503 1504 1505 1506
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1507
		put_page(page);
1508 1509 1510 1511
		index++;
	}
}

1512
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1513
{
1514
	struct address_space *mapping = inode->i_mapping;
1515 1516
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1517
	struct folio *folio;
1518 1519

	while (index <= end_index) {
1520 1521 1522 1523 1524
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1525 1526 1527
	}
}

Chris Mason's avatar
Chris Mason committed
1528 1529 1530 1531
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1532
static struct extent_state *
1533
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
Chris Mason's avatar
Chris Mason committed
1534 1535 1536 1537 1538 1539 1540 1541 1542
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
1543
	if (!node)
Chris Mason's avatar
Chris Mason committed
1544 1545
		goto out;

1546
	while (1) {
Chris Mason's avatar
Chris Mason committed
1547
		state = rb_entry(node, struct extent_state, rb_node);
1548
		if (state->end >= start && (state->state & bits))
Chris Mason's avatar
Chris Mason committed
1549
			return state;
1550

Chris Mason's avatar
Chris Mason committed
1551 1552 1553 1554 1555 1556 1557 1558
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1559
/*
1560
 * Find the first offset in the io tree with one or more @bits set.
1561
 *
1562 1563 1564 1565
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1566 1567
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1568
			  u64 *start_ret, u64 *end_ret, u32 bits,
1569
			  struct extent_state **cached_state)
1570 1571 1572 1573 1574
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1575 1576
	if (cached_state && *cached_state) {
		state = *cached_state;
1577
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1578
			while ((state = next_state(state)) != NULL) {
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1590
	state = find_first_extent_bit_state(tree, start, bits);
1591
got_it:
1592
	if (state) {
1593
		cache_state_if_flags(state, cached_state, 0);
1594 1595 1596 1597
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1598
out:
1599 1600 1601 1602
	spin_unlock(&tree->lock);
	return ret;
}

1603
/**
1604 1605 1606 1607 1608 1609 1610
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1611 1612 1613 1614 1615 1616 1617 1618 1619
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1620
			       u64 *start_ret, u64 *end_ret, u32 bits)
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1641
/**
1642 1643
 * Find the first range that has @bits not set. This range could start before
 * @start.
1644
 *
1645 1646 1647 1648 1649
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1650 1651 1652 1653 1654 1655 1656
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1657
				 u64 *start_ret, u64 *end_ret, u32 bits)
1658 1659 1660 1661 1662 1663 1664 1665 1666
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1685 1686
			node = next;
		}
1687 1688 1689 1690
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1691
		state = rb_entry(node, struct extent_state, rb_node);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1714
		} else {
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

Chris Mason's avatar
Chris Mason committed
1758 1759 1760 1761
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1762
 * true is returned if we find something, false if nothing was in the tree
Chris Mason's avatar
Chris Mason committed
1763
 */
1764 1765 1766
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1767 1768 1769 1770
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1771
	bool found = false;
1772 1773
	u64 total_bytes = 0;

1774
	spin_lock(&tree->lock);
1775

1776 1777 1778 1779
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1780
	node = tree_search(tree, cur_start);
1781
	if (!node) {
1782
		*end = (u64)-1;
1783 1784 1785
		goto out;
	}

1786
	while (1) {
1787
		state = rb_entry(node, struct extent_state, rb_node);
1788 1789
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1790 1791 1792 1793 1794 1795 1796
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1797
		if (!found) {
1798
			*start = state->start;
1799
			*cached_state = state;
1800
			refcount_inc(&state->refs);
1801
		}
1802
		found = true;
1803 1804 1805 1806
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1807
		if (total_bytes >= max_bytes)
1808 1809
			break;
		if (!node)
1810 1811 1812
			break;
	}
out:
1813
	spin_unlock(&tree->lock);
1814 1815 1816
	return found;
}

1817 1818 1819 1820 1821 1822 1823 1824
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1825 1826
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1827
			    struct page *page, struct page *locked_page,
1828
			    unsigned long page_ops, u64 start, u64 end)
1829
{
1830 1831 1832 1833 1834
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1835
	if (page_ops & PAGE_SET_ORDERED)
1836
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1837
	if (page_ops & PAGE_SET_ERROR)
1838
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1839
	if (page_ops & PAGE_START_WRITEBACK) {
1840 1841
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1842 1843
	}
	if (page_ops & PAGE_END_WRITEBACK)
1844
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1845 1846 1847 1848

	if (page == locked_page)
		return 1;

1849
	if (page_ops & PAGE_LOCK) {
1850 1851 1852 1853 1854
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1855
		if (!PageDirty(page) || page->mapping != mapping) {
1856
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1857 1858 1859 1860
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1861
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1862 1863 1864
	return 0;
}

1865 1866
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1867
				  u64 start, u64 end, unsigned long page_ops,
1868 1869
				  u64 *processed_end)
{
1870
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1907 1908 1909
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1941

1942 1943 1944
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
1945
{
1946 1947
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1948

1949
	ASSERT(locked_page);
1950
	if (index == locked_page->index && end_index == index)
1951
		return;
1952

1953
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1954
			       PAGE_UNLOCK, NULL);
1955 1956 1957 1958 1959 1960 1961
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1962 1963
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1964
	u64 processed_end = delalloc_start;
1965 1966
	int ret;

1967
	ASSERT(locked_page);
1968 1969 1970
	if (index == locked_page->index && index == end_index)
		return 0;

1971 1972 1973
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1974
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1975
				      processed_end);
1976 1977 1978 1979
	return ret;
}

/*
1980
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1981
 * more than @max_bytes.
1982
 *
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
1993
 */
1994
EXPORT_FOR_TESTS
1995
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1996
				    struct page *locked_page, u64 *start,
1997
				    u64 *end)
1998
{
1999
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2000 2001
	const u64 orig_start = *start;
	const u64 orig_end = *end;
2002
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
2003 2004
	u64 delalloc_start;
	u64 delalloc_end;
2005
	bool found;
2006
	struct extent_state *cached_state = NULL;
2007 2008 2009
	int ret;
	int loops = 0;

2010 2011 2012 2013 2014 2015
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
2016 2017 2018 2019
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
2020 2021
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2022
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
2023
		*start = delalloc_start;
2024 2025 2026

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2027
		free_extent_state(cached_state);
2028
		return false;
2029 2030
	}

Chris Mason's avatar
Chris Mason committed
2031 2032 2033 2034 2035
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
2036
	if (delalloc_start < *start)
Chris Mason's avatar
Chris Mason committed
2037 2038
		delalloc_start = *start;

2039 2040 2041
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2042 2043
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
2044

2045 2046 2047
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2048
	ASSERT(!ret || ret == -EAGAIN);
2049 2050 2051 2052
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2053
		free_extent_state(cached_state);
2054
		cached_state = NULL;
2055
		if (!loops) {
2056
			max_bytes = PAGE_SIZE;
2057 2058 2059
			loops = 1;
			goto again;
		} else {
2060
			found = false;
2061 2062 2063 2064 2065
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2066
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2067 2068 2069

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2070
			     EXTENT_DELALLOC, 1, cached_state);
2071
	if (!ret) {
2072
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2073
				     &cached_state);
2074 2075 2076 2077 2078
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2079
	free_extent_state(cached_state);
2080 2081 2082 2083 2084 2085
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2086
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2087
				  struct page *locked_page,
2088
				  u32 clear_bits, unsigned long page_ops)
2089
{
2090
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2091

2092
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2093
			       start, end, page_ops, NULL);
2094 2095
}

Chris Mason's avatar
Chris Mason committed
2096 2097 2098 2099 2100
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2101 2102
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2103
		     u32 bits, int contig)
2104 2105 2106 2107 2108
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2109
	u64 last = 0;
2110 2111
	int found = 0;

2112
	if (WARN_ON(search_end <= cur_start))
2113 2114
		return 0;

2115
	spin_lock(&tree->lock);
2116 2117 2118 2119 2120 2121 2122 2123
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2124
	node = tree_search(tree, cur_start);
2125
	if (!node)
2126 2127
		goto out;

2128
	while (1) {
2129 2130 2131
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2132 2133 2134
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2135 2136 2137 2138 2139
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2140
				*start = max(cur_start, state->start);
2141 2142
				found = 1;
			}
2143 2144 2145
			last = state->end;
		} else if (contig && found) {
			break;
2146 2147 2148 2149 2150 2151
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2152
	spin_unlock(&tree->lock);
2153 2154
	return total_bytes;
}
2155

Chris Mason's avatar
Chris Mason committed
2156 2157 2158 2159
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2160 2161
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2162 2163 2164 2165 2166
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2167
	spin_lock(&tree->lock);
2168 2169 2170 2171
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2172
	node = tree_search(tree, start);
2173
	if (!node) {
2174 2175 2176 2177 2178 2179 2180 2181
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2182
	state->failrec = failrec;
2183
out:
2184
	spin_unlock(&tree->lock);
2185 2186 2187
	return ret;
}

2188
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2189 2190 2191
{
	struct rb_node *node;
	struct extent_state *state;
2192
	struct io_failure_record *failrec;
2193

2194
	spin_lock(&tree->lock);
2195 2196 2197 2198
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2199
	node = tree_search(tree, start);
2200
	if (!node) {
2201
		failrec = ERR_PTR(-ENOENT);
2202 2203 2204 2205
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2206
		failrec = ERR_PTR(-ENOENT);
2207 2208
		goto out;
	}
2209 2210

	failrec = state->failrec;
2211
out:
2212
	spin_unlock(&tree->lock);
2213
	return failrec;
2214 2215 2216 2217
}

/*
 * searches a range in the state tree for a given mask.
2218
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2219 2220 2221 2222
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2223
		   u32 bits, int filled, struct extent_state *cached)
2224 2225 2226 2227 2228
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2229
	spin_lock(&tree->lock);
2230
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2231
	    cached->end > start)
2232 2233 2234
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2254 2255 2256 2257

		if (state->end == (u64)-1)
			break;

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2268
	spin_unlock(&tree->lock);
2269 2270 2271
	return bitset;
}

2272 2273 2274
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2275 2276 2277 2278
{
	int ret;
	int err = 0;

2279
	set_state_failrec(failure_tree, rec->start, NULL);
2280 2281
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2282
				EXTENT_LOCKED | EXTENT_DIRTY);
2283 2284 2285
	if (ret)
		err = ret;

2286
	ret = clear_extent_bits(io_tree, rec->start,
David Woodhouse's avatar
David Woodhouse committed
2287
				rec->start + rec->len - 1,
2288
				EXTENT_DAMAGED);
David Woodhouse's avatar
David Woodhouse committed
2289 2290
	if (ret && !err)
		err = ret;
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2301
 * to avoid any synchronization issues, wait for the data after writing, which
2302 2303 2304 2305
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
2306 2307 2308
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2309 2310
{
	struct btrfs_device *dev;
2311 2312
	struct bio_vec bvec;
	struct bio bio;
2313 2314
	u64 map_length = 0;
	u64 sector;
2315
	struct btrfs_io_context *bioc = NULL;
2316
	int ret = 0;
2317

2318
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2319 2320
	BUG_ON(!mirror_num);

2321 2322
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2323

2324 2325
	map_length = length;

2326
	/*
2327
	 * Avoid races with device replace and make sure our bioc has devices
2328 2329 2330 2331
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2332
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2333 2334 2335 2336 2337 2338 2339
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2340
				      &map_length, &bioc, 0);
2341 2342
		if (ret)
			goto out_counter_dec;
2343
		ASSERT(bioc->mirror_num == 1);
2344 2345
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2346
				      &map_length, &bioc, mirror_num);
2347 2348
		if (ret)
			goto out_counter_dec;
2349
		BUG_ON(mirror_num != bioc->mirror_num);
2350
	}
2351

2352 2353 2354
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2355

2356 2357
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2358 2359
		ret = -EIO;
		goto out_counter_dec;
2360 2361
	}

2362 2363 2364 2365 2366 2367 2368
	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = sector;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
2369
		/* try to remap that extent elsewhere? */
2370
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2371
		goto out_bio_uninit;
2372 2373
	}

2374 2375
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2376
				  ino, start,
2377
				  rcu_str_deref(dev->name), sector);
2378 2379 2380 2381 2382
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
2383
	btrfs_bio_counter_dec(fs_info);
2384
	return ret;
2385 2386
}

2387
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2388
{
2389
	struct btrfs_fs_info *fs_info = eb->fs_info;
2390
	u64 start = eb->start;
2391
	int i, num_pages = num_extent_pages(eb);
2392
	int ret = 0;
2393

2394
	if (sb_rdonly(fs_info->sb))
2395 2396
		return -EROFS;

2397
	for (i = 0; i < num_pages; i++) {
2398
		struct page *p = eb->pages[i];
2399

2400
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2401
					start - page_offset(p), mirror_num);
2402 2403
		if (ret)
			break;
2404
		start += PAGE_SIZE;
2405 2406 2407 2408 2409
	}

	return ret;
}

2410 2411 2412 2413
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2414 2415 2416 2417
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2418 2419 2420 2421 2422 2423 2424 2425
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2426 2427
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2428 2429 2430
	if (!ret)
		return 0;

2431 2432
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2433 2434 2435 2436
		return 0;

	BUG_ON(!failrec->this_mirror);

2437
	if (sb_rdonly(fs_info->sb))
2438
		goto out;
2439

2440 2441
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2442 2443
					    failrec->start,
					    EXTENT_LOCKED);
2444
	spin_unlock(&io_tree->lock);
2445

2446 2447
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2448 2449
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2450
		if (num_copies > 1)  {
2451 2452 2453
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2454 2455 2456 2457
		}
	}

out:
2458
	free_io_failure(failure_tree, io_tree, failrec);
2459

2460
	return 0;
2461 2462
}

2463 2464 2465 2466 2467 2468
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2469
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2470
{
2471
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2488
		failrec = state->failrec;
2489 2490 2491 2492 2493 2494 2495 2496
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2497
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2498
							     u64 start)
2499
{
2500
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2501
	struct io_failure_record *failrec;
2502 2503 2504 2505
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2506
	const u32 sectorsize = fs_info->sectorsize;
2507 2508 2509
	int ret;
	u64 logical;

2510
	failrec = get_state_failrec(failure_tree, start);
2511
	if (!IS_ERR(failrec)) {
2512
		btrfs_debug(fs_info,
2513 2514
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2515 2516 2517 2518 2519
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2520 2521

		return failrec;
2522
	}
2523

2524 2525 2526
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2527

2528
	failrec->start = start;
2529
	failrec->len = sectorsize;
2530
	failrec->this_mirror = 0;
2531
	failrec->compress_type = BTRFS_COMPRESS_NONE;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
2555
		failrec->compress_type = em->compress_type;
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2566
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2567 2568 2569 2570
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2571 2572
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2573 2574 2575 2576 2577 2578
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2579 2580
}

2581
static bool btrfs_check_repairable(struct inode *inode,
2582 2583
				   struct io_failure_record *failrec,
				   int failed_mirror)
2584
{
2585
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2586 2587
	int num_copies;

2588
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2589 2590 2591 2592 2593 2594
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2595 2596 2597
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2598
		return false;
2599 2600
	}

2601 2602 2603
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2604
	/*
2605 2606 2607 2608 2609 2610 2611
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2612
	 */
2613
	ASSERT(failed_mirror);
2614 2615 2616
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2617 2618
		failrec->this_mirror++;

2619
	if (failrec->this_mirror > num_copies) {
2620 2621 2622
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2623
		return false;
2624 2625
	}

2626
	return true;
2627 2628
}

2629 2630 2631 2632 2633
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2634 2635
{
	struct io_failure_record *failrec;
2636
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2637
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2638
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2639
	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2640
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2641
	struct bio *repair_bio;
2642
	struct btrfs_bio *repair_bbio;
2643

2644 2645
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2646

2647
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2648

2649
	failrec = btrfs_get_io_failure_record(inode, start);
2650
	if (IS_ERR(failrec))
2651
		return PTR_ERR(failrec);
2652

2653 2654

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2655
		free_io_failure(failure_tree, tree, failrec);
2656
		return -EIO;
2657 2658
	}

2659 2660
	repair_bio = btrfs_bio_alloc(1);
	repair_bbio = btrfs_bio(repair_bio);
2661
	repair_bbio->file_offset = start;
2662 2663 2664 2665
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2666

2667
	if (failed_bbio->csum) {
2668
		const u32 csum_size = fs_info->csum_size;
2669

2670 2671 2672
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2673
	}
2674

2675
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2676
	repair_bbio->iter = repair_bio->bi_iter;
2677

2678
	btrfs_debug(btrfs_sb(inode->i_sb),
2679 2680
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2681

2682 2683 2684 2685 2686
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
2687
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->compress_type);
2688
	return BLK_STS_OK;
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
2699 2700 2701 2702 2703 2704 2705 2706 2707
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2708 2709 2710 2711 2712
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

2713
	if (!btrfs_is_subpage(fs_info, page))
2714
		unlock_page(page);
2715
	else
2716 2717 2718
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static void end_sector_io(struct page *page, u64 offset, bool uptodate)
{
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	const u32 sectorsize = inode->root->fs_info->sectorsize;
	struct extent_state *cached = NULL;

	end_page_read(page, uptodate, offset, sectorsize);
	if (uptodate)
		set_extent_uptodate(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(&inode->io_tree, offset,
				    offset + sectorsize - 1, &cached);
}

2733 2734 2735
static void submit_data_read_repair(struct inode *inode, struct bio *failed_bio,
				    u32 bio_offset, const struct bio_vec *bvec,
				    int failed_mirror, unsigned int error_bitmap)
2736
{
2737
	const unsigned int pgoff = bvec->bv_offset;
2738
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2739 2740 2741
	struct page *page = bvec->bv_page;
	const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
	const u64 end = start + bvec->bv_len - 1;
2742 2743 2744 2745 2746 2747
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

2748 2749 2750
	/* This repair is only for data */
	ASSERT(is_data_inode(inode));

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
2778
				failed_mirror, btrfs_submit_data_read_bio);
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
2789 2790
		 * Continue on failed repair, otherwise the remaining sectors
		 * will not be properly unlocked.
2791 2792
		 */
next:
2793
		end_sector_io(page, start + offset, uptodate);
2794
	}
2795 2796
}

2797 2798
/* lots and lots of room for performance fixes in the end_bio funcs */

2799
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2800
{
2801
	struct btrfs_inode *inode;
2802
	const bool uptodate = (err == 0);
2803
	int ret = 0;
2804

2805 2806 2807
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2808 2809

	if (!uptodate) {
2810 2811 2812 2813 2814 2815 2816 2817
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2818
		ret = err < 0 ? err : -EIO;
2819
		mapping_set_error(page->mapping, ret);
2820 2821 2822
	}
}

2823 2824 2825 2826 2827 2828 2829 2830 2831
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2832
static void end_bio_extent_writepage(struct bio *bio)
2833
{
2834
	int error = blk_status_to_errno(bio->bi_status);
2835
	struct bio_vec *bvec;
2836 2837
	u64 start;
	u64 end;
2838
	struct bvec_iter_all iter_all;
2839
	bool first_bvec = true;
2840

2841
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2842
	bio_for_each_segment_all(bvec, bio, iter_all) {
2843
		struct page *page = bvec->bv_page;
2844 2845
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2860

2861 2862 2863 2864 2865
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2866
		end_extent_writepage(page, error, start, end);
2867 2868

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2869
	}
2870

2871 2872 2873
	bio_put(bio);
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2884
	/* End of the range in @inode */
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2903 2904
{
	struct extent_state *cached = NULL;
2905 2906 2907 2908 2909
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2945 2946
}

2947 2948 2949
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
2950
	if (!btrfs_is_subpage(fs_info, page))
2951 2952 2953 2954 2955 2956
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2957
/*
2958
 * Find extent buffer for a givne bytenr.
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
2972
	if (fs_info->nodesize >= PAGE_SIZE) {
2973 2974 2975 2976
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

2977 2978 2979 2980 2981
	/* For subpage case, we need to lookup buffer radix tree */
	rcu_read_lock();
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       bytenr >> fs_info->sectorsize_bits);
	rcu_read_unlock();
2982 2983 2984 2985
	ASSERT(eb);
	return eb;
}

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2997
static void end_bio_extent_readpage(struct bio *bio)
2998
{
2999
	struct bio_vec *bvec;
3000
	struct btrfs_bio *bbio = btrfs_bio(bio);
3001
	struct extent_io_tree *tree, *failure_tree;
3002
	struct processed_extent processed = { 0 };
3003 3004 3005 3006 3007
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
3008
	int mirror;
3009
	struct bvec_iter_all iter_all;
3010

3011
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3012
	bio_for_each_segment_all(bvec, bio, iter_all) {
3013
		bool uptodate = !bio->bi_status;
3014
		struct page *page = bvec->bv_page;
3015
		struct inode *inode = page->mapping->host;
3016
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3017
		const u32 sectorsize = fs_info->sectorsize;
3018
		unsigned int error_bitmap = (unsigned int)-1;
3019
		bool repair = false;
3020 3021 3022
		u64 start;
		u64 end;
		u32 len;
3023

3024 3025
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3026
			bio->bi_iter.bi_sector, bio->bi_status,
3027
			bbio->mirror_num);
3028
		tree = &BTRFS_I(inode)->io_tree;
3029
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3050
		len = bvec->bv_len;
3051

3052
		mirror = bbio->mirror_num;
3053
		if (likely(uptodate)) {
3054
			if (is_data_inode(inode)) {
3055
				error_bitmap = btrfs_verify_data_csum(bbio,
3056
						bio_offset, page, start, end);
3057 3058
				if (error_bitmap)
					uptodate = false;
3059
			} else {
3060 3061 3062
				if (btrfs_validate_metadata_buffer(bbio,
						page, start, end, mirror))
					uptodate = false;
3063
			}
3064
		}
3065

3066
		if (likely(uptodate)) {
3067
			loff_t i_size = i_size_read(inode);
3068
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3069

3070 3071 3072 3073
			clean_io_failure(BTRFS_I(inode)->root->fs_info,
					 failure_tree, tree, start, page,
					 btrfs_ino(BTRFS_I(inode)), 0);

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3085
						     offset_in_page(start));
3086 3087 3088 3089

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
		} else if (is_data_inode(inode)) {
			/*
			 * Only try to repair bios that actually made it to a
			 * device.  If the bio failed to be submitted mirror
			 * is 0 and we need to fail it without retrying.
			 */
			if (mirror > 0)
				repair = true;
		} else {
			struct extent_buffer *eb;

			eb = find_extent_buffer_readpage(fs_info, page, start);
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
3105
		}
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120

		if (repair) {
			/*
			 * submit_data_read_repair() will handle all the good
			 * and bad sectors, we just continue to the next bvec.
			 */
			submit_data_read_repair(inode, bio, bio_offset, bvec,
						mirror, error_bitmap);
		} else {
			/* Update page status and unlock */
			end_page_read(page, uptodate, start, len);
			endio_readpage_release_extent(&processed, BTRFS_I(inode),
					start, end, PageUptodate(page));
		}

3121 3122
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3123

3124
	}
3125 3126
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3127
	btrfs_bio_free_csum(bbio);
3128 3129 3130
	bio_put(bio);
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/**
 * Populate every free slot in a provided array with pages.
 *
 * @nr_pages:   number of pages to allocate
 * @page_array: the array to fill with pages; any existing non-null entries in
 * 		the array will be skipped
 *
 * Return: 0        if all pages were able to be allocated;
 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
 *                  non-null page pointers in the array.
 */
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
{
3144
	unsigned int allocated;
3145

3146 3147
	for (allocated = 0; allocated < nr_pages;) {
		unsigned int last = allocated;
3148

3149 3150
		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);

3151 3152 3153
		if (allocated == nr_pages)
			return 0;

3154 3155 3156 3157 3158 3159
		/*
		 * During this iteration, no page could be allocated, even
		 * though alloc_pages_bulk_array() falls back to alloc_page()
		 * if  it could not bulk-allocate. So we must be out of memory.
		 */
		if (allocated == last)
3160
			return -ENOMEM;
3161 3162

		memalloc_retry_wait(GFP_NOFS);
3163 3164 3165 3166
	}
	return 0;
}

3167
/*
3168 3169 3170
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3171
 */
3172
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3173
{
3174
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3175
}
3176

3177
/*
3178 3179 3180
 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
 *
 * The bio allocation is backed by bioset and does not fail.
3181
 */
3182
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3183 3184 3185
{
	struct bio *bio;

3186
	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3187
	bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
3188
	btrfs_bio_init(btrfs_bio(bio));
3189 3190 3191
	return bio;
}

3192
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3193 3194
{
	struct bio *bio;
3195
	struct btrfs_bio *bbio;
3196

3197 3198
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3199
	/* this will never fail when it's backed by a bioset */
3200
	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
3201 3202
	ASSERT(bio);

3203 3204
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio);
3205 3206

	bio_trim(bio, offset >> 9, size >> 9);
3207
	bbio->iter = bio->bi_iter;
3208 3209
	return bio;
}
3210

3211 3212 3213
/**
 * Attempt to add a page to bio
 *
3214
 * @bio_ctrl:	record both the bio, and its bio_flags
3215 3216 3217 3218
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
3219
 * @pg_offset:	starting offset in the page
3220
 * @compress_type:   compression type of the current bio to see if we can merge them
3221 3222 3223
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3224 3225 3226
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3227
 */
3228 3229 3230 3231
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
3232
			      enum btrfs_compression_type compress_type)
3233
{
3234 3235
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3236
	u32 real_size;
3237 3238
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3239
	int ret;
3240

3241 3242 3243
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3244
	if (bio_ctrl->compress_type != compress_type)
3245
		return 0;
3246

3247
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
3248 3249 3250 3251
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3252
		return 0;
3253

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3264

3265
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3266
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3267
	else
3268
		ret = bio_add_page(bio, page, real_size, pg_offset);
3269

3270
	return ret;
3271 3272
}

3273
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3274
			       struct btrfs_inode *inode, u64 file_offset)
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
3290
	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3309
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3310 3311 3312 3313 3314
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3315
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3327 3328 3329 3330 3331
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
3332
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3333
			 enum btrfs_compression_type compress_type)
3334 3335 3336 3337 3338
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3339
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
3340 3341 3342 3343
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
3344
	if (compress_type != BTRFS_COMPRESS_NONE)
3345
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3346
	else
3347
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3348
	bio_ctrl->bio = bio;
3349
	bio_ctrl->compress_type = compress_type;
3350 3351
	bio->bi_end_io = end_io_func;
	bio->bi_opf = opf;
3352 3353 3354
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3355

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3371

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3382
		}
3383 3384 3385
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3386 3387 3388 3389 3390 3391 3392 3393 3394
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3395 3396
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3397 3398
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3399 3400
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3401 3402
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3403
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3404 3405 3406
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3407
 * @compress_type:   compress type for current bio
3408
 */
3409
static int submit_extent_page(unsigned int opf,
3410
			      struct writeback_control *wbc,
3411
			      struct btrfs_bio_ctrl *bio_ctrl,
3412
			      struct page *page, u64 disk_bytenr,
3413
			      size_t size, unsigned long pg_offset,
3414
			      bio_end_io_t end_io_func,
3415
			      enum btrfs_compression_type compress_type,
3416
			      bool force_bio_submit)
3417 3418
{
	int ret = 0;
3419
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3420
	unsigned int cur = pg_offset;
3421

3422
	ASSERT(bio_ctrl);
3423

3424 3425
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3426 3427
	if (force_bio_submit)
		submit_one_bio(bio_ctrl);
3428 3429 3430 3431 3432 3433 3434 3435 3436

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3437
					    page_offset(page) + cur,
3438
					    compress_type);
3439 3440 3441 3442 3443 3444 3445
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
3446
		if (compress_type != BTRFS_COMPRESS_NONE)
3447 3448
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
3449
					compress_type);
3450 3451 3452
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
3453
					pg_offset + offset, compress_type);
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3467
			submit_one_bio(bio_ctrl);
3468
		}
3469
		cur += added;
3470
	}
3471
	return 0;
3472 3473
}

3474 3475 3476
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3477
{
3478 3479 3480
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3481 3482 3483 3484 3485 3486 3487 3488 3489
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3490
	if (fs_info->nodesize >= PAGE_SIZE) {
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3507
	else
3508 3509 3510 3511
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3512 3513
}

3514
int set_page_extent_mapped(struct page *page)
3515
{
3516 3517 3518 3519 3520 3521 3522 3523 3524
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

3525
	if (btrfs_is_subpage(fs_info, page))
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3538
	if (!PagePrivate(page))
3539 3540 3541
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
3542
	if (btrfs_is_subpage(fs_info, page))
3543 3544 3545
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3546 3547
}

3548 3549
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3550
		 u64 start, u64 len, struct extent_map **em_cached)
3551 3552 3553 3554 3555
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3556
		if (extent_map_in_tree(em) && start >= em->start &&
3557
		    start < extent_map_end(em)) {
3558
			refcount_inc(&em->refs);
3559 3560 3561 3562 3563 3564 3565
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3566
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3567
	if (em_cached && !IS_ERR(em)) {
3568
		BUG_ON(*em_cached);
3569
		refcount_inc(&em->refs);
3570 3571 3572 3573
		*em_cached = em;
	}
	return em;
}
3574 3575 3576 3577
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3578
 * XXX JDM: This needs looking at to ensure proper page locking
3579
 * return 0 on success, otherwise return error
3580
 */
3581
static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3582
		      struct btrfs_bio_ctrl *bio_ctrl,
3583
		      unsigned int read_flags, u64 *prev_em_start)
3584 3585
{
	struct inode *inode = page->mapping->host;
3586
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
Miao Xie's avatar
Miao Xie committed
3587
	u64 start = page_offset(page);
3588
	const u64 end = start + PAGE_SIZE - 1;
3589 3590 3591 3592 3593 3594
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3595
	int ret = 0;
3596
	size_t pg_offset = 0;
3597 3598
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3599
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3600

3601 3602 3603
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3604 3605
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3606 3607
		goto out;
	}
3608

3609
	if (page->index == last_byte >> PAGE_SHIFT) {
3610
		size_t zero_offset = offset_in_page(last_byte);
3611 3612

		if (zero_offset) {
3613
			iosize = PAGE_SIZE - zero_offset;
3614
			memzero_page(page, zero_offset, iosize);
3615 3616
		}
	}
3617
	begin_page_read(fs_info, page);
3618
	while (cur <= end) {
3619
		unsigned long this_bio_flag = 0;
3620
		bool force_bio_submit = false;
3621
		u64 disk_bytenr;
3622

3623
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3624
		if (cur >= last_byte) {
3625 3626
			struct extent_state *cached = NULL;

3627
			iosize = PAGE_SIZE - pg_offset;
3628
			memzero_page(page, pg_offset, iosize);
3629
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3630
					    &cached, GFP_NOFS);
3631
			unlock_extent_cached(tree, cur,
3632
					     cur + iosize - 1, &cached);
3633
			end_page_read(page, true, cur, iosize);
3634 3635
			break;
		}
3636
		em = __get_extent_map(inode, page, pg_offset, cur,
3637
				      end - cur + 1, em_cached);
3638
		if (IS_ERR(em)) {
3639
			unlock_extent(tree, cur, end);
3640
			end_page_read(page, false, cur, end + 1 - cur);
3641
			ret = PTR_ERR(em);
3642 3643 3644 3645 3646 3647
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3648 3649
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			this_bio_flag = em->compress_type;
3650

3651 3652
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3653
		iosize = ALIGN(iosize, blocksize);
3654
		if (this_bio_flag != BTRFS_COMPRESS_NONE)
3655
			disk_bytenr = em->block_start;
3656
		else
3657
			disk_bytenr = em->block_start + extent_offset;
3658
		block_start = em->block_start;
Yan Zheng's avatar
Yan Zheng committed
3659 3660
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3661 3662 3663

		/*
		 * If we have a file range that points to a compressed extent
3664
		 * and it's followed by a consecutive file range that points
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3698
		    *prev_em_start != em->start)
3699 3700 3701
			force_bio_submit = true;

		if (prev_em_start)
3702
			*prev_em_start = em->start;
3703

3704 3705 3706 3707 3708
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3709 3710
			struct extent_state *cached = NULL;

3711
			memzero_page(page, pg_offset, iosize);
3712 3713

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3714
					    &cached, GFP_NOFS);
3715
			unlock_extent_cached(tree, cur,
3716
					     cur + iosize - 1, &cached);
3717
			end_page_read(page, true, cur, iosize);
3718
			cur = cur + iosize;
3719
			pg_offset += iosize;
3720 3721 3722
			continue;
		}
		/* the get_extent function already copied into the page */
3723 3724
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3725
			unlock_extent(tree, cur, cur + iosize - 1);
3726
			end_page_read(page, true, cur, iosize);
3727
			cur = cur + iosize;
3728
			pg_offset += iosize;
3729 3730
			continue;
		}
3731 3732 3733 3734
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3735
			unlock_extent(tree, cur, cur + iosize - 1);
3736
			end_page_read(page, false, cur, iosize);
3737
			cur = cur + iosize;
3738
			pg_offset += iosize;
3739 3740
			continue;
		}
3741

3742
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3743
					 bio_ctrl, page, disk_bytenr, iosize,
3744 3745
					 pg_offset, end_bio_extent_readpage,
					 this_bio_flag, force_bio_submit);
3746
		if (ret) {
3747 3748 3749 3750 3751 3752
			/*
			 * We have to unlock the remaining range, or the page
			 * will never be unlocked.
			 */
			unlock_extent(tree, cur, end);
			end_page_read(page, false, cur, end + 1 - cur);
3753
			goto out;
3754
		}
3755
		cur = cur + iosize;
3756
		pg_offset += iosize;
3757
	}
3758
out:
3759
	return ret;
3760 3761
}

3762
int btrfs_read_folio(struct file *file, struct folio *folio)
3763
{
3764
	struct page *page = &folio->page;
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	u64 start = page_offset(page);
	u64 end = start + PAGE_SIZE - 1;
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
	int ret;

	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);

	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
	/*
	 * If btrfs_do_readpage() failed we will want to submit the assembled
	 * bio to do the cleanup.
	 */
3778
	submit_one_bio(&bio_ctrl);
3779 3780 3781
	return ret;
}

3782
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3783 3784 3785 3786
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3787
{
3788
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3789 3790
	int index;

3791
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3792 3793

	for (index = 0; index < nr_pages; index++) {
3794
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3795
				  REQ_RAHEAD, prev_em_start);
3796
		put_page(pages[index]);
3797 3798 3799
	}
}

3800
/*
3801 3802
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3803
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3804 3805 3806 3807 3808
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3809
 */
3810
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3811
		struct page *page, struct writeback_control *wbc)
3812
{
3813
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3814
	u64 delalloc_start = page_offset(page);
3815
	u64 delalloc_to_write = 0;
3816 3817
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3818 3819 3820
	int ret;
	int page_started = 0;

3821 3822 3823
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3824

3825
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3826
					       &delalloc_start,
3827
					       &delalloc_end);
3828
		if (!found) {
3829 3830 3831
			delalloc_start = delalloc_end + 1;
			continue;
		}
3832
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3833
				delalloc_end, &page_started, &nr_written, wbc);
3834
		if (ret) {
3835 3836
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3837
			return ret;
3838 3839
		}
		/*
3840 3841
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3842 3843
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3844
				      PAGE_SIZE) >> PAGE_SHIFT;
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3856
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3857 3858
	if (page_started) {
		/*
3859 3860
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3861
		 */
3862
		wbc->nr_to_write -= nr_written;
3863 3864 3865
		return 1;
	}

3866
	return 0;
3867 3868
}

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3888
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3889 3890 3891
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3892
	int range_start_bit;
3893 3894 3895 3896 3897 3898
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
3899
	if (!btrfs_is_subpage(fs_info, page)) {
3900 3901 3902 3903 3904
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3905 3906 3907
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3908 3909
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3910 3911
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3912 3913
	spin_unlock_irqrestore(&subpage->lock, flags);

3914 3915 3916
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3917 3918 3919 3920
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3921 3922 3923 3924 3925 3926 3927 3928
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3929
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3930 3931 3932 3933
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3934
				 int *nr_ret)
3935
{
3936
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3937 3938
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3939 3940 3941
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3942
	int saved_ret = 0;
3943 3944
	int ret = 0;
	int nr = 0;
3945
	u32 opf = REQ_OP_WRITE;
3946
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3947
	bool has_error = false;
3948
	bool compressed;
3949

3950
	ret = btrfs_writepage_cow_fixup(page);
3951 3952
	if (ret) {
		/* Fixup worker will requeue */
3953
		redirty_page_for_writepage(wbc, page);
3954 3955
		unlock_page(page);
		return 1;
3956 3957
	}

3958 3959 3960 3961
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
3962
	wbc->nr_to_write--;
3963

3964
	while (cur <= end) {
3965
		u64 disk_bytenr;
3966
		u64 em_end;
3967 3968
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
3969
		u32 iosize;
3970

3971
		if (cur >= i_size) {
3972
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3973
							     end, true);
3974 3975 3976 3977 3978 3979 3980 3981 3982
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3983 3984
			break;
		}
3985 3986 3987 3988 3989 3990 3991 3992

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

3993
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3994
		if (IS_ERR(em)) {
3995
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3996
			ret = PTR_ERR_OR_ZERO(em);
3997 3998 3999
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;
4000 4001 4002 4003
			break;
		}

		extent_offset = cur - em->start;
4004
		em_end = extent_map_end(em);
4005 4006 4007 4008
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
4009
		block_start = em->block_start;
4010
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4011 4012
		disk_bytenr = em->block_start + extent_offset;

4013 4014 4015 4016 4017
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
4018

4019
		if (btrfs_use_zone_append(inode, em->block_start))
4020 4021
			opf = REQ_OP_ZONE_APPEND;

4022 4023 4024
		free_extent_map(em);
		em = NULL;

4025 4026 4027 4028 4029
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
4030
		    block_start == EXTENT_MAP_INLINE) {
4031
			if (compressed)
4032
				nr++;
4033
			else
4034
				btrfs_writepage_endio_finish_ordered(inode,
4035
						page, cur, cur + iosize - 1, true);
4036
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4037
			cur += iosize;
4038 4039
			continue;
		}
4040

4041
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4042
		if (!PageWriteback(page)) {
4043
			btrfs_err(inode->root->fs_info,
4044 4045
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4046
		}
4047

4048 4049 4050 4051 4052 4053 4054 4055
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4056 4057
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4058
					 disk_bytenr, iosize,
4059
					 cur - page_offset(page),
4060
					 end_bio_extent_writepage,
4061
					 0, false);
4062
		if (ret) {
4063 4064 4065 4066
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;

4067
			btrfs_page_set_error(fs_info, page, cur, iosize);
4068
			if (PageWriteback(page))
4069 4070
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4071
		}
4072

4073
		cur += iosize;
4074 4075
		nr++;
	}
4076 4077 4078 4079
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
4080
	if (!has_error)
4081
		btrfs_page_assert_not_dirty(fs_info, page);
4082 4083
	else
		ret = saved_ret;
4084 4085 4086 4087 4088 4089 4090 4091 4092
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4093 4094 4095
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4096 4097
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4098
			      struct extent_page_data *epd)
4099
{
4100
	struct folio *folio = page_folio(page);
4101
	struct inode *inode = page->mapping->host;
4102
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4103 4104
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4105 4106
	int ret;
	int nr = 0;
4107
	size_t pg_offset;
4108
	loff_t i_size = i_size_read(inode);
4109
	unsigned long end_index = i_size >> PAGE_SHIFT;
4110 4111 4112 4113 4114

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4115 4116
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4117

4118
	pg_offset = offset_in_page(i_size);
4119 4120
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4121 4122
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
4123 4124 4125
		return 0;
	}

4126
	if (page->index == end_index)
4127
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4128

4129 4130 4131 4132 4133
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4134

4135
	if (!epd->extent_locked) {
4136
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4137
		if (ret == 1)
4138
			return 0;
4139 4140 4141
		if (ret)
			goto done;
	}
4142

4143
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4144
				    &nr);
4145
	if (ret == 1)
4146
		return 0;
4147

4148 4149 4150 4151 4152 4153
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4186
		end_extent_writepage(page, ret, page_start, page_end);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4200
	ASSERT(ret <= 0);
4201
	return ret;
4202 4203
}

4204
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4205
{
4206 4207
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4208 4209
}

4210 4211 4212 4213 4214 4215 4216
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4217
/*
4218
 * Lock extent buffer status and pages for writeback.
4219
 *
4220 4221 4222 4223 4224 4225
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4226
 */
4227
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4228
			  struct extent_page_data *epd)
4229
{
4230
	struct btrfs_fs_info *fs_info = eb->fs_info;
4231
	int i, num_pages;
4232 4233 4234 4235
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4236
		submit_write_bio(epd, 0);
4237
		flush = 1;
4238 4239 4240 4241 4242 4243 4244 4245
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4246
			submit_write_bio(epd, 0);
4247 4248
			flush = 1;
		}
Chris Mason's avatar
Chris Mason committed
4249 4250 4251 4252 4253
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4254 4255 4256 4257
			btrfs_tree_unlock(eb);
		}
	}

4258 4259 4260 4261 4262 4263
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4264 4265
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4266
		spin_unlock(&eb->refs_lock);
4267
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4268 4269 4270
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4271
		ret = 1;
4272 4273
	} else {
		spin_unlock(&eb->refs_lock);
4274 4275 4276 4277
	}

	btrfs_tree_unlock(eb);

4278 4279 4280 4281 4282 4283
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
4284
	if (!ret || fs_info->nodesize < PAGE_SIZE)
4285 4286
		return ret;

4287
	num_pages = num_extent_pages(eb);
4288
	for (i = 0; i < num_pages; i++) {
4289
		struct page *p = eb->pages[i];
4290 4291 4292

		if (!trylock_page(p)) {
			if (!flush) {
4293
				submit_write_bio(epd, 0);
4294 4295 4296 4297 4298 4299
				flush = 1;
			}
			lock_page(p);
		}
	}

4300
	return ret;
4301 4302
}

4303
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4304
{
4305
	struct btrfs_fs_info *fs_info = eb->fs_info;
4306

4307
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4308 4309 4310
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4311 4312 4313 4314 4315 4316
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4317 4318 4319 4320 4321 4322 4323 4324
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4325 4326 4327 4328 4329 4330 4331
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4372
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4373 4374
		break;
	case 0:
4375
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4376 4377
		break;
	case 1:
4378
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4379 4380 4381 4382 4383 4384
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
4395 4396
	eb = radix_tree_lookup(&fs_info->buffer_radix,
			       start >> fs_info->sectorsize_bits);
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4411
static void end_bio_subpage_eb_writepage(struct bio *bio)
4412
{
4413
	struct btrfs_fs_info *fs_info;
4414 4415 4416
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4417
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4418
	ASSERT(fs_info->nodesize < PAGE_SIZE);
4419

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4468
static void end_bio_extent_buffer_writepage(struct bio *bio)
4469
{
4470
	struct bio_vec *bvec;
4471
	struct extent_buffer *eb;
4472
	int done;
4473
	struct bvec_iter_all iter_all;
4474

4475
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4476
	bio_for_each_segment_all(bvec, bio, iter_all) {
4477 4478 4479 4480 4481 4482
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4483
		if (bio->bi_status ||
4484
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4485
			ClearPageUptodate(page);
4486
			set_btree_ioerr(page, eb);
4487 4488 4489 4490 4491 4492 4493 4494
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4495
	}
4496 4497 4498 4499

	bio_put(bio);
}

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
4535
	unsigned int write_flags = wbc_to_write_flags(wbc);
4536 4537 4538
	bool no_dirty_ebs = false;
	int ret;

4539 4540
	prepare_eb_write(eb);

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4551 4552 4553
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4554
			end_bio_subpage_eb_writepage, 0, false);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
4570
		wbc->nr_to_write--;
4571 4572 4573
	return ret;
}

4574
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4575 4576 4577
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4578
	u64 disk_bytenr = eb->start;
4579
	int i, num_pages;
4580
	unsigned int write_flags = wbc_to_write_flags(wbc);
4581
	int ret = 0;
4582

4583
	prepare_eb_write(eb);
4584

4585
	num_pages = num_extent_pages(eb);
4586
	for (i = 0; i < num_pages; i++) {
4587
		struct page *p = eb->pages[i];
4588 4589 4590

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4591
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4592 4593
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4594
					 end_bio_extent_buffer_writepage,
4595
					 0, false);
4596
		if (ret) {
4597
			set_btree_ioerr(p, eb);
4598 4599
			if (PageWriteback(p))
				end_page_writeback(p);
4600 4601 4602 4603 4604
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4605
		disk_bytenr += PAGE_SIZE;
4606
		wbc->nr_to_write--;
4607 4608 4609 4610 4611
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4612
			struct page *p = eb->pages[i];
4613
			clear_page_dirty_for_io(p);
4614 4615 4616 4617 4618 4619 4620
			unlock_page(p);
		}
	}

	return ret;
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4647
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4663 4664
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4699
		ret = write_one_subpage_eb(eb, wbc, epd);
4700 4701 4702 4703 4704 4705 4706 4707 4708
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
4709
	submit_write_bio(epd, ret);
4710 4711 4712
	return ret;
}

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4738
	struct btrfs_block_group *cache = NULL;
4739 4740 4741 4742 4743 4744
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4745
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4746 4747
		return submit_eb_subpage(page, wbc, epd);

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4787 4788 4789 4790
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4791 4792 4793
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4794 4795 4796
		free_extent_buffer(eb);
		return ret;
	}
4797
	if (cache) {
4798 4799 4800
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4801
		btrfs_schedule_zone_finish_bg(cache, eb);
4802
		btrfs_put_block_group(cache);
4803
	}
4804 4805 4806 4807 4808 4809 4810
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4811 4812 4813
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4814
	struct extent_buffer *eb_context = NULL;
4815
	struct extent_page_data epd = {
4816
		.bio_ctrl = { 0 },
4817 4818 4819
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4820
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4821 4822 4823 4824 4825 4826 4827 4828
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
Matthew Wilcox's avatar
Matthew Wilcox committed
4829
	xa_mark_t tag;
4830

4831
	pagevec_init(&pvec);
4832 4833 4834
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4835 4836 4837 4838 4839
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4840
	} else {
4841 4842
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4843 4844 4845 4846 4847 4848
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4849
	btrfs_zoned_meta_io_lock(fs_info);
4850 4851 4852 4853
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
4854
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4855
			tag))) {
4856 4857 4858 4859 4860
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4861 4862
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4863
				continue;
4864
			if (ret < 0) {
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
4914
	 *
4915 4916 4917 4918 4919
	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
	 */
	if (ret > 0)
		ret = 0;
4920 4921 4922 4923 4924
	if (!ret && BTRFS_FS_ERROR(fs_info))
		ret = -EROFS;
	submit_write_bio(&epd, ret);

	btrfs_zoned_meta_io_unlock(fs_info);
4925 4926 4927
	return ret;
}

4928
/**
4929 4930
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4931
 * @mapping: address space structure to write
4932 4933
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4934 4935 4936 4937 4938 4939 4940 4941 4942
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4943
static int extent_write_cache_pages(struct address_space *mapping,
Chris Mason's avatar
Chris Mason committed
4944
			     struct writeback_control *wbc,
4945
			     struct extent_page_data *epd)
4946
{
4947
	struct inode *inode = mapping->host;
4948 4949
	int ret = 0;
	int done = 0;
4950
	int nr_to_write_done = 0;
4951 4952 4953 4954
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
4955 4956
	pgoff_t done_index;
	int range_whole = 0;
4957
	int scanned = 0;
Matthew Wilcox's avatar
Matthew Wilcox committed
4958
	xa_mark_t tag;
4959

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

4972
	pagevec_init(&pvec);
4973 4974 4975
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4976 4977 4978 4979 4980
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4981
	} else {
4982 4983
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4984 4985
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
4986 4987
		scanned = 1;
	}
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5002 5003 5004
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
5005
retry:
5006
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5007
		tag_pages_for_writeback(mapping, index, end);
5008
	done_index = index;
5009
	while (!done && !nr_to_write_done && (index <= end) &&
5010 5011
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
5012 5013 5014 5015 5016
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

5017
			done_index = page->index + 1;
5018
			/*
Matthew Wilcox's avatar
Matthew Wilcox committed
5019 5020 5021 5022 5023
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
5024
			 */
5025
			if (!trylock_page(page)) {
5026
				submit_write_bio(epd, 0);
5027
				lock_page(page);
5028
			}
5029 5030 5031 5032 5033 5034

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

Chris Mason's avatar
Chris Mason committed
5035
			if (wbc->sync_mode != WB_SYNC_NONE) {
5036
				if (PageWriteback(page))
5037
					submit_write_bio(epd, 0);
5038
				wait_on_page_writeback(page);
Chris Mason's avatar
Chris Mason committed
5039
			}
5040 5041 5042 5043 5044 5045 5046

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5047
			ret = __extent_writepage(page, wbc, epd);
5048 5049 5050 5051
			if (ret < 0) {
				done = 1;
				break;
			}
5052 5053 5054 5055 5056 5057 5058

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5059 5060 5061 5062
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5063
	if (!scanned && !done) {
5064 5065 5066 5067 5068 5069
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5070 5071 5072 5073 5074 5075 5076

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
5077
		submit_write_bio(epd, 0);
5078
		goto retry;
5079
	}
5080 5081 5082 5083

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5084
	btrfs_add_delayed_iput(inode);
5085
	return ret;
5086 5087
}

5088
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5089 5090 5091
{
	int ret;
	struct extent_page_data epd = {
5092
		.bio_ctrl = { 0 },
5093
		.extent_locked = 0,
5094
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5095 5096 5097
	};

	ret = __extent_writepage(page, wbc, &epd);
5098
	submit_write_bio(&epd, ret);
5099 5100 5101
	return ret;
}

5102 5103 5104 5105 5106 5107
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5108
{
5109 5110
	bool found_error = false;
	int first_error = 0;
5111 5112 5113
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5114
	u64 cur = start;
5115 5116
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5117
	struct extent_page_data epd = {
5118
		.bio_ctrl = { 0 },
5119
		.extent_locked = 1,
5120
		.sync_io = 1,
5121 5122
	};
	struct writeback_control wbc_writepages = {
5123
		.sync_mode	= WB_SYNC_ALL,
5124 5125
		.range_start	= start,
		.range_end	= end + 1,
5126 5127 5128
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5129 5130
	};

5131 5132 5133 5134 5135
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5136
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5137
	while (cur <= end) {
5138 5139
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5140 5141 5142 5143 5144 5145
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5146
		ASSERT(PageLocked(page));
5147 5148 5149 5150 5151 5152 5153
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5154
		}
5155
		put_page(page);
5156
		cur = cur_end + 1;
5157 5158
	}

5159
	submit_write_bio(&epd, found_error ? ret : 0);
5160 5161

	wbc_detach_inode(&wbc_writepages);
5162 5163
	if (found_error)
		return first_error;
5164 5165
	return ret;
}
5166

5167
int extent_writepages(struct address_space *mapping,
5168 5169
		      struct writeback_control *wbc)
{
5170
	struct inode *inode = mapping->host;
5171 5172
	int ret = 0;
	struct extent_page_data epd = {
5173
		.bio_ctrl = { 0 },
5174
		.extent_locked = 0,
5175
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5176 5177
	};

5178 5179 5180 5181
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5182
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5183
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5184
	submit_write_bio(&epd, ret);
5185
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5186 5187 5188
	return ret;
}

5189
void extent_readahead(struct readahead_control *rac)
5190
{
5191
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
5192
	struct page *pagepool[16];
5193
	struct extent_map *em_cached = NULL;
5194
	u64 prev_em_start = (u64)-1;
5195
	int nr;
5196

5197
	while ((nr = readahead_page_batch(rac, pagepool))) {
5198 5199
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5200

5201
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5202
				&em_cached, &bio_ctrl, &prev_em_start);
5203
	}
5204

5205 5206
	if (em_cached)
		free_extent_map(em_cached);
5207
	submit_one_bio(&bio_ctrl);
5208 5209 5210
}

/*
5211 5212
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
5213 5214
 * records from the tree
 */
5215 5216
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
5217
{
5218
	struct extent_state *cached_state = NULL;
5219 5220 5221
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5222

5223 5224 5225
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5226
	start += ALIGN(offset, blocksize);
5227 5228 5229
	if (start > end)
		return 0;

5230
	lock_extent_bits(tree, start, end, &cached_state);
5231
	folio_wait_writeback(folio);
5232 5233 5234 5235 5236 5237 5238

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5239 5240 5241
	return 0;
}

5242
/*
5243
 * a helper for release_folio, this tests for areas of the page that
5244 5245 5246
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5247
static int try_release_extent_state(struct extent_io_tree *tree,
5248
				    struct page *page, gfp_t mask)
5249
{
Miao Xie's avatar
Miao Xie committed
5250
	u64 start = page_offset(page);
5251
	u64 end = start + PAGE_SIZE - 1;
5252 5253
	int ret = 1;

Nikolay Borisov's avatar
Nikolay Borisov committed
5254
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5255
		ret = 0;
Nikolay Borisov's avatar
Nikolay Borisov committed
5256
	} else {
5257
		/*
5258 5259 5260 5261
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5262
		 */
5263
		ret = __clear_extent_bit(tree, start, end,
5264 5265
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5266 5267 5268 5269 5270 5271 5272 5273

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5274 5275 5276 5277
	}
	return ret;
}

5278
/*
5279
 * a helper for release_folio.  As long as there are no locked extents
5280 5281 5282
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5283
int try_release_extent_mapping(struct page *page, gfp_t mask)
5284 5285
{
	struct extent_map *em;
Miao Xie's avatar
Miao Xie committed
5286
	u64 start = page_offset(page);
5287
	u64 end = start + PAGE_SIZE - 1;
5288 5289 5290
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5291

5292
	if (gfpflags_allow_blocking(mask) &&
5293
	    page->mapping->host->i_size > SZ_16M) {
5294
		u64 len;
5295
		while (start <= end) {
5296 5297 5298
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5299
			len = end - start + 1;
5300
			write_lock(&map->lock);
5301
			em = lookup_extent_mapping(map, start, len);
5302
			if (!em) {
5303
				write_unlock(&map->lock);
5304 5305
				break;
			}
5306 5307
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5308
				write_unlock(&map->lock);
5309 5310 5311
				free_extent_map(em);
				break;
			}
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5339 5340 5341 5342 5343 5344 5345 5346
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5347 5348 5349
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5350
next:
5351
			start = extent_map_end(em);
5352
			write_unlock(&map->lock);
5353 5354

			/* once for us */
5355
			free_extent_map(em);
5356 5357

			cond_resched(); /* Allow large-extent preemption. */
5358 5359
		}
	}
5360
	return try_release_extent_state(tree, page, mask);
5361 5362
}

5363 5364 5365 5366
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5367
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5368
						u64 offset, u64 last)
5369
{
5370
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5371 5372 5373 5374 5375 5376
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5377
	while (1) {
5378 5379 5380
		len = last - offset;
		if (len == 0)
			break;
5381
		len = ALIGN(len, sectorsize);
5382
		em = btrfs_get_extent_fiemap(inode, offset, len);
5383
		if (IS_ERR(em))
5384 5385 5386
			return em;

		/* if this isn't a hole return it */
5387
		if (em->block_start != EXTENT_MAP_HOLE)
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5433
	 * fiemap extent won't overlap with cached one.
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5485
 * Emit last fiemap cache
5486
 *
5487 5488 5489 5490 5491 5492 5493
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5494
 */
5495
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5496
				  struct fiemap_cache *cache)
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5511
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5512
		  u64 start, u64 len)
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5513
{
Josef Bacik's avatar
Josef Bacik committed
5514
	int ret = 0;
5515
	u64 off;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5516 5517
	u64 max = start + len;
	u32 flags = 0;
Josef Bacik's avatar
Josef Bacik committed
5518 5519
	u32 found_type;
	u64 last;
5520
	u64 last_for_get_extent = 0;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5521
	u64 disko = 0;
5522
	u64 isize = i_size_read(&inode->vfs_inode);
Josef Bacik's avatar
Josef Bacik committed
5523
	struct btrfs_key found_key;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5524
	struct extent_map *em = NULL;
5525
	struct extent_state *cached_state = NULL;
Josef Bacik's avatar
Josef Bacik committed
5526
	struct btrfs_path *path;
5527
	struct btrfs_root *root = inode->root;
5528
	struct fiemap_cache cache = { 0 };
5529 5530
	struct ulist *roots;
	struct ulist *tmp_ulist;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5531
	int end = 0;
5532 5533 5534
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5535 5536 5537 5538

	if (len == 0)
		return -EINVAL;

Josef Bacik's avatar
Josef Bacik committed
5539 5540 5541 5542
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5543 5544 5545 5546 5547 5548 5549
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5550 5551 5552 5553 5554
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5555 5556
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5557

5558 5559 5560 5561
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5562 5563
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
Josef Bacik's avatar
Josef Bacik committed
5564
	if (ret < 0) {
5565
		goto out_free_ulist;
5566 5567 5568 5569
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
Josef Bacik's avatar
Josef Bacik committed
5570
	}
5571

Josef Bacik's avatar
Josef Bacik committed
5572 5573
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5574
	found_type = found_key.type;
Josef Bacik's avatar
Josef Bacik committed
5575

5576
	/* No extents, but there might be delalloc bits */
5577
	if (found_key.objectid != btrfs_ino(inode) ||
Josef Bacik's avatar
Josef Bacik committed
5578
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
Josef Bacik's avatar
Josef Bacik committed
5590
	}
5591
	btrfs_release_path(path);
Josef Bacik's avatar
Josef Bacik committed
5592

5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5603
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5604
			 &cached_state);
5605

5606
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5607 5608 5609 5610 5611 5612
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
Josef Bacik's avatar
Josef Bacik committed
5613

Yehuda Sadeh's avatar
Yehuda Sadeh committed
5614
	while (!end) {
5615
		u64 offset_in_extent = 0;
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5628

5629 5630
		/*
		 * record the offset from the start of the extent
5631 5632 5633
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5634
		 */
5635 5636
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5637
		em_end = extent_map_end(em);
5638
		em_len = em_end - em_start;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5639
		flags = 0;
5640 5641 5642 5643
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5644

5645 5646 5647 5648 5649 5650 5651
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5652
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5653 5654
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5655
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5656 5657
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5658
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5659 5660
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5661 5662 5663
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5664 5665 5666 5667

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5668 5669 5670
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5671
			 */
5672
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5673
						 bytenr, roots, tmp_ulist);
5674
			if (ret < 0)
5675
				goto out_free;
5676
			if (ret)
5677
				flags |= FIEMAP_EXTENT_SHARED;
5678
			ret = 0;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5679 5680 5681
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5682 5683
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5684 5685 5686

		free_extent_map(em);
		em = NULL;
5687 5688
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5689 5690 5691 5692
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5693
		/* now scan forward to see if this is really the last extent. */
5694
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5695 5696 5697 5698 5699
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
Josef Bacik's avatar
Josef Bacik committed
5700 5701 5702
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5703 5704
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5705 5706 5707
		if (ret) {
			if (ret == 1)
				ret = 0;
5708
			goto out_free;
5709
		}
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5710 5711
	}
out_free:
5712
	if (!ret)
5713
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5714 5715
	free_extent_map(em);
out:
5716
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5717
			     &cached_state);
5718 5719

out_free_ulist:
5720
	btrfs_free_path(path);
5721 5722
	ulist_free(roots);
	ulist_free(tmp_ulist);
Yehuda Sadeh's avatar
Yehuda Sadeh committed
5723 5724 5725
	return ret;
}

5726 5727 5728 5729 5730
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5731
int extent_buffer_under_io(const struct extent_buffer *eb)
5732 5733 5734 5735 5736 5737
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5738
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5739
{
5740
	struct btrfs_subpage *subpage;
5741

5742
	lockdep_assert_held(&page->mapping->private_lock);
5743

5744 5745 5746 5747
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5748 5749 5750 5751 5752 5753
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5754 5755 5756
	}
	return false;
}
5757

5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5771
		if (mapped)
5772 5773 5774 5775
			spin_unlock(&page->mapping->private_lock);
		return;
	}

5776
	if (fs_info->nodesize >= PAGE_SIZE) {
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5789
			/*
5790 5791
			 * We need to make sure we haven't be attached
			 * to a new eb.
5792
			 */
5793
			detach_page_private(page);
5794
		}
5795 5796
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5814
	 * page range and no unfinished IO.
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5838

5839
		/* One for when we allocated the page */
5840
		put_page(page);
5841
	}
5842 5843 5844 5845 5846 5847 5848
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5849
	btrfs_release_extent_buffer_pages(eb);
5850
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5851 5852 5853
	__free_extent_buffer(eb);
}

5854 5855
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5856
		      unsigned long len)
5857 5858 5859
{
	struct extent_buffer *eb = NULL;

5860
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5861 5862
	eb->start = start;
	eb->len = len;
5863
	eb->fs_info = fs_info;
5864
	eb->bflags = 0;
5865
	init_rwsem(&eb->lock);
5866

5867 5868
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5869
	INIT_LIST_HEAD(&eb->release_list);
5870

5871
	spin_lock_init(&eb->refs_lock);
5872
	atomic_set(&eb->refs, 1);
5873
	atomic_set(&eb->io_pages, 0);
5874

5875
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5876 5877 5878 5879

	return eb;
}

5880
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5881
{
5882
	int i;
5883
	struct extent_buffer *new;
5884
	int num_pages = num_extent_pages(src);
5885
	int ret;
5886

5887
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5888 5889 5890
	if (new == NULL)
		return NULL;

5891 5892 5893 5894 5895 5896 5897
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5898 5899 5900 5901 5902 5903 5904
	memset(new->pages, 0, sizeof(*new->pages) * num_pages);
	ret = btrfs_alloc_page_array(num_pages, new->pages);
	if (ret) {
		btrfs_release_extent_buffer(new);
		return NULL;
	}

5905
	for (i = 0; i < num_pages; i++) {
5906
		int ret;
5907
		struct page *p = new->pages[i];
5908 5909 5910 5911 5912 5913

		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5914
		WARN_ON(PageDirty(p));
5915
		copy_page(page_address(p), page_address(src->pages[i]));
5916
	}
5917
	set_extent_buffer_uptodate(new);
5918 5919 5920 5921

	return new;
}

5922 5923
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5924 5925
{
	struct extent_buffer *eb;
5926 5927
	int num_pages;
	int i;
5928
	int ret;
5929

5930
	eb = __alloc_extent_buffer(fs_info, start, len);
5931 5932 5933
	if (!eb)
		return NULL;

5934
	num_pages = num_extent_pages(eb);
5935 5936 5937 5938
	ret = btrfs_alloc_page_array(num_pages, eb->pages);
	if (ret)
		goto err;

5939
	for (i = 0; i < num_pages; i++) {
5940
		struct page *p = eb->pages[i];
5941

5942
		ret = attach_extent_buffer_page(eb, p, NULL);
5943 5944
		if (ret < 0)
			goto err;
5945
	}
5946

5947 5948
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
5949
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5950 5951 5952

	return eb;
err:
5953 5954 5955 5956 5957
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i]) {
			detach_extent_buffer_page(eb, eb->pages[i]);
			__free_page(eb->pages[i]);
		}
5958
	}
5959 5960 5961 5962
	__free_extent_buffer(eb);
	return NULL;
}

5963
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5964
						u64 start)
5965
{
5966
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5967 5968
}

5969 5970
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
5971
	int refs;
5972 5973 5974 5975
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
5976
	 *
5977 5978
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
5979
	 * calling release_folio when the tree reference is the only reference.
5980
	 *
5981
	 * In both cases, care is taken to ensure that the extent_buffer's
5982
	 * pages are not under io. However, release_folio can be concurrently
5983 5984 5985
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5986
	 *
5987 5988 5989 5990 5991 5992 5993
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
5994
	 */
5995 5996 5997 5998
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

5999 6000
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6001
		atomic_inc(&eb->refs);
6002
	spin_unlock(&eb->refs_lock);
6003 6004
}

6005 6006
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6007
{
6008
	int num_pages, i;
6009

6010 6011
	check_buffer_tree_ref(eb);

6012
	num_pages = num_extent_pages(eb);
6013
	for (i = 0; i < num_pages; i++) {
6014 6015
		struct page *p = eb->pages[i];

6016 6017
		if (p != accessed)
			mark_page_accessed(p);
6018 6019 6020
	}
}

6021 6022
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6023 6024 6025
{
	struct extent_buffer *eb;

6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6045
	}
6046 6047
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6048 6049
}

6050 6051
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6052
					u64 start)
6053 6054 6055 6056 6057 6058 6059
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6060
	eb = alloc_dummy_extent_buffer(fs_info, start);
6061
	if (!eb)
6062
		return ERR_PTR(-ENOMEM);
6063
	eb->fs_info = fs_info;
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}
	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6078
			goto free_eb;
6079 6080 6081
		else
			goto again;
	}
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6092 6093
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6094 6095 6096
{
	struct extent_buffer *exists;

6097 6098 6099 6100 6101
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
6102
	if (fs_info->nodesize < PAGE_SIZE)
6103 6104
		return NULL;

6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
{
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return -EINVAL;
	}

	if (fs_info->nodesize < PAGE_SIZE &&
	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	if (fs_info->nodesize >= PAGE_SIZE &&
6139
	    !PAGE_ALIGNED(start)) {
6140 6141 6142 6143 6144 6145 6146 6147
		btrfs_err(fs_info,
		"tree block is not page aligned, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	return 0;
}

6148
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6149
					  u64 start, u64 owner_root, int level)
6150
{
6151
	unsigned long len = fs_info->nodesize;
6152 6153
	int num_pages;
	int i;
6154
	unsigned long index = start >> PAGE_SHIFT;
6155
	struct extent_buffer *eb;
6156
	struct extent_buffer *exists = NULL;
6157
	struct page *p;
6158
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6159
	int uptodate = 1;
6160
	int ret;
6161

6162
	if (check_eb_alignment(fs_info, start))
6163 6164
		return ERR_PTR(-EINVAL);

6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6176
	eb = find_extent_buffer(fs_info, start);
6177
	if (eb)
6178 6179
		return eb;

6180
	eb = __alloc_extent_buffer(fs_info, start, len);
6181
	if (!eb)
6182
		return ERR_PTR(-ENOMEM);
6183
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6184

6185
	num_pages = num_extent_pages(eb);
6186
	for (i = 0; i < num_pages; i++, index++) {
6187 6188
		struct btrfs_subpage *prealloc = NULL;

6189
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6190 6191
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6192
			goto free_eb;
6193
		}
6194

6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6205
		if (fs_info->nodesize < PAGE_SIZE) {
6206 6207 6208
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6209 6210 6211 6212 6213
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6214 6215
		}

6216
		spin_lock(&mapping->private_lock);
6217
		exists = grab_extent_buffer(fs_info, p);
6218 6219 6220 6221 6222
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6223
			btrfs_free_subpage(prealloc);
6224
			goto free_eb;
6225
		}
6226 6227 6228
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
6239
		spin_unlock(&mapping->private_lock);
6240

6241
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6242
		eb->pages[i] = p;
6243 6244
		if (!PageUptodate(p))
			uptodate = 0;
Chris Mason's avatar
Chris Mason committed
6245 6246

		/*
6247 6248
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
6249
		 * opens a race with btree_release_folio which can free a page
6250 6251
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
Chris Mason's avatar
Chris Mason committed
6252
		 */
6253 6254
	}
	if (uptodate)
6255
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
again:
	ret = radix_tree_preload(GFP_NOFS);
	if (ret) {
		exists = ERR_PTR(ret);
		goto free_eb;
	}

	spin_lock(&fs_info->buffer_lock);
	ret = radix_tree_insert(&fs_info->buffer_radix,
				start >> fs_info->sectorsize_bits, eb);
	spin_unlock(&fs_info->buffer_lock);
	radix_tree_preload_end();
	if (ret == -EEXIST) {
		exists = find_extent_buffer(fs_info, start);
		if (exists)
6271
			goto free_eb;
6272 6273 6274
		else
			goto again;
	}
6275
	/* add one reference for the tree */
6276
	check_buffer_tree_ref(eb);
6277
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
Chris Mason's avatar
Chris Mason committed
6278 6279

	/*
6280
	 * Now it's safe to unlock the pages because any calls to
6281
	 * btree_release_folio will correctly detect that a page belongs to a
6282
	 * live buffer and won't free them prematurely.
Chris Mason's avatar
Chris Mason committed
6283
	 */
6284 6285
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6286 6287
	return eb;

6288
free_eb:
6289
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6290 6291 6292 6293
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
Chris Mason's avatar
Chris Mason committed
6294

6295
	btrfs_release_extent_buffer(eb);
6296
	return exists;
6297 6298
}

6299 6300 6301 6302 6303 6304 6305 6306
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6307
static int release_extent_buffer(struct extent_buffer *eb)
6308
	__releases(&eb->refs_lock)
6309
{
6310 6311
	lockdep_assert_held(&eb->refs_lock);

6312 6313
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6314
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6315
			struct btrfs_fs_info *fs_info = eb->fs_info;
6316

6317
			spin_unlock(&eb->refs_lock);
6318

6319 6320 6321 6322
			spin_lock(&fs_info->buffer_lock);
			radix_tree_delete(&fs_info->buffer_radix,
					  eb->start >> fs_info->sectorsize_bits);
			spin_unlock(&fs_info->buffer_lock);
6323 6324
		} else {
			spin_unlock(&eb->refs_lock);
6325
		}
6326

6327
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6328
		/* Should be safe to release our pages at this point */
6329
		btrfs_release_extent_buffer_pages(eb);
6330
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6331
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6332 6333 6334 6335
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6336
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6337
		return 1;
6338 6339
	}
	spin_unlock(&eb->refs_lock);
6340 6341

	return 0;
6342 6343
}

6344 6345
void free_extent_buffer(struct extent_buffer *eb)
{
6346 6347
	int refs;
	int old;
6348 6349 6350
	if (!eb)
		return;

6351 6352
	while (1) {
		refs = atomic_read(&eb->refs);
6353 6354 6355
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6356 6357 6358 6359 6360 6361
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6362 6363 6364
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6365
	    !extent_buffer_under_io(eb) &&
6366 6367 6368 6369 6370 6371 6372
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6373
	release_extent_buffer(eb);
6374 6375 6376 6377 6378
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6379 6380
		return;

6381 6382 6383
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6384
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6385 6386
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6387
	release_extent_buffer(eb);
6388 6389
}

6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6418
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6419
{
6420 6421
	int i;
	int num_pages;
6422 6423
	struct page *page;

6424
	if (eb->fs_info->nodesize < PAGE_SIZE)
6425 6426
		return clear_subpage_extent_buffer_dirty(eb);

6427
	num_pages = num_extent_pages(eb);
6428 6429

	for (i = 0; i < num_pages; i++) {
6430
		page = eb->pages[i];
6431
		if (!PageDirty(page))
Chris Mason's avatar
Chris Mason committed
6432
			continue;
6433
		lock_page(page);
6434
		btree_clear_page_dirty(page);
6435
		ClearPageError(page);
6436
		unlock_page(page);
6437
	}
6438
	WARN_ON(atomic_read(&eb->refs) == 0);
6439 6440
}

6441
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6442
{
6443 6444
	int i;
	int num_pages;
6445
	bool was_dirty;
6446

6447 6448
	check_buffer_tree_ref(eb);

6449
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6450

6451
	num_pages = num_extent_pages(eb);
6452
	WARN_ON(atomic_read(&eb->refs) == 0);
6453 6454
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6455
	if (!was_dirty) {
6456
		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6457

6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6477 6478 6479 6480 6481
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6482
	return was_dirty;
6483 6484
}

6485
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6486
{
6487
	struct btrfs_fs_info *fs_info = eb->fs_info;
6488
	struct page *page;
6489
	int num_pages;
6490
	int i;
6491

6492
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6493
	num_pages = num_extent_pages(eb);
6494
	for (i = 0; i < num_pages; i++) {
6495
		page = eb->pages[i];
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
		if (!page)
			continue;

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			ClearPageUptodate(page);
		else
			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
						     eb->len);
6508 6509 6510
	}
}

6511
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6512
{
6513
	struct btrfs_fs_info *fs_info = eb->fs_info;
6514
	struct page *page;
6515
	int num_pages;
6516
	int i;
6517

6518
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6519
	num_pages = num_extent_pages(eb);
6520
	for (i = 0; i < num_pages; i++) {
6521
		page = eb->pages[i];
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			SetPageUptodate(page);
		else
			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
						   eb->len);
6532 6533 6534
	}
}

6535 6536 6537 6538 6539 6540
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6541 6542 6543
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6544 6545 6546 6547 6548 6549 6550
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6551 6552
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6574
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6575
	ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
6576 6577
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
6578
				 end_bio_extent_readpage, 0, true);
6579 6580 6581 6582 6583 6584 6585 6586
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6587
	submit_one_bio(&bio_ctrl);
6588 6589 6590 6591 6592 6593 6594 6595 6596
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6597
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6598
{
6599
	int i;
6600 6601 6602
	struct page *page;
	int err;
	int ret = 0;
6603 6604
	int locked_pages = 0;
	int all_uptodate = 1;
6605
	int num_pages;
6606
	unsigned long num_reads = 0;
6607 6608 6609
	struct btrfs_bio_ctrl bio_ctrl = {
		.mirror_num = mirror_num,
	};
6610

6611
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6612 6613
		return 0;

6614 6615 6616 6617 6618 6619 6620 6621
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6622
	if (eb->fs_info->nodesize < PAGE_SIZE)
6623 6624
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6625
	num_pages = num_extent_pages(eb);
6626
	for (i = 0; i < num_pages; i++) {
6627
		page = eb->pages[i];
6628
		if (wait == WAIT_NONE) {
6629 6630 6631 6632 6633 6634 6635
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6636
			if (!trylock_page(page))
6637
				goto unlock_exit;
6638 6639 6640
		} else {
			lock_page(page);
		}
6641
		locked_pages++;
6642 6643 6644 6645 6646 6647
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6648
	for (i = 0; i < num_pages; i++) {
6649
		page = eb->pages[i];
6650 6651
		if (!PageUptodate(page)) {
			num_reads++;
6652
			all_uptodate = 0;
6653
		}
6654
	}
6655

6656
	if (all_uptodate) {
6657
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6658 6659 6660
		goto unlock_exit;
	}

6661
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6662
	eb->read_mirror = 0;
6663
	atomic_set(&eb->io_pages, num_reads);
6664
	/*
6665
	 * It is possible for release_folio to clear the TREE_REF bit before we
6666 6667 6668
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6669
	for (i = 0; i < num_pages; i++) {
6670
		page = eb->pages[i];
6671

6672
		if (!PageUptodate(page)) {
6673 6674 6675 6676 6677 6678
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6679
			ClearPageError(page);
6680
			err = submit_extent_page(REQ_OP_READ, NULL,
6681 6682
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
6683
					 0, false);
6684 6685
			if (err) {
				/*
6686 6687 6688
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6689
				 */
6690 6691 6692
				ret = err;
				SetPageError(page);
				unlock_page(page);
6693 6694
				atomic_dec(&eb->io_pages);
			}
6695 6696 6697 6698 6699
		} else {
			unlock_page(page);
		}
	}

6700
	submit_one_bio(&bio_ctrl);
6701

6702
	if (ret || wait != WAIT_COMPLETE)
6703
		return ret;
6704

6705
	for (i = 0; i < num_pages; i++) {
6706
		page = eb->pages[i];
6707
		wait_on_page_locked(page);
6708
		if (!PageUptodate(page))
6709 6710
			ret = -EIO;
	}
6711

6712
	return ret;
6713 6714

unlock_exit:
6715
	while (locked_pages > 0) {
6716
		locked_pages--;
6717 6718
		page = eb->pages[locked_pages];
		unlock_page(page);
6719 6720
	}
	return ret;
6721 6722
}

6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6753 6754
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6755 6756 6757 6758 6759 6760
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6761
	unsigned long i = get_eb_page_index(start);
6762

6763
	if (check_eb_range(eb, start, len))
6764
		return;
6765

6766
	offset = get_eb_offset_in_page(eb, start);
6767

6768
	while (len > 0) {
6769
		page = eb->pages[i];
6770

6771
		cur = min(len, (PAGE_SIZE - offset));
6772
		kaddr = page_address(page);
6773 6774 6775 6776 6777 6778 6779 6780 6781
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6782 6783 6784
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6785 6786 6787 6788 6789 6790
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6791
	unsigned long i = get_eb_page_index(start);
6792 6793 6794 6795 6796
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6797
	offset = get_eb_offset_in_page(eb, start);
6798 6799

	while (len > 0) {
6800
		page = eb->pages[i];
6801

6802
		cur = min(len, (PAGE_SIZE - offset));
6803
		kaddr = page_address(page);
6804
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6818 6819
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6820 6821 6822 6823 6824 6825
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6826
	unsigned long i = get_eb_page_index(start);
6827 6828
	int ret = 0;

6829 6830
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6831

6832
	offset = get_eb_offset_in_page(eb, start);
6833

6834
	while (len > 0) {
6835
		page = eb->pages[i];
6836

6837
		cur = min(len, (PAGE_SIZE - offset));
6838

6839
		kaddr = page_address(page);
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

6863 6864 6865 6866 6867 6868 6869 6870 6871
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
6872
	if (fs_info->nodesize < PAGE_SIZE) {
6873
		bool uptodate, error;
6874 6875 6876

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
6877 6878
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
6879
	} else {
6880
		WARN_ON(!PageUptodate(page) && !PageError(page));
6881 6882 6883
	}
}

6884
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6885 6886 6887 6888
		const void *srcv)
{
	char *kaddr;

6889
	assert_eb_page_uptodate(eb, eb->pages[0]);
6890 6891 6892 6893
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6894 6895
}

6896
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6897 6898 6899
{
	char *kaddr;

6900
	assert_eb_page_uptodate(eb, eb->pages[0]);
6901 6902 6903
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6904 6905
}

6906
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6907 6908 6909 6910 6911 6912 6913
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6914
	unsigned long i = get_eb_page_index(start);
6915

6916 6917
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6918 6919
	if (check_eb_range(eb, start, len))
		return;
6920

6921
	offset = get_eb_offset_in_page(eb, start);
6922

6923
	while (len > 0) {
6924
		page = eb->pages[i];
6925
		assert_eb_page_uptodate(eb, page);
6926

6927
		cur = min(len, PAGE_SIZE - offset);
6928
		kaddr = page_address(page);
6929 6930 6931 6932 6933 6934 6935 6936 6937
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6938
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6939
		unsigned long len)
6940 6941 6942 6943 6944
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
6945
	unsigned long i = get_eb_page_index(start);
6946

6947 6948
	if (check_eb_range(eb, start, len))
		return;
6949

6950
	offset = get_eb_offset_in_page(eb, start);
6951

6952
	while (len > 0) {
6953
		page = eb->pages[i];
6954
		assert_eb_page_uptodate(eb, page);
6955

6956
		cur = min(len, PAGE_SIZE - offset);
6957
		kaddr = page_address(page);
6958
		memset(kaddr + offset, 0, cur);
6959 6960 6961 6962 6963 6964 6965

		len -= cur;
		offset = 0;
		i++;
	}
}

6966 6967
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
6968 6969
{
	int i;
6970
	int num_pages;
6971 6972 6973

	ASSERT(dst->len == src->len);

6974
	if (dst->fs_info->nodesize >= PAGE_SIZE) {
6975 6976 6977 6978 6979 6980 6981 6982
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

6983
		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
6984 6985 6986 6987
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
6988 6989
}

6990 6991
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
6992 6993 6994 6995 6996 6997 6998 6999
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7000
	unsigned long i = get_eb_page_index(dst_offset);
7001

7002 7003 7004 7005
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

7006 7007
	WARN_ON(src->len != dst_len);

7008
	offset = get_eb_offset_in_page(dst, dst_offset);
7009

7010
	while (len > 0) {
7011
		page = dst->pages[i];
7012
		assert_eb_page_uptodate(dst, page);
7013

7014
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7015

7016
		kaddr = page_address(page);
7017 7018 7019 7020 7021 7022 7023 7024 7025
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7039
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7052
	offset = start + offset_in_page(eb->start) + byte_offset;
7053

7054
	*page_index = offset >> PAGE_SHIFT;
7055
	*page_offset = offset_in_page(offset);
7056 7057 7058 7059 7060 7061 7062 7063
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7064
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7065 7066
			   unsigned long nr)
{
7067
	u8 *kaddr;
7068 7069 7070 7071 7072 7073
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7074
	assert_eb_page_uptodate(eb, page);
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7086
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7087 7088
			      unsigned long pos, unsigned long len)
{
7089
	u8 *kaddr;
7090 7091 7092 7093 7094
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7095
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7096 7097 7098

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7099
	assert_eb_page_uptodate(eb, page);
7100 7101 7102 7103 7104 7105
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
7106
		mask_to_set = ~0;
7107
		if (++offset >= PAGE_SIZE && len > 0) {
7108 7109
			offset = 0;
			page = eb->pages[++i];
7110
			assert_eb_page_uptodate(eb, page);
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7128 7129 7130
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7131
{
7132
	u8 *kaddr;
7133 7134 7135 7136 7137
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7138
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7139 7140 7141

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7142
	assert_eb_page_uptodate(eb, page);
7143 7144 7145 7146 7147 7148
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
7149
		mask_to_clear = ~0;
7150
		if (++offset >= PAGE_SIZE && len > 0) {
7151 7152
			offset = 0;
			page = eb->pages[++i];
7153
			assert_eb_page_uptodate(eb, page);
7154 7155 7156 7157 7158 7159 7160 7161 7162
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7163 7164 7165 7166 7167 7168
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7169 7170 7171 7172
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7173
	char *dst_kaddr = page_address(dst_page);
7174
	char *src_kaddr;
7175
	int must_memmove = 0;
7176

7177
	if (dst_page != src_page) {
7178
		src_kaddr = page_address(src_page);
7179
	} else {
7180
		src_kaddr = dst_kaddr;
7181 7182
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7183
	}
7184

7185 7186 7187 7188
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7189 7190
}

7191 7192 7193
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7194 7195 7196 7197 7198 7199 7200
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7201 7202 7203
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7204

7205
	while (len > 0) {
7206 7207
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7208

7209 7210
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7211

7212
		cur = min(len, (unsigned long)(PAGE_SIZE -
7213 7214
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7215
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7216

7217
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7218 7219 7220 7221 7222 7223 7224 7225
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7226 7227 7228
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7229 7230 7231 7232 7233 7234 7235 7236 7237
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7238 7239 7240
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7241
	if (dst_offset < src_offset) {
7242 7243 7244
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
7245
	while (len > 0) {
7246 7247
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7248

7249 7250
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7251 7252 7253

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7254
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7255 7256 7257 7258 7259 7260 7261 7262
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7263

7264
#define GANG_LOOKUP_SIZE	16
7265 7266 7267
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7268 7269
	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
	struct extent_buffer *found = NULL;
7270
	u64 page_start = page_offset(page);
7271
	u64 cur = page_start;
7272 7273 7274 7275

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
	while (cur < page_start + PAGE_SIZE) {
		int ret;
		int i;

		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
				(void **)gang, cur >> fs_info->sectorsize_bits,
				min_t(unsigned int, GANG_LOOKUP_SIZE,
				      PAGE_SIZE / fs_info->nodesize));
		if (ret == 0)
			goto out;
		for (i = 0; i < ret; i++) {
			/* Already beyond page end */
			if (gang[i]->start >= page_start + PAGE_SIZE)
				goto out;
			/* Found one */
			if (gang[i]->start >= bytenr) {
				found = gang[i];
				goto out;
			}
		}
		cur = gang[ret - 1]->start + gang[ret - 1]->len;
7297
	}
7298 7299
out:
	return found;
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7372
int try_release_extent_buffer(struct page *page)
7373
{
7374 7375
	struct extent_buffer *eb;

7376
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7377 7378
		return try_release_subpage_extent_buffer(page);

7379
	/*
7380 7381
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7382 7383 7384 7385
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
7386
		return 1;
7387
	}
7388

7389 7390
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7391 7392

	/*
7393 7394 7395
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7396
	 */
7397
	spin_lock(&eb->refs_lock);
7398
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7399 7400 7401
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7402
	}
7403
	spin_unlock(&page->mapping->private_lock);
7404

7405
	/*
7406 7407
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7408
	 */
7409 7410 7411
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7412
	}
7413

7414
	return release_extent_buffer(eb);
7415
}
7416 7417 7418 7419 7420

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7421
 * @owner_root: objectid of the root that owns this eb
7422
 * @gen:	generation for the uptodate check, can be 0
7423
 * @level:	level for the eb
7424 7425 7426 7427 7428 7429
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7430
				u64 bytenr, u64 owner_root, u64 gen, int level)
7431 7432 7433 7434
{
	struct extent_buffer *eb;
	int ret;

7435
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7463 7464 7465
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7466
}