cs-etm.c 67.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright(C) 2015-2018 Linaro Limited.
 *
 * Author: Tor Jeremiassen <tor@ti.com>
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/types.h>
14
#include <linux/zalloc.h>
15

16
#include <opencsd/ocsd_if_types.h>
17 18 19 20 21
#include <stdlib.h>

#include "auxtrace.h"
#include "color.h"
#include "cs-etm.h"
22
#include "cs-etm-decoder/cs-etm-decoder.h"
23 24 25 26 27 28
#include "debug.h"
#include "evlist.h"
#include "intlist.h"
#include "machine.h"
#include "map.h"
#include "perf.h"
29
#include "symbol.h"
30 31 32
#include "thread.h"
#include "thread_map.h"
#include "thread-stack.h"
33
#include <tools/libc_compat.h>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include "util.h"

#define MAX_TIMESTAMP (~0ULL)

struct cs_etm_auxtrace {
	struct auxtrace auxtrace;
	struct auxtrace_queues queues;
	struct auxtrace_heap heap;
	struct itrace_synth_opts synth_opts;
	struct perf_session *session;
	struct machine *machine;
	struct thread *unknown_thread;

	u8 timeless_decoding;
	u8 snapshot_mode;
	u8 data_queued;
	u8 sample_branches;
51
	u8 sample_instructions;
52 53 54 55 56

	int num_cpu;
	u32 auxtrace_type;
	u64 branches_sample_type;
	u64 branches_id;
57 58 59
	u64 instructions_sample_type;
	u64 instructions_sample_period;
	u64 instructions_id;
60 61 62 63 64
	u64 **metadata;
	u64 kernel_start;
	unsigned int pmu_type;
};

65 66
struct cs_etm_traceid_queue {
	u8 trace_chan_id;
67
	pid_t pid, tid;
68 69 70
	u64 period_instructions;
	size_t last_branch_pos;
	union perf_event *event_buf;
71
	struct thread *thread;
72 73 74 75 76 77 78
	struct branch_stack *last_branch;
	struct branch_stack *last_branch_rb;
	struct cs_etm_packet *prev_packet;
	struct cs_etm_packet *packet;
	struct cs_etm_packet_queue packet_queue;
};

79 80 81 82 83
struct cs_etm_queue {
	struct cs_etm_auxtrace *etm;
	struct cs_etm_decoder *decoder;
	struct auxtrace_buffer *buffer;
	unsigned int queue_nr;
84
	u8 pending_timestamp;
85
	u64 offset;
86 87
	const unsigned char *buf;
	size_t buf_len, buf_used;
88 89 90
	/* Conversion between traceID and index in traceid_queues array */
	struct intlist *traceid_queues_list;
	struct cs_etm_traceid_queue **traceid_queues;
91 92
};

93
static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
94
static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
95
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
96
					   pid_t tid);
97 98
static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
99

100 101 102
/* PTMs ETMIDR [11:8] set to b0011 */
#define ETMIDR_PTM_VERSION 0x00000300

103 104 105 106 107 108 109 110 111 112 113
/*
 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
 * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
 * encode the etm queue number as the upper 16 bit and the channel as
 * the lower 16 bit.
 */
#define TO_CS_QUEUE_NR(queue_nr, trace_id_chan)	\
		      (queue_nr << 16 | trace_chan_id)
#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)

114 115 116 117 118 119 120 121 122 123
static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
{
	etmidr &= ETMIDR_PTM_VERSION;

	if (etmidr == ETMIDR_PTM_VERSION)
		return CS_ETM_PROTO_PTM;

	return CS_ETM_PROTO_ETMV3;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137
static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
{
	struct int_node *inode;
	u64 *metadata;

	inode = intlist__find(traceid_list, trace_chan_id);
	if (!inode)
		return -EINVAL;

	metadata = inode->priv;
	*magic = metadata[CS_ETM_MAGIC];
	return 0;
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151
int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
{
	struct int_node *inode;
	u64 *metadata;

	inode = intlist__find(traceid_list, trace_chan_id);
	if (!inode)
		return -EINVAL;

	metadata = inode->priv;
	*cpu = (int)metadata[CS_ETM_CPU];
	return 0;
}

152 153 154 155 156 157 158 159 160 161 162 163 164
void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
					      u8 trace_chan_id)
{
	/*
	 * Wnen a timestamp packet is encountered the backend code
	 * is stopped so that the front end has time to process packets
	 * that were accumulated in the traceID queue.  Since there can
	 * be more than one channel per cs_etm_queue, we need to specify
	 * what traceID queue needs servicing.
	 */
	etmq->pending_timestamp = trace_chan_id;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
				      u8 *trace_chan_id)
{
	struct cs_etm_packet_queue *packet_queue;

	if (!etmq->pending_timestamp)
		return 0;

	if (trace_chan_id)
		*trace_chan_id = etmq->pending_timestamp;

	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
						     etmq->pending_timestamp);
	if (!packet_queue)
		return 0;

	/* Acknowledge pending status */
	etmq->pending_timestamp = 0;

	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
	return packet_queue->timestamp;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
{
	int i;

	queue->head = 0;
	queue->tail = 0;
	queue->packet_count = 0;
	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
		queue->packet_buffer[i].instr_count = 0;
		queue->packet_buffer[i].last_instr_taken_branch = false;
		queue->packet_buffer[i].last_instr_size = 0;
		queue->packet_buffer[i].last_instr_type = 0;
		queue->packet_buffer[i].last_instr_subtype = 0;
		queue->packet_buffer[i].last_instr_cond = 0;
		queue->packet_buffer[i].flags = 0;
		queue->packet_buffer[i].exception_number = UINT32_MAX;
		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
		queue->packet_buffer[i].cpu = INT_MIN;
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225
static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
{
	int idx;
	struct int_node *inode;
	struct cs_etm_traceid_queue *tidq;
	struct intlist *traceid_queues_list = etmq->traceid_queues_list;

	intlist__for_each_entry(inode, traceid_queues_list) {
		idx = (int)(intptr_t)inode->priv;
		tidq = etmq->traceid_queues[idx];
		cs_etm__clear_packet_queue(&tidq->packet_queue);
	}
}

226 227 228 229 230
static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
				      struct cs_etm_traceid_queue *tidq,
				      u8 trace_chan_id)
{
	int rc = -ENOMEM;
231
	struct auxtrace_queue *queue;
232 233 234 235
	struct cs_etm_auxtrace *etm = etmq->etm;

	cs_etm__clear_packet_queue(&tidq->packet_queue);

236 237 238
	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
	tidq->tid = queue->tid;
	tidq->pid = -1;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	tidq->trace_chan_id = trace_chan_id;

	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
	if (!tidq->packet)
		goto out;

	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
	if (!tidq->prev_packet)
		goto out_free;

	if (etm->synth_opts.last_branch) {
		size_t sz = sizeof(struct branch_stack);

		sz += etm->synth_opts.last_branch_sz *
		      sizeof(struct branch_entry);
		tidq->last_branch = zalloc(sz);
		if (!tidq->last_branch)
			goto out_free;
		tidq->last_branch_rb = zalloc(sz);
		if (!tidq->last_branch_rb)
			goto out_free;
	}

	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
	if (!tidq->event_buf)
		goto out_free;

	return 0;

out_free:
	zfree(&tidq->last_branch_rb);
	zfree(&tidq->last_branch);
	zfree(&tidq->prev_packet);
	zfree(&tidq->packet);
out:
	return rc;
}

static struct cs_etm_traceid_queue
*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
{
280 281 282 283
	int idx;
	struct int_node *inode;
	struct intlist *traceid_queues_list;
	struct cs_etm_traceid_queue *tidq, **traceid_queues;
284 285
	struct cs_etm_auxtrace *etm = etmq->etm;

286 287
	if (etm->timeless_decoding)
		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
288

289
	traceid_queues_list = etmq->traceid_queues_list;
290

291 292 293 294 295 296 297 298 299
	/*
	 * Check if the traceid_queue exist for this traceID by looking
	 * in the queue list.
	 */
	inode = intlist__find(traceid_queues_list, trace_chan_id);
	if (inode) {
		idx = (int)(intptr_t)inode->priv;
		return etmq->traceid_queues[idx];
	}
300

301
	/* We couldn't find a traceid_queue for this traceID, allocate one */
302 303 304 305 306 307
	tidq = malloc(sizeof(*tidq));
	if (!tidq)
		return NULL;

	memset(tidq, 0, sizeof(*tidq));

308 309 310 311 312 313 314 315 316 317
	/* Get a valid index for the new traceid_queue */
	idx = intlist__nr_entries(traceid_queues_list);
	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
	if (!inode)
		goto out_free;

	/* Associate this traceID with this index */
	inode->priv = (void *)(intptr_t)idx;

318 319 320
	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
		goto out_free;

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	/* Grow the traceid_queues array by one unit */
	traceid_queues = etmq->traceid_queues;
	traceid_queues = reallocarray(traceid_queues,
				      idx + 1,
				      sizeof(*traceid_queues));

	/*
	 * On failure reallocarray() returns NULL and the original block of
	 * memory is left untouched.
	 */
	if (!traceid_queues)
		goto out_free;

	traceid_queues[idx] = tidq;
	etmq->traceid_queues = traceid_queues;
336

337
	return etmq->traceid_queues[idx];
338 339

out_free:
340 341 342 343 344
	/*
	 * Function intlist__remove() removes the inode from the list
	 * and delete the memory associated to it.
	 */
	intlist__remove(traceid_queues_list, inode);
345 346 347 348 349
	free(tidq);

	return NULL;
}

350
struct cs_etm_packet_queue
351
*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
352
{
353 354 355 356 357 358 359
	struct cs_etm_traceid_queue *tidq;

	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
	if (tidq)
		return &tidq->packet_queue;

	return NULL;
360 361
}

362 363 364 365 366 367 368 369 370 371 372 373 374
static void cs_etm__packet_dump(const char *pkt_string)
{
	const char *color = PERF_COLOR_BLUE;
	int len = strlen(pkt_string);

	if (len && (pkt_string[len-1] == '\n'))
		color_fprintf(stdout, color, "	%s", pkt_string);
	else
		color_fprintf(stdout, color, "	%s\n", pkt_string);

	fflush(stdout);
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
					  struct cs_etm_auxtrace *etm, int idx,
					  u32 etmidr)
{
	u64 **metadata = etm->metadata;

	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
}

static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
					  struct cs_etm_auxtrace *etm, int idx)
{
	u64 **metadata = etm->metadata;

	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
}

static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
				     struct cs_etm_auxtrace *etm)
{
	int i;
	u32 etmidr;
	u64 architecture;

	for (i = 0; i < etm->num_cpu; i++) {
		architecture = etm->metadata[i][CS_ETM_MAGIC];

		switch (architecture) {
		case __perf_cs_etmv3_magic:
			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
			break;
		case __perf_cs_etmv4_magic:
			cs_etm__set_trace_param_etmv4(t_params, etm, i);
			break;
		default:
			return -EINVAL;
		}
	}

	return 0;
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
				       struct cs_etm_queue *etmq,
				       enum cs_etm_decoder_operation mode)
{
	int ret = -EINVAL;

	if (!(mode < CS_ETM_OPERATION_MAX))
		goto out;

	d_params->packet_printer = cs_etm__packet_dump;
	d_params->operation = mode;
	d_params->data = etmq;
	d_params->formatted = true;
	d_params->fsyncs = false;
	d_params->hsyncs = false;
	d_params->frame_aligned = true;

	ret = 0;
out:
	return ret;
}

448 449 450
static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
			       struct auxtrace_buffer *buffer)
{
451
	int ret;
452 453 454 455 456 457 458 459 460 461 462 463 464
	const char *color = PERF_COLOR_BLUE;
	struct cs_etm_decoder_params d_params;
	struct cs_etm_trace_params *t_params;
	struct cs_etm_decoder *decoder;
	size_t buffer_used = 0;

	fprintf(stdout, "\n");
	color_fprintf(stdout, color,
		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
		     buffer->size);

	/* Use metadata to fill in trace parameters for trace decoder */
	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
465 466 467 468

	if (!t_params)
		return;

469 470
	if (cs_etm__init_trace_params(t_params, etm))
		goto out_free;
471 472

	/* Set decoder parameters to simply print the trace packets */
473 474
	if (cs_etm__init_decoder_params(&d_params, NULL,
					CS_ETM_OPERATION_PRINT))
475
		goto out_free;
476 477 478 479

	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);

	if (!decoder)
480
		goto out_free;
481 482 483 484 485 486 487 488 489 490 491 492 493 494
	do {
		size_t consumed;

		ret = cs_etm_decoder__process_data_block(
				decoder, buffer->offset,
				&((u8 *)buffer->data)[buffer_used],
				buffer->size - buffer_used, &consumed);
		if (ret)
			break;

		buffer_used += consumed;
	} while (buffer_used < buffer->size);

	cs_etm_decoder__free(decoder);
495 496 497

out_free:
	zfree(&t_params);
498 499
}

500 501 502
static int cs_etm__flush_events(struct perf_session *session,
				struct perf_tool *tool)
{
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	int ret;
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	if (dump_trace)
		return 0;

	if (!tool->ordered_events)
		return -EINVAL;

	ret = cs_etm__update_queues(etm);

	if (ret < 0)
		return ret;

518 519 520 521
	if (etm->timeless_decoding)
		return cs_etm__process_timeless_queues(etm, -1);

	return cs_etm__process_queues(etm);
522 523
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
{
	int idx;
	uintptr_t priv;
	struct int_node *inode, *tmp;
	struct cs_etm_traceid_queue *tidq;
	struct intlist *traceid_queues_list = etmq->traceid_queues_list;

	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
		priv = (uintptr_t)inode->priv;
		idx = priv;

		/* Free this traceid_queue from the array */
		tidq = etmq->traceid_queues[idx];
		thread__zput(tidq->thread);
		zfree(&tidq->event_buf);
		zfree(&tidq->last_branch);
		zfree(&tidq->last_branch_rb);
		zfree(&tidq->prev_packet);
		zfree(&tidq->packet);
		zfree(&tidq);

		/*
		 * Function intlist__remove() removes the inode from the list
		 * and delete the memory associated to it.
		 */
		intlist__remove(traceid_queues_list, inode);
	}

	/* Then the RB tree itself */
	intlist__delete(traceid_queues_list);
	etmq->traceid_queues_list = NULL;

	/* finally free the traceid_queues array */
558
	zfree(&etmq->traceid_queues);
559 560
}

561 562 563 564
static void cs_etm__free_queue(void *priv)
{
	struct cs_etm_queue *etmq = priv;

565 566 567 568
	if (!etmq)
		return;

	cs_etm_decoder__free(etmq->decoder);
569
	cs_etm__free_traceid_queues(etmq);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	free(etmq);
}

static void cs_etm__free_events(struct perf_session *session)
{
	unsigned int i;
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	struct auxtrace_queues *queues = &aux->queues;

	for (i = 0; i < queues->nr_queues; i++) {
		cs_etm__free_queue(queues->queue_array[i].priv);
		queues->queue_array[i].priv = NULL;
	}

	auxtrace_queues__free(queues);
}

static void cs_etm__free(struct perf_session *session)
{
591 592
	int i;
	struct int_node *inode, *tmp;
593 594 595 596 597 598
	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	cs_etm__free_events(session);
	session->auxtrace = NULL;

599
	/* First remove all traceID/metadata nodes for the RB tree */
600 601 602 603 604 605 606 607
	intlist__for_each_entry_safe(inode, tmp, traceid_list)
		intlist__remove(traceid_list, inode);
	/* Then the RB tree itself */
	intlist__delete(traceid_list);

	for (i = 0; i < aux->num_cpu; i++)
		zfree(&aux->metadata[i]);

608
	thread__zput(aux->unknown_thread);
609
	zfree(&aux->metadata);
610 611 612
	zfree(&aux);
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
{
	struct machine *machine;

	machine = etmq->etm->machine;

	if (address >= etmq->etm->kernel_start) {
		if (machine__is_host(machine))
			return PERF_RECORD_MISC_KERNEL;
		else
			return PERF_RECORD_MISC_GUEST_KERNEL;
	} else {
		if (machine__is_host(machine))
			return PERF_RECORD_MISC_USER;
		else if (perf_guest)
			return PERF_RECORD_MISC_GUEST_USER;
		else
			return PERF_RECORD_MISC_HYPERVISOR;
	}
}

634 635
static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
			      u64 address, size_t size, u8 *buffer)
636 637 638 639
{
	u8  cpumode;
	u64 offset;
	int len;
640 641 642 643
	struct thread *thread;
	struct machine *machine;
	struct addr_location al;
	struct cs_etm_traceid_queue *tidq;
644

645
	if (!etmq)
646
		return 0;
647 648

	machine = etmq->etm->machine;
649
	cpumode = cs_etm__cpu_mode(etmq, address);
650 651 652
	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
	if (!tidq)
		return 0;
653

654
	thread = tidq->thread;
655 656
	if (!thread) {
		if (cpumode != PERF_RECORD_MISC_KERNEL)
657
			return 0;
658 659 660
		thread = etmq->etm->unknown_thread;
	}

661
	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
		return 0;

	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
		return 0;

	offset = al.map->map_ip(al.map, address);

	map__load(al.map);

	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);

	if (len <= 0)
		return 0;

	return len;
}

680
static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
681 682
{
	struct cs_etm_decoder_params d_params;
683
	struct cs_etm_trace_params  *t_params = NULL;
684 685 686 687 688 689
	struct cs_etm_queue *etmq;

	etmq = zalloc(sizeof(*etmq));
	if (!etmq)
		return NULL;

690 691 692 693
	etmq->traceid_queues_list = intlist__new(NULL);
	if (!etmq->traceid_queues_list)
		goto out_free;

694 695 696 697 698 699
	/* Use metadata to fill in trace parameters for trace decoder */
	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);

	if (!t_params)
		goto out_free;

700 701
	if (cs_etm__init_trace_params(t_params, etm))
		goto out_free;
702

703
	/* Set decoder parameters to decode trace packets */
704 705 706
	if (cs_etm__init_decoder_params(&d_params, etmq,
					CS_ETM_OPERATION_DECODE))
		goto out_free;
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);

	if (!etmq->decoder)
		goto out_free;

	/*
	 * Register a function to handle all memory accesses required by
	 * the trace decoder library.
	 */
	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
					      0x0L, ((u64) -1L),
					      cs_etm__mem_access))
		goto out_free_decoder;

722
	zfree(&t_params);
723 724 725 726 727
	return etmq;

out_free_decoder:
	cs_etm_decoder__free(etmq->decoder);
out_free:
728
	intlist__delete(etmq->traceid_queues_list);
729 730 731 732 733 734 735 736 737
	free(etmq);

	return NULL;
}

static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
			       struct auxtrace_queue *queue,
			       unsigned int queue_nr)
{
738
	int ret = 0;
739 740 741
	unsigned int cs_queue_nr;
	u8 trace_chan_id;
	u64 timestamp;
742 743 744
	struct cs_etm_queue *etmq = queue->priv;

	if (list_empty(&queue->head) || etmq)
745
		goto out;
746

747
	etmq = cs_etm__alloc_queue(etm);
748

749 750 751 752
	if (!etmq) {
		ret = -ENOMEM;
		goto out;
	}
753 754

	queue->priv = etmq;
755 756 757
	etmq->etm = etm;
	etmq->queue_nr = queue_nr;
	etmq->offset = 0;
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	if (etm->timeless_decoding)
		goto out;

	/*
	 * We are under a CPU-wide trace scenario.  As such we need to know
	 * when the code that generated the traces started to execute so that
	 * it can be correlated with execution on other CPUs.  So we get a
	 * handle on the beginning of traces and decode until we find a
	 * timestamp.  The timestamp is then added to the auxtrace min heap
	 * in order to know what nibble (of all the etmqs) to decode first.
	 */
	while (1) {
		/*
		 * Fetch an aux_buffer from this etmq.  Bail if no more
		 * blocks or an error has been encountered.
		 */
		ret = cs_etm__get_data_block(etmq);
		if (ret <= 0)
			goto out;

		/*
		 * Run decoder on the trace block.  The decoder will stop when
		 * encountering a timestamp, a full packet queue or the end of
		 * trace for that block.
		 */
		ret = cs_etm__decode_data_block(etmq);
		if (ret)
			goto out;

		/*
		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
		 * the timestamp calculation for us.
		 */
		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);

		/* We found a timestamp, no need to continue. */
		if (timestamp)
			break;

		/*
		 * We didn't find a timestamp so empty all the traceid packet
		 * queues before looking for another timestamp packet, either
		 * in the current data block or a new one.  Packets that were
		 * just decoded are useless since no timestamp has been
		 * associated with them.  As such simply discard them.
		 */
		cs_etm__clear_all_packet_queues(etmq);
	}

	/*
	 * We have a timestamp.  Add it to the min heap to reflect when
	 * instructions conveyed by the range packets of this traceID queue
	 * started to execute.  Once the same has been done for all the traceID
	 * queues of each etmq, redenring and decoding can start in
	 * chronological order.
	 *
	 * Note that packets decoded above are still in the traceID's packet
	 * queue and will be processed in cs_etm__process_queues().
	 */
	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_id_chan);
	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
820 821
out:
	return ret;
822 823 824 825 826 827 828
}

static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
{
	unsigned int i;
	int ret;

829 830 831
	if (!etm->kernel_start)
		etm->kernel_start = machine__kernel_start(etm->machine);

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	for (i = 0; i < etm->queues.nr_queues; i++) {
		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
		if (ret)
			return ret;
	}

	return 0;
}

static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
{
	if (etm->queues.new_data) {
		etm->queues.new_data = false;
		return cs_etm__setup_queues(etm);
	}

	return 0;
}

851 852 853
static inline
void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
				 struct cs_etm_traceid_queue *tidq)
854
{
855 856
	struct branch_stack *bs_src = tidq->last_branch_rb;
	struct branch_stack *bs_dst = tidq->last_branch;
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	size_t nr = 0;

	/*
	 * Set the number of records before early exit: ->nr is used to
	 * determine how many branches to copy from ->entries.
	 */
	bs_dst->nr = bs_src->nr;

	/*
	 * Early exit when there is nothing to copy.
	 */
	if (!bs_src->nr)
		return;

	/*
	 * As bs_src->entries is a circular buffer, we need to copy from it in
	 * two steps.  First, copy the branches from the most recently inserted
	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
	 */
876
	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
877
	memcpy(&bs_dst->entries[0],
878
	       &bs_src->entries[tidq->last_branch_pos],
879 880 881 882 883 884 885 886 887 888 889 890
	       sizeof(struct branch_entry) * nr);

	/*
	 * If we wrapped around at least once, the branches from the beginning
	 * of the bs_src->entries buffer and until the ->last_branch_pos element
	 * are older valid branches: copy them over.  The total number of
	 * branches copied over will be equal to the number of branches asked by
	 * the user in last_branch_sz.
	 */
	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
		memcpy(&bs_dst->entries[nr],
		       &bs_src->entries[0],
891
		       sizeof(struct branch_entry) * tidq->last_branch_pos);
892 893 894
	}
}

895 896
static inline
void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
897
{
898 899
	tidq->last_branch_pos = 0;
	tidq->last_branch_rb->nr = 0;
900 901
}

902
static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
903 904
					 u8 trace_chan_id, u64 addr)
{
905
	u8 instrBytes[2];
906

907 908
	cs_etm__mem_access(etmq, trace_chan_id, addr,
			   ARRAY_SIZE(instrBytes), instrBytes);
909
	/*
910 911 912
	 * T32 instruction size is indicated by bits[15:11] of the first
	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
	 * denote a 32-bit instruction.
913
	 */
914
	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
915 916
}

917 918
static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
{
919 920
	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
	if (packet->sample_type == CS_ETM_DISCONTINUITY)
921 922 923 924 925
		return 0;

	return packet->start_addr;
}

926 927
static inline
u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
928
{
929 930
	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
	if (packet->sample_type == CS_ETM_DISCONTINUITY)
931 932 933
		return 0;

	return packet->end_addr - packet->last_instr_size;
934 935
}

936
static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
937
				     u64 trace_chan_id,
938
				     const struct cs_etm_packet *packet,
939 940
				     u64 offset)
{
941 942 943 944
	if (packet->isa == CS_ETM_ISA_T32) {
		u64 addr = packet->start_addr;

		while (offset > 0) {
945 946
			addr += cs_etm__t32_instr_size(etmq,
						       trace_chan_id, addr);
947 948 949 950 951 952 953
			offset--;
		}
		return addr;
	}

	/* Assume a 4 byte instruction size (A32/A64) */
	return packet->start_addr + offset * 4;
954 955
}

956 957
static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
					  struct cs_etm_traceid_queue *tidq)
958
{
959
	struct branch_stack *bs = tidq->last_branch_rb;
960 961 962 963 964 965 966 967
	struct branch_entry *be;

	/*
	 * The branches are recorded in a circular buffer in reverse
	 * chronological order: we start recording from the last element of the
	 * buffer down.  After writing the first element of the stack, move the
	 * insert position back to the end of the buffer.
	 */
968 969
	if (!tidq->last_branch_pos)
		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
970

971
	tidq->last_branch_pos -= 1;
972

973 974 975
	be       = &bs->entries[tidq->last_branch_pos];
	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
	be->to	 = cs_etm__first_executed_instr(tidq->packet);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	/* No support for mispredict */
	be->flags.mispred = 0;
	be->flags.predicted = 1;

	/*
	 * Increment bs->nr until reaching the number of last branches asked by
	 * the user on the command line.
	 */
	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
		bs->nr += 1;
}

static int cs_etm__inject_event(union perf_event *event,
			       struct perf_sample *sample, u64 type)
{
	event->header.size = perf_event__sample_event_size(sample, type, 0);
	return perf_event__synthesize_sample(event, type, 0, sample);
}


996
static int
997
cs_etm__get_trace(struct cs_etm_queue *etmq)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	struct auxtrace_buffer *aux_buffer = etmq->buffer;
	struct auxtrace_buffer *old_buffer = aux_buffer;
	struct auxtrace_queue *queue;

	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];

	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);

	/* If no more data, drop the previous auxtrace_buffer and return */
	if (!aux_buffer) {
		if (old_buffer)
			auxtrace_buffer__drop_data(old_buffer);
1011
		etmq->buf_len = 0;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		return 0;
	}

	etmq->buffer = aux_buffer;

	/* If the aux_buffer doesn't have data associated, try to load it */
	if (!aux_buffer->data) {
		/* get the file desc associated with the perf data file */
		int fd = perf_data__fd(etmq->etm->session->data);

		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
		if (!aux_buffer->data)
			return -ENOMEM;
	}

	/* If valid, drop the previous buffer */
	if (old_buffer)
		auxtrace_buffer__drop_data(old_buffer);

1031 1032 1033
	etmq->buf_used = 0;
	etmq->buf_len = aux_buffer->size;
	etmq->buf = aux_buffer->data;
1034

1035
	return etmq->buf_len;
1036 1037
}

Leo Yan's avatar
Leo Yan committed
1038
static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1039
				    struct cs_etm_traceid_queue *tidq)
1040
{
1041
	if ((!tidq->thread) && (tidq->tid != -1))
1042
		tidq->thread = machine__find_thread(etm->machine, -1,
1043
						    tidq->tid);
1044

1045
	if (tidq->thread)
1046
		tidq->pid = tidq->thread->pid_;
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
			 pid_t tid, u8 trace_chan_id)
{
	int cpu, err = -EINVAL;
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct cs_etm_traceid_queue *tidq;

	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
	if (!tidq)
		return err;

	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
		return err;

	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
	if (err)
		return err;

	tidq->tid = tid;
	thread__zput(tidq->thread);

	cs_etm__set_pid_tid_cpu(etm, tidq);
	return 0;
}

1074 1075 1076 1077 1078
bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
{
	return !!etmq->etm->timeless_decoding;
}

1079
static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1080
					    struct cs_etm_traceid_queue *tidq,
1081 1082 1083 1084
					    u64 addr, u64 period)
{
	int ret = 0;
	struct cs_etm_auxtrace *etm = etmq->etm;
1085
	union perf_event *event = tidq->event_buf;
1086 1087 1088
	struct perf_sample sample = {.ip = 0,};

	event->sample.header.type = PERF_RECORD_SAMPLE;
1089
	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1090 1091 1092
	event->sample.header.size = sizeof(struct perf_event_header);

	sample.ip = addr;
1093 1094
	sample.pid = tidq->pid;
	sample.tid = tidq->tid;
1095 1096 1097
	sample.id = etmq->etm->instructions_id;
	sample.stream_id = etmq->etm->instructions_id;
	sample.period = period;
1098 1099
	sample.cpu = tidq->packet->cpu;
	sample.flags = tidq->prev_packet->flags;
1100
	sample.insn_len = 1;
1101
	sample.cpumode = event->sample.header.misc;
1102 1103

	if (etm->synth_opts.last_branch) {
1104 1105
		cs_etm__copy_last_branch_rb(etmq, tidq);
		sample.branch_stack = tidq->last_branch;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	}

	if (etm->synth_opts.inject) {
		ret = cs_etm__inject_event(event, &sample,
					   etm->instructions_sample_type);
		if (ret)
			return ret;
	}

	ret = perf_session__deliver_synth_event(etm->session, event, &sample);

	if (ret)
		pr_err(
			"CS ETM Trace: failed to deliver instruction event, error %d\n",
			ret);

	if (etm->synth_opts.last_branch)
1123
		cs_etm__reset_last_branch_rb(tidq);
1124 1125 1126 1127

	return ret;
}

1128 1129 1130 1131
/*
 * The cs etm packet encodes an instruction range between a branch target
 * and the next taken branch. Generate sample accordingly.
 */
1132 1133
static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
				       struct cs_etm_traceid_queue *tidq)
1134 1135 1136 1137
{
	int ret = 0;
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct perf_sample sample = {.ip = 0,};
1138
	union perf_event *event = tidq->event_buf;
1139 1140 1141 1142
	struct dummy_branch_stack {
		u64			nr;
		struct branch_entry	entries;
	} dummy_bs;
1143 1144
	u64 ip;

1145
	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1146 1147

	event->sample.header.type = PERF_RECORD_SAMPLE;
1148
	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1149 1150
	event->sample.header.size = sizeof(struct perf_event_header);

1151
	sample.ip = ip;
1152 1153
	sample.pid = tidq->pid;
	sample.tid = tidq->tid;
1154
	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1155 1156 1157
	sample.id = etmq->etm->branches_id;
	sample.stream_id = etmq->etm->branches_id;
	sample.period = 1;
1158 1159
	sample.cpu = tidq->packet->cpu;
	sample.flags = tidq->prev_packet->flags;
1160
	sample.cpumode = event->sample.header.misc;
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	/*
	 * perf report cannot handle events without a branch stack
	 */
	if (etm->synth_opts.last_branch) {
		dummy_bs = (struct dummy_branch_stack){
			.nr = 1,
			.entries = {
				.from = sample.ip,
				.to = sample.addr,
			},
		};
		sample.branch_stack = (struct branch_stack *)&dummy_bs;
	}

	if (etm->synth_opts.inject) {
		ret = cs_etm__inject_event(event, &sample,
					   etm->branches_sample_type);
		if (ret)
			return ret;
	}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	ret = perf_session__deliver_synth_event(etm->session, event, &sample);

	if (ret)
		pr_err(
		"CS ETM Trace: failed to deliver instruction event, error %d\n",
		ret);

	return ret;
}

struct cs_etm_synth {
	struct perf_tool dummy_tool;
	struct perf_session *session;
};

static int cs_etm__event_synth(struct perf_tool *tool,
			       union perf_event *event,
			       struct perf_sample *sample __maybe_unused,
			       struct machine *machine __maybe_unused)
{
	struct cs_etm_synth *cs_etm_synth =
		      container_of(tool, struct cs_etm_synth, dummy_tool);

	return perf_session__deliver_synth_event(cs_etm_synth->session,
						 event, NULL);
}

static int cs_etm__synth_event(struct perf_session *session,
			       struct perf_event_attr *attr, u64 id)
{
	struct cs_etm_synth cs_etm_synth;

	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
	cs_etm_synth.session = session;

	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
					   &id, cs_etm__event_synth);
}

static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
				struct perf_session *session)
{
	struct perf_evlist *evlist = session->evlist;
	struct perf_evsel *evsel;
	struct perf_event_attr attr;
	bool found = false;
	u64 id;
	int err;

	evlist__for_each_entry(evlist, evsel) {
		if (evsel->attr.type == etm->pmu_type) {
			found = true;
			break;
		}
	}

	if (!found) {
		pr_debug("No selected events with CoreSight Trace data\n");
		return 0;
	}

	memset(&attr, 0, sizeof(struct perf_event_attr));
	attr.size = sizeof(struct perf_event_attr);
	attr.type = PERF_TYPE_HARDWARE;
	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
			    PERF_SAMPLE_PERIOD;
	if (etm->timeless_decoding)
		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
	else
		attr.sample_type |= PERF_SAMPLE_TIME;

	attr.exclude_user = evsel->attr.exclude_user;
	attr.exclude_kernel = evsel->attr.exclude_kernel;
	attr.exclude_hv = evsel->attr.exclude_hv;
	attr.exclude_host = evsel->attr.exclude_host;
	attr.exclude_guest = evsel->attr.exclude_guest;
	attr.sample_id_all = evsel->attr.sample_id_all;
	attr.read_format = evsel->attr.read_format;

	/* create new id val to be a fixed offset from evsel id */
	id = evsel->id[0] + 1000000000;

	if (!id)
		id = 1;

	if (etm->synth_opts.branches) {
		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
		attr.sample_period = 1;
		attr.sample_type |= PERF_SAMPLE_ADDR;
		err = cs_etm__synth_event(session, &attr, id);
		if (err)
			return err;
		etm->sample_branches = true;
		etm->branches_sample_type = attr.sample_type;
		etm->branches_id = id;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		id += 1;
		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
	}

	if (etm->synth_opts.last_branch)
		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;

	if (etm->synth_opts.instructions) {
		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
		attr.sample_period = etm->synth_opts.period;
		etm->instructions_sample_period = attr.sample_period;
		err = cs_etm__synth_event(session, &attr, id);
		if (err)
			return err;
		etm->sample_instructions = true;
		etm->instructions_sample_type = attr.sample_type;
		etm->instructions_id = id;
		id += 1;
1297 1298 1299 1300 1301
	}

	return 0;
}

1302 1303
static int cs_etm__sample(struct cs_etm_queue *etmq,
			  struct cs_etm_traceid_queue *tidq)
1304
{
1305 1306
	struct cs_etm_auxtrace *etm = etmq->etm;
	struct cs_etm_packet *tmp;
1307
	int ret;
1308
	u8 trace_chan_id = tidq->trace_chan_id;
1309
	u64 instrs_executed = tidq->packet->instr_count;
1310

1311
	tidq->period_instructions += instrs_executed;
1312 1313 1314 1315 1316 1317

	/*
	 * Record a branch when the last instruction in
	 * PREV_PACKET is a branch.
	 */
	if (etm->synth_opts.last_branch &&
1318 1319 1320
	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
	    tidq->prev_packet->last_instr_taken_branch)
		cs_etm__update_last_branch_rb(etmq, tidq);
1321 1322

	if (etm->sample_instructions &&
1323
	    tidq->period_instructions >= etm->instructions_sample_period) {
1324 1325 1326 1327 1328 1329
		/*
		 * Emit instruction sample periodically
		 * TODO: allow period to be defined in cycles and clock time
		 */

		/* Get number of instructions executed after the sample point */
1330
		u64 instrs_over = tidq->period_instructions -
1331 1332 1333 1334 1335 1336 1337 1338
			etm->instructions_sample_period;

		/*
		 * Calculate the address of the sampled instruction (-1 as
		 * sample is reported as though instruction has just been
		 * executed, but PC has not advanced to next instruction)
		 */
		u64 offset = (instrs_executed - instrs_over - 1);
1339 1340
		u64 addr = cs_etm__instr_addr(etmq, trace_chan_id,
					      tidq->packet, offset);
1341 1342

		ret = cs_etm__synth_instruction_sample(
1343
			etmq, tidq, addr, etm->instructions_sample_period);
1344 1345 1346 1347
		if (ret)
			return ret;

		/* Carry remaining instructions into next sample period */
1348
		tidq->period_instructions = instrs_over;
1349 1350
	}

1351
	if (etm->sample_branches) {
1352 1353 1354
		bool generate_sample = false;

		/* Generate sample for tracing on packet */
1355
		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1356 1357 1358
			generate_sample = true;

		/* Generate sample for branch taken packet */
1359 1360
		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
		    tidq->prev_packet->last_instr_taken_branch)
1361 1362 1363
			generate_sample = true;

		if (generate_sample) {
1364
			ret = cs_etm__synth_branch_sample(etmq, tidq);
1365 1366 1367
			if (ret)
				return ret;
		}
1368
	}
1369

1370
	if (etm->sample_branches || etm->synth_opts.last_branch) {
1371
		/*
1372 1373
		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
		 * the next incoming packet.
1374
		 */
1375 1376 1377
		tmp = tidq->packet;
		tidq->packet = tidq->prev_packet;
		tidq->prev_packet = tmp;
1378 1379 1380 1381 1382
	}

	return 0;
}

1383
static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
{
	/*
	 * When the exception packet is inserted, whether the last instruction
	 * in previous range packet is taken branch or not, we need to force
	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
	 * to generate branch sample for the instruction range before the
	 * exception is trapped to kernel or before the exception returning.
	 *
	 * The exception packet includes the dummy address values, so don't
	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
	 * for generating instruction and branch samples.
	 */
1396 1397
	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
		tidq->prev_packet->last_instr_taken_branch = true;
1398 1399 1400 1401

	return 0;
}

1402 1403
static int cs_etm__flush(struct cs_etm_queue *etmq,
			 struct cs_etm_traceid_queue *tidq)
1404 1405
{
	int err = 0;
1406
	struct cs_etm_auxtrace *etm = etmq->etm;
1407 1408
	struct cs_etm_packet *tmp;

1409
	/* Handle start tracing packet */
1410
	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1411 1412
		goto swap_packet;

1413
	if (etmq->etm->synth_opts.last_branch &&
1414
	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1415 1416 1417 1418 1419 1420 1421
		/*
		 * Generate a last branch event for the branches left in the
		 * circular buffer at the end of the trace.
		 *
		 * Use the address of the end of the last reported execution
		 * range
		 */
1422
		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1423 1424

		err = cs_etm__synth_instruction_sample(
1425 1426
			etmq, tidq, addr,
			tidq->period_instructions);
1427 1428 1429
		if (err)
			return err;

1430
		tidq->period_instructions = 0;
1431

1432 1433
	}

1434
	if (etm->sample_branches &&
1435 1436
	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
		err = cs_etm__synth_branch_sample(etmq, tidq);
1437 1438 1439 1440
		if (err)
			return err;
	}

1441
swap_packet:
1442
	if (etm->sample_branches || etm->synth_opts.last_branch) {
1443 1444 1445 1446
		/*
		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
		 * the next incoming packet.
		 */
1447 1448 1449
		tmp = tidq->packet;
		tidq->packet = tidq->prev_packet;
		tidq->prev_packet = tmp;
1450 1451 1452 1453 1454
	}

	return err;
}

1455 1456
static int cs_etm__end_block(struct cs_etm_queue *etmq,
			     struct cs_etm_traceid_queue *tidq)
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
{
	int err;

	/*
	 * It has no new packet coming and 'etmq->packet' contains the stale
	 * packet which was set at the previous time with packets swapping;
	 * so skip to generate branch sample to avoid stale packet.
	 *
	 * For this case only flush branch stack and generate a last branch
	 * event for the branches left in the circular buffer at the end of
	 * the trace.
	 */
	if (etmq->etm->synth_opts.last_branch &&
1470
	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1471 1472 1473 1474
		/*
		 * Use the address of the end of the last reported execution
		 * range.
		 */
1475
		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1476 1477

		err = cs_etm__synth_instruction_sample(
1478 1479
			etmq, tidq, addr,
			tidq->period_instructions);
1480 1481 1482
		if (err)
			return err;

1483
		tidq->period_instructions = 0;
1484 1485 1486 1487
	}

	return 0;
}
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
/*
 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
 *			   if need be.
 * Returns:	< 0	if error
 *		= 0	if no more auxtrace_buffer to read
 *		> 0	if the current buffer isn't empty yet
 */
static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
{
	int ret;

	if (!etmq->buf_len) {
		ret = cs_etm__get_trace(etmq);
		if (ret <= 0)
			return ret;
		/*
		 * We cannot assume consecutive blocks in the data file
		 * are contiguous, reset the decoder to force re-sync.
		 */
		ret = cs_etm_decoder__reset(etmq->decoder);
		if (ret)
			return ret;
	}

	return etmq->buf_len;
}
1514

1515
static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1516 1517 1518
				 struct cs_etm_packet *packet,
				 u64 end_addr)
{
1519 1520 1521
	/* Initialise to keep compiler happy */
	u16 instr16 = 0;
	u32 instr32 = 0;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	u64 addr;

	switch (packet->isa) {
	case CS_ETM_ISA_T32:
		/*
		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
		 *
		 *  b'15         b'8
		 * +-----------------+--------+
		 * | 1 1 0 1 1 1 1 1 |  imm8  |
		 * +-----------------+--------+
		 *
		 * According to the specifiction, it only defines SVC for T32
		 * with 16 bits instruction and has no definition for 32bits;
		 * so below only read 2 bytes as instruction size for T32.
		 */
		addr = end_addr - 2;
1539 1540
		cs_etm__mem_access(etmq, trace_chan_id, addr,
				   sizeof(instr16), (u8 *)&instr16);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		if ((instr16 & 0xFF00) == 0xDF00)
			return true;

		break;
	case CS_ETM_ISA_A32:
		/*
		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
		 *
		 *  b'31 b'28 b'27 b'24
		 * +---------+---------+-------------------------+
		 * |  !1111  | 1 1 1 1 |        imm24            |
		 * +---------+---------+-------------------------+
		 */
		addr = end_addr - 4;
1555 1556
		cs_etm__mem_access(etmq, trace_chan_id, addr,
				   sizeof(instr32), (u8 *)&instr32);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		if ((instr32 & 0x0F000000) == 0x0F000000 &&
		    (instr32 & 0xF0000000) != 0xF0000000)
			return true;

		break;
	case CS_ETM_ISA_A64:
		/*
		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
		 *
		 *  b'31               b'21           b'4     b'0
		 * +-----------------------+---------+-----------+
		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
		 * +-----------------------+---------+-----------+
		 */
		addr = end_addr - 4;
1572 1573
		cs_etm__mem_access(etmq, trace_chan_id, addr,
				   sizeof(instr32), (u8 *)&instr32);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		if ((instr32 & 0xFFE0001F) == 0xd4000001)
			return true;

		break;
	case CS_ETM_ISA_UNKNOWN:
	default:
		break;
	}

	return false;
}

1586 1587
static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
			       struct cs_etm_traceid_queue *tidq, u64 magic)
1588
{
1589
	u8 trace_chan_id = tidq->trace_chan_id;
1590 1591
	struct cs_etm_packet *packet = tidq->packet;
	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_SVC)
			return true;

	/*
	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
	 * HVC cases; need to check if it's SVC instruction based on
	 * packet address.
	 */
	if (magic == __perf_cs_etmv4_magic) {
		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1604
		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1605 1606 1607 1608 1609 1610 1611
					 prev_packet->end_addr))
			return true;
	}

	return false;
}

1612 1613
static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
				       u64 magic)
1614
{
1615
	struct cs_etm_packet *packet = tidq->packet;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
		    packet->exception_number == CS_ETMV3_EXC_FIQ)
			return true;

	if (magic == __perf_cs_etmv4_magic)
		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
		    packet->exception_number == CS_ETMV4_EXC_FIQ)
			return true;

	return false;
}

1638 1639 1640
static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
				      struct cs_etm_traceid_queue *tidq,
				      u64 magic)
1641
{
1642
	u8 trace_chan_id = tidq->trace_chan_id;
1643 1644
	struct cs_etm_packet *packet = tidq->packet;
	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	if (magic == __perf_cs_etmv3_magic)
		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
		    packet->exception_number == CS_ETMV3_EXC_HYP ||
		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
			return true;

	if (magic == __perf_cs_etmv4_magic) {
		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
			return true;

		/*
		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
		 * (SMC, HVC) are taken as sync exceptions.
		 */
		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1668
		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
					  prev_packet->end_addr))
			return true;

		/*
		 * ETMv4 has 5 bits for exception number; if the numbers
		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
		 * they are implementation defined exceptions.
		 *
		 * For this case, simply take it as sync exception.
		 */
		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
		    packet->exception_number <= CS_ETMV4_EXC_END)
			return true;
	}

	return false;
}

1687 1688
static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
				    struct cs_etm_traceid_queue *tidq)
1689
{
1690 1691
	struct cs_etm_packet *packet = tidq->packet;
	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1692
	u8 trace_chan_id = tidq->trace_chan_id;
1693 1694
	u64 magic;
	int ret;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

	switch (packet->sample_type) {
	case CS_ETM_RANGE:
		/*
		 * Immediate branch instruction without neither link nor
		 * return flag, it's normal branch instruction within
		 * the function.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR &&
		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
			packet->flags = PERF_IP_FLAG_BRANCH;

			if (packet->last_instr_cond)
				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
		}

		/*
		 * Immediate branch instruction with link (e.g. BL), this is
		 * branch instruction for function call.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR &&
		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL;

		/*
		 * Indirect branch instruction with link (e.g. BLR), this is
		 * branch instruction for function call.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL;

		/*
		 * Indirect branch instruction with subtype of
		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
		 * function return for A32/T32.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;

		/*
		 * Indirect branch instruction without link (e.g. BR), usually
		 * this is used for function return, especially for functions
		 * within dynamic link lib.
		 */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;

		/* Return instruction for function return. */
		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_RETURN;
1754 1755 1756 1757 1758 1759 1760 1761 1762

		/*
		 * Decoder might insert a discontinuity in the middle of
		 * instruction packets, fixup prev_packet with flag
		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
		 */
		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
					      PERF_IP_FLAG_TRACE_BEGIN;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

		/*
		 * If the previous packet is an exception return packet
		 * and the return address just follows SVC instuction,
		 * it needs to calibrate the previous packet sample flags
		 * as PERF_IP_FLAG_SYSCALLRET.
		 */
		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
					   PERF_IP_FLAG_RETURN |
					   PERF_IP_FLAG_INTERRUPT) &&
1773 1774
		    cs_etm__is_svc_instr(etmq, trace_chan_id,
					 packet, packet->start_addr))
1775 1776 1777
			prev_packet->flags = PERF_IP_FLAG_BRANCH |
					     PERF_IP_FLAG_RETURN |
					     PERF_IP_FLAG_SYSCALLRET;
1778 1779
		break;
	case CS_ETM_DISCONTINUITY:
1780 1781 1782 1783 1784 1785 1786 1787 1788
		/*
		 * The trace is discontinuous, if the previous packet is
		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
		 * for previous packet.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
					      PERF_IP_FLAG_TRACE_END;
		break;
1789
	case CS_ETM_EXCEPTION:
1790 1791 1792 1793 1794
		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
		if (ret)
			return ret;

		/* The exception is for system call. */
1795
		if (cs_etm__is_syscall(etmq, tidq, magic))
1796 1797 1798 1799 1800 1801 1802
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_SYSCALLRET;
		/*
		 * The exceptions are triggered by external signals from bus,
		 * interrupt controller, debug module, PE reset or halt.
		 */
1803
		else if (cs_etm__is_async_exception(tidq, magic))
1804 1805 1806 1807 1808 1809 1810 1811
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_ASYNC |
					PERF_IP_FLAG_INTERRUPT;
		/*
		 * Otherwise, exception is caused by trap, instruction &
		 * data fault, or alignment errors.
		 */
1812
		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
			packet->flags = PERF_IP_FLAG_BRANCH |
					PERF_IP_FLAG_CALL |
					PERF_IP_FLAG_INTERRUPT;

		/*
		 * When the exception packet is inserted, since exception
		 * packet is not used standalone for generating samples
		 * and it's affiliation to the previous instruction range
		 * packet; so set previous range packet flags to tell perf
		 * it is an exception taken branch.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags = packet->flags;
		break;
1827
	case CS_ETM_EXCEPTION_RET:
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
		/*
		 * When the exception return packet is inserted, since
		 * exception return packet is not used standalone for
		 * generating samples and it's affiliation to the previous
		 * instruction range packet; so set previous range packet
		 * flags to tell perf it is an exception return branch.
		 *
		 * The exception return can be for either system call or
		 * other exception types; unfortunately the packet doesn't
		 * contain exception type related info so we cannot decide
		 * the exception type purely based on exception return packet.
		 * If we record the exception number from exception packet and
		 * reuse it for excpetion return packet, this is not reliable
		 * due the trace can be discontinuity or the interrupt can
		 * be nested, thus the recorded exception number cannot be
		 * used for exception return packet for these two cases.
		 *
		 * For exception return packet, we only need to distinguish the
		 * packet is for system call or for other types.  Thus the
		 * decision can be deferred when receive the next packet which
		 * contains the return address, based on the return address we
		 * can read out the previous instruction and check if it's a
		 * system call instruction and then calibrate the sample flag
		 * as needed.
		 */
		if (prev_packet->sample_type == CS_ETM_RANGE)
			prev_packet->flags = PERF_IP_FLAG_BRANCH |
					     PERF_IP_FLAG_RETURN |
					     PERF_IP_FLAG_INTERRUPT;
		break;
1858 1859 1860 1861 1862 1863 1864 1865
	case CS_ETM_EMPTY:
	default:
		break;
	}

	return 0;
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
{
	int ret = 0;
	size_t processed = 0;

	/*
	 * Packets are decoded and added to the decoder's packet queue
	 * until the decoder packet processing callback has requested that
	 * processing stops or there is nothing left in the buffer.  Normal
	 * operations that stop processing are a timestamp packet or a full
	 * decoder buffer queue.
	 */
	ret = cs_etm_decoder__process_data_block(etmq->decoder,
						 etmq->offset,
						 &etmq->buf[etmq->buf_used],
						 etmq->buf_len,
						 &processed);
	if (ret)
		goto out;

	etmq->offset += processed;
	etmq->buf_used += processed;
	etmq->buf_len -= processed;

out:
	return ret;
}

1894 1895
static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
					 struct cs_etm_traceid_queue *tidq)
1896 1897
{
	int ret;
1898 1899
	struct cs_etm_packet_queue *packet_queue;

1900
	packet_queue = &tidq->packet_queue;
1901

1902 1903 1904
	/* Process each packet in this chunk */
	while (1) {
		ret = cs_etm_decoder__get_packet(packet_queue,
1905
						 tidq->packet);
1906 1907 1908 1909 1910 1911
		if (ret <= 0)
			/*
			 * Stop processing this chunk on
			 * end of data or error
			 */
			break;
1912

1913 1914 1915 1916 1917 1918 1919
		/*
		 * Since packet addresses are swapped in packet
		 * handling within below switch() statements,
		 * thus setting sample flags must be called
		 * prior to switch() statement to use address
		 * information before packets swapping.
		 */
1920
		ret = cs_etm__set_sample_flags(etmq, tidq);
1921 1922 1923
		if (ret < 0)
			break;

1924
		switch (tidq->packet->sample_type) {
1925 1926 1927 1928 1929 1930
		case CS_ETM_RANGE:
			/*
			 * If the packet contains an instruction
			 * range, generate instruction sequence
			 * events.
			 */
1931
			cs_etm__sample(etmq, tidq);
1932 1933 1934
			break;
		case CS_ETM_EXCEPTION:
		case CS_ETM_EXCEPTION_RET:
1935
			/*
1936 1937 1938
			 * If the exception packet is coming,
			 * make sure the previous instruction
			 * range packet to be handled properly.
1939
			 */
1940
			cs_etm__exception(tidq);
1941 1942 1943 1944 1945 1946
			break;
		case CS_ETM_DISCONTINUITY:
			/*
			 * Discontinuity in trace, flush
			 * previous branch stack
			 */
1947
			cs_etm__flush(etmq, tidq);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
			break;
		case CS_ETM_EMPTY:
			/*
			 * Should not receive empty packet,
			 * report error.
			 */
			pr_err("CS ETM Trace: empty packet\n");
			return -EINVAL;
		default:
			break;
1958
		}
1959
	}
1960 1961 1962 1963

	return ret;
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
{
	int idx;
	struct int_node *inode;
	struct cs_etm_traceid_queue *tidq;
	struct intlist *traceid_queues_list = etmq->traceid_queues_list;

	intlist__for_each_entry(inode, traceid_queues_list) {
		idx = (int)(intptr_t)inode->priv;
		tidq = etmq->traceid_queues[idx];

		/* Ignore return value */
		cs_etm__process_traceid_queue(etmq, tidq);

		/*
		 * Generate an instruction sample with the remaining
		 * branchstack entries.
		 */
		cs_etm__flush(etmq, tidq);
	}
}

1986 1987 1988
static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
{
	int err = 0;
1989 1990 1991 1992 1993
	struct cs_etm_traceid_queue *tidq;

	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
	if (!tidq)
		return -EINVAL;
1994 1995

	/* Go through each buffer in the queue and decode them one by one */
1996
	while (1) {
1997 1998 1999
		err = cs_etm__get_data_block(etmq);
		if (err <= 0)
			return err;
2000

2001 2002
		/* Run trace decoder until buffer consumed or end of trace */
		do {
2003
			err = cs_etm__decode_data_block(etmq);
2004 2005 2006
			if (err)
				return err;

2007 2008 2009 2010 2011
			/*
			 * Process each packet in this chunk, nothing to do if
			 * an error occurs other than hoping the next one will
			 * be better.
			 */
2012
			err = cs_etm__process_traceid_queue(etmq, tidq);
2013

2014
		} while (etmq->buf_len);
2015

2016 2017
		if (err == 0)
			/* Flush any remaining branch stack entries */
2018
			err = cs_etm__end_block(etmq, tidq);
2019
	}
2020 2021 2022 2023 2024

	return err;
}

static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2025
					   pid_t tid)
2026 2027 2028 2029 2030 2031 2032
{
	unsigned int i;
	struct auxtrace_queues *queues = &etm->queues;

	for (i = 0; i < queues->nr_queues; i++) {
		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
		struct cs_etm_queue *etmq = queue->priv;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
		struct cs_etm_traceid_queue *tidq;

		if (!etmq)
			continue;

		tidq = cs_etm__etmq_get_traceid_queue(etmq,
						CS_ETM_PER_THREAD_TRACEID);

		if (!tidq)
			continue;
2043

2044
		if ((tid == -1) || (tidq->tid == tid)) {
2045
			cs_etm__set_pid_tid_cpu(etm, tidq);
2046 2047 2048 2049 2050 2051 2052
			cs_etm__run_decoder(etmq);
		}
	}

	return 0;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
{
	int ret = 0;
	unsigned int cs_queue_nr, queue_nr;
	u8 trace_chan_id;
	u64 timestamp;
	struct auxtrace_queue *queue;
	struct cs_etm_queue *etmq;
	struct cs_etm_traceid_queue *tidq;

	while (1) {
		if (!etm->heap.heap_cnt)
			goto out;

		/* Take the entry at the top of the min heap */
		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
		queue_nr = TO_QUEUE_NR(cs_queue_nr);
		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
		queue = &etm->queues.queue_array[queue_nr];
		etmq = queue->priv;

		/*
		 * Remove the top entry from the heap since we are about
		 * to process it.
		 */
		auxtrace_heap__pop(&etm->heap);

		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
		if (!tidq) {
			/*
			 * No traceID queue has been allocated for this traceID,
			 * which means something somewhere went very wrong.  No
			 * other choice than simply exit.
			 */
			ret = -EINVAL;
			goto out;
		}

		/*
		 * Packets associated with this timestamp are already in
		 * the etmq's traceID queue, so process them.
		 */
		ret = cs_etm__process_traceid_queue(etmq, tidq);
		if (ret < 0)
			goto out;

		/*
		 * Packets for this timestamp have been processed, time to
		 * move on to the next timestamp, fetching a new auxtrace_buffer
		 * if need be.
		 */
refetch:
		ret = cs_etm__get_data_block(etmq);
		if (ret < 0)
			goto out;

		/*
		 * No more auxtrace_buffers to process in this etmq, simply
		 * move on to another entry in the auxtrace_heap.
		 */
		if (!ret)
			continue;

		ret = cs_etm__decode_data_block(etmq);
		if (ret)
			goto out;

		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);

		if (!timestamp) {
			/*
			 * Function cs_etm__decode_data_block() returns when
			 * there is no more traces to decode in the current
			 * auxtrace_buffer OR when a timestamp has been
			 * encountered on any of the traceID queues.  Since we
			 * did not get a timestamp, there is no more traces to
			 * process in this auxtrace_buffer.  As such empty and
			 * flush all traceID queues.
			 */
			cs_etm__clear_all_traceid_queues(etmq);

			/* Fetch another auxtrace_buffer for this etmq */
			goto refetch;
		}

		/*
		 * Add to the min heap the timestamp for packets that have
		 * just been decoded.  They will be processed and synthesized
		 * during the next call to cs_etm__process_traceid_queue() for
		 * this queue/traceID.
		 */
		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
	}

out:
	return ret;
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
					union perf_event *event)
{
	struct thread *th;

	if (etm->timeless_decoding)
		return 0;

	/*
	 * Add the tid/pid to the log so that we can get a match when
	 * we get a contextID from the decoder.
	 */
	th = machine__findnew_thread(etm->machine,
				     event->itrace_start.pid,
				     event->itrace_start.tid);
	if (!th)
		return -ENOMEM;

	thread__put(th);

	return 0;
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
					   union perf_event *event)
{
	struct thread *th;
	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;

	/*
	 * Context switch in per-thread mode are irrelevant since perf
	 * will start/stop tracing as the process is scheduled.
	 */
	if (etm->timeless_decoding)
		return 0;

	/*
	 * SWITCH_IN events carry the next process to be switched out while
	 * SWITCH_OUT events carry the process to be switched in.  As such
	 * we don't care about IN events.
	 */
	if (!out)
		return 0;

	/*
	 * Add the tid/pid to the log so that we can get a match when
	 * we get a contextID from the decoder.
	 */
	th = machine__findnew_thread(etm->machine,
				     event->context_switch.next_prev_pid,
				     event->context_switch.next_prev_tid);
	if (!th)
		return -ENOMEM;

	thread__put(th);

	return 0;
}

2211 2212 2213 2214 2215
static int cs_etm__process_event(struct perf_session *session,
				 union perf_event *event,
				 struct perf_sample *sample,
				 struct perf_tool *tool)
{
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	int err = 0;
	u64 timestamp;
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);

	if (dump_trace)
		return 0;

	if (!tool->ordered_events) {
		pr_err("CoreSight ETM Trace requires ordered events\n");
		return -EINVAL;
	}

	if (sample->time && (sample->time != (u64) -1))
		timestamp = sample->time;
	else
		timestamp = 0;

	if (timestamp || etm->timeless_decoding) {
		err = cs_etm__update_queues(etm);
		if (err)
			return err;
	}

2241 2242
	if (etm->timeless_decoding &&
	    event->header.type == PERF_RECORD_EXIT)
2243
		return cs_etm__process_timeless_queues(etm,
2244
						       event->fork.tid);
2245

2246 2247
	if (event->header.type == PERF_RECORD_ITRACE_START)
		return cs_etm__process_itrace_start(etm, event);
2248 2249
	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
		return cs_etm__process_switch_cpu_wide(etm, event);
2250

2251 2252 2253 2254
	if (!etm->timeless_decoding &&
	    event->header.type == PERF_RECORD_AUX)
		return cs_etm__process_queues(etm);

2255 2256 2257 2258 2259
	return 0;
}

static int cs_etm__process_auxtrace_event(struct perf_session *session,
					  union perf_event *event,
2260
					  struct perf_tool *tool __maybe_unused)
2261
{
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
						   struct cs_etm_auxtrace,
						   auxtrace);
	if (!etm->data_queued) {
		struct auxtrace_buffer *buffer;
		off_t  data_offset;
		int fd = perf_data__fd(session->data);
		bool is_pipe = perf_data__is_pipe(session->data);
		int err;

		if (is_pipe)
			data_offset = 0;
		else {
			data_offset = lseek(fd, 0, SEEK_CUR);
			if (data_offset == -1)
				return -errno;
		}

		err = auxtrace_queues__add_event(&etm->queues, session,
						 event, data_offset, &buffer);
		if (err)
			return err;

		if (dump_trace)
			if (auxtrace_buffer__get_data(buffer, fd)) {
				cs_etm__dump_event(etm, buffer);
				auxtrace_buffer__put_data(buffer);
			}
	}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	return 0;
}

static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
{
	struct perf_evsel *evsel;
	struct perf_evlist *evlist = etm->session->evlist;
	bool timeless_decoding = true;

	/*
	 * Circle through the list of event and complain if we find one
	 * with the time bit set.
	 */
	evlist__for_each_entry(evlist, evsel) {
		if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
			timeless_decoding = false;
	}

	return timeless_decoding;
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
static const char * const cs_etm_global_header_fmts[] = {
	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
};

static const char * const cs_etm_priv_fmts[] = {
	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
	[CS_ETM_CPU]		= "	CPU			       %lld\n",
	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
};

static const char * const cs_etmv4_priv_fmts[] = {
	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
	[CS_ETM_CPU]		= "	CPU			       %lld\n",
	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
};

static void cs_etm__print_auxtrace_info(u64 *val, int num)
{
	int i, j, cpu = 0;

	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);

	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
		if (val[i] == __perf_cs_etmv3_magic)
			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
		else if (val[i] == __perf_cs_etmv4_magic)
			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
		else
			/* failure.. return */
			return;
	}
}

2360 2361 2362 2363 2364
int cs_etm__process_auxtrace_info(union perf_event *event,
				  struct perf_session *session)
{
	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
	struct cs_etm_auxtrace *etm = NULL;
2365 2366
	struct int_node *inode;
	unsigned int pmu_type;
2367 2368 2369
	int event_header_size = sizeof(struct perf_event_header);
	int info_header_size;
	int total_size = auxtrace_info->header.size;
2370 2371 2372 2373 2374 2375
	int priv_size = 0;
	int num_cpu;
	int err = 0, idx = -1;
	int i, j, k;
	u64 *ptr, *hdr = NULL;
	u64 **metadata = NULL;
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

	/*
	 * sizeof(auxtrace_info_event::type) +
	 * sizeof(auxtrace_info_event::reserved) == 8
	 */
	info_header_size = 8;

	if (total_size < (event_header_size + info_header_size))
		return -EINVAL;

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	priv_size = total_size - event_header_size - info_header_size;

	/* First the global part */
	ptr = (u64 *) auxtrace_info->priv;

	/* Look for version '0' of the header */
	if (ptr[0] != 0)
		return -EINVAL;

	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
	if (!hdr)
		return -ENOMEM;

	/* Extract header information - see cs-etm.h for format */
	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
		hdr[i] = ptr[i];
	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
				    0xffffffff);

	/*
2407 2408 2409
	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
	 * has to be made for each packet that gets decoded, optimizing access
	 * in anything other than a sequential array is worth doing.
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	 */
	traceid_list = intlist__new(NULL);
	if (!traceid_list) {
		err = -ENOMEM;
		goto err_free_hdr;
	}

	metadata = zalloc(sizeof(*metadata) * num_cpu);
	if (!metadata) {
		err = -ENOMEM;
		goto err_free_traceid_list;
	}

	/*
	 * The metadata is stored in the auxtrace_info section and encodes
	 * the configuration of the ARM embedded trace macrocell which is
	 * required by the trace decoder to properly decode the trace due
	 * to its highly compressed nature.
	 */
	for (j = 0; j < num_cpu; j++) {
		if (ptr[i] == __perf_cs_etmv3_magic) {
			metadata[j] = zalloc(sizeof(*metadata[j]) *
					     CS_ETM_PRIV_MAX);
			if (!metadata[j]) {
				err = -ENOMEM;
				goto err_free_metadata;
			}
			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
				metadata[j][k] = ptr[i + k];

			/* The traceID is our handle */
			idx = metadata[j][CS_ETM_ETMTRACEIDR];
			i += CS_ETM_PRIV_MAX;
		} else if (ptr[i] == __perf_cs_etmv4_magic) {
			metadata[j] = zalloc(sizeof(*metadata[j]) *
					     CS_ETMV4_PRIV_MAX);
			if (!metadata[j]) {
				err = -ENOMEM;
				goto err_free_metadata;
			}
			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
				metadata[j][k] = ptr[i + k];

			/* The traceID is our handle */
			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
			i += CS_ETMV4_PRIV_MAX;
		}

		/* Get an RB node for this CPU */
		inode = intlist__findnew(traceid_list, idx);

		/* Something went wrong, no need to continue */
		if (!inode) {
			err = PTR_ERR(inode);
			goto err_free_metadata;
		}

		/*
		 * The node for that CPU should not be taken.
		 * Back out if that's the case.
		 */
		if (inode->priv) {
			err = -EINVAL;
			goto err_free_metadata;
		}
2475 2476
		/* All good, associate the traceID with the metadata pointer */
		inode->priv = metadata[j];
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	}

	/*
	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
	 * global metadata, and each cpu's metadata respectively.
	 * The following tests if the correct number of double words was
	 * present in the auxtrace info section.
	 */
	if (i * 8 != priv_size) {
		err = -EINVAL;
		goto err_free_metadata;
	}

2491 2492
	etm = zalloc(sizeof(*etm));

2493
	if (!etm) {
2494
		err = -ENOMEM;
2495 2496
		goto err_free_metadata;
	}
2497 2498 2499 2500 2501 2502 2503 2504

	err = auxtrace_queues__init(&etm->queues);
	if (err)
		goto err_free_etm;

	etm->session = session;
	etm->machine = &session->machines.host;

2505 2506 2507 2508
	etm->num_cpu = num_cpu;
	etm->pmu_type = pmu_type;
	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
	etm->metadata = metadata;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	etm->auxtrace_type = auxtrace_info->type;
	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);

	etm->auxtrace.process_event = cs_etm__process_event;
	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
	etm->auxtrace.flush_events = cs_etm__flush_events;
	etm->auxtrace.free_events = cs_etm__free_events;
	etm->auxtrace.free = cs_etm__free;
	session->auxtrace = &etm->auxtrace;

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	etm->unknown_thread = thread__new(999999999, 999999999);
	if (!etm->unknown_thread)
		goto err_free_queues;

	/*
	 * Initialize list node so that at thread__zput() we can avoid
	 * segmentation fault at list_del_init().
	 */
	INIT_LIST_HEAD(&etm->unknown_thread->node);

	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
	if (err)
		goto err_delete_thread;

	if (thread__init_map_groups(etm->unknown_thread, etm->machine))
		goto err_delete_thread;

2536 2537
	if (dump_trace) {
		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2538
		return 0;
2539
	}
2540

2541 2542 2543
	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
		etm->synth_opts = *session->itrace_synth_opts;
	} else {
2544 2545
		itrace_synth_opts__set_default(&etm->synth_opts,
				session->itrace_synth_opts->default_no_sample);
2546 2547 2548 2549 2550
		etm->synth_opts.callchain = false;
	}

	err = cs_etm__synth_events(etm, session);
	if (err)
2551
		goto err_delete_thread;
2552

2553 2554
	err = auxtrace_queues__process_index(&etm->queues, session);
	if (err)
2555
		goto err_delete_thread;
2556 2557 2558 2559 2560

	etm->data_queued = etm->queues.populated;

	return 0;

2561 2562
err_delete_thread:
	thread__zput(etm->unknown_thread);
2563 2564 2565 2566 2567
err_free_queues:
	auxtrace_queues__free(&etm->queues);
	session->auxtrace = NULL;
err_free_etm:
	zfree(&etm);
2568 2569 2570
err_free_metadata:
	/* No need to check @metadata[j], free(NULL) is supported */
	for (j = 0; j < num_cpu; j++)
2571
		zfree(&metadata[j]);
2572 2573 2574 2575 2576
	zfree(&metadata);
err_free_traceid_list:
	intlist__delete(traceid_list);
err_free_hdr:
	zfree(&hdr);
2577 2578 2579

	return -EINVAL;
}