contig.c 7.47 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *	Stephane Eranian <eranian@hpl.hp.com>
 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
 *
 * Routines used by ia64 machines with contiguous (or virtually contiguous)
 * memory.
 */
#include <linux/config.h>
#include <linux/bootmem.h>
#include <linux/efi.h>
#include <linux/mm.h>
#include <linux/swap.h>

#include <asm/meminit.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sections.h>

28 29 30 31
#ifdef CONFIG_VIRTUAL_MEM_MAP
static unsigned long num_dma_physpages;
#endif

32 33 34 35 36 37 38 39 40 41 42 43 44 45
/**
 * show_mem - display a memory statistics summary
 *
 * Just walks the pages in the system and describes where they're allocated.
 */
void
show_mem (void)
{
	int i, total = 0, reserved = 0;
	int shared = 0, cached = 0;

	printk("Mem-info:\n");
	show_free_areas();

46
	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
47 48
	i = max_mapnr;
	while (i-- > 0) {
John S. Marvin's avatar
John S. Marvin committed
49 50
		if (!pfn_valid(i))
			continue;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
		total++;
		if (PageReserved(mem_map+i))
			reserved++;
		else if (PageSwapCache(mem_map+i))
			cached++;
		else if (page_count(mem_map + i))
			shared += page_count(mem_map + i) - 1;
	}
	printk("%d pages of RAM\n", total);
	printk("%d reserved pages\n", reserved);
	printk("%d pages shared\n", shared);
	printk("%d pages swap cached\n", cached);
	printk("%ld pages in page table cache\n", pgtable_cache_size);
}

/* physical address where the bootmem map is located */
unsigned long bootmap_start;

/**
 * find_max_pfn - adjust the maximum page number callback
 * @start: start of range
 * @end: end of range
 * @arg: address of pointer to global max_pfn variable
 *
 * Passed as a callback function to efi_memmap_walk() to determine the highest
 * available page frame number in the system.
 */
int
find_max_pfn (unsigned long start, unsigned long end, void *arg)
{
	unsigned long *max_pfnp = arg, pfn;

	pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
	if (pfn > *max_pfnp)
		*max_pfnp = pfn;
	return 0;
}

/**
 * find_bootmap_location - callback to find a memory area for the bootmap
 * @start: start of region
 * @end: end of region
 * @arg: unused callback data
 *
 * Find a place to put the bootmap and return its starting address in
 * bootmap_start.  This address must be page-aligned.
 */
int
find_bootmap_location (unsigned long start, unsigned long end, void *arg)
{
	unsigned long needed = *(unsigned long *)arg;
	unsigned long range_start, range_end, free_start;
	int i;

#if IGNORE_PFN0
	if (start == PAGE_OFFSET) {
		start += PAGE_SIZE;
		if (start >= end)
			return 0;
	}
#endif

	free_start = PAGE_OFFSET;

	for (i = 0; i < num_rsvd_regions; i++) {
		range_start = max(start, free_start);
		range_end   = min(end, rsvd_region[i].start & PAGE_MASK);

119 120
		free_start = PAGE_ALIGN(rsvd_region[i].end);

121 122 123
		if (range_end <= range_start)
			continue; /* skip over empty range */

124
		if (range_end - range_start >= needed) {
125
			bootmap_start = __pa(range_start);
126
			return -1;	/* done */
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		}

		/* nothing more available in this segment */
		if (range_end == end)
			return 0;
	}
	return 0;
}

/**
 * find_memory - setup memory map
 *
 * Walk the EFI memory map and find usable memory for the system, taking
 * into account reserved areas.
 */
void
find_memory (void)
{
	unsigned long bootmap_size;

	reserve_memory();

	/* first find highest page frame number */
	max_pfn = 0;
	efi_memmap_walk(find_max_pfn, &max_pfn);

	/* how many bytes to cover all the pages */
	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;

	/* look for a location to hold the bootmap */
	bootmap_start = ~0UL;
	efi_memmap_walk(find_bootmap_location, &bootmap_size);
	if (bootmap_start == ~0UL)
		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);

	bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);

	/* Free all available memory, then mark bootmem-map as being in use. */
	efi_memmap_walk(filter_rsvd_memory, free_bootmem);
	reserve_bootmem(bootmap_start, bootmap_size);

	find_initrd();
}
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#ifdef CONFIG_SMP
/**
 * per_cpu_init - setup per-cpu variables
 *
 * Allocate and setup per-cpu data areas.
 */
void *
per_cpu_init (void)
{
	void *cpu_data;
	int cpu;

	/*
	 * get_free_pages() cannot be used before cpu_init() done.  BSP
	 * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
	 * get_zeroed_page().
	 */
	if (smp_processor_id() == 0) {
		cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
					   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
		for (cpu = 0; cpu < NR_CPUS; cpu++) {
			memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
			__per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
			cpu_data += PERCPU_PAGE_SIZE;
			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
		}
	}
	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
}
#endif /* CONFIG_SMP */

static int
count_pages (u64 start, u64 end, void *arg)
{
	unsigned long *count = arg;

	*count += (end - start) >> PAGE_SHIFT;
	return 0;
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#ifdef CONFIG_VIRTUAL_MEM_MAP
static int
count_dma_pages (u64 start, u64 end, void *arg)
{
	unsigned long *count = arg;

	if (end <= MAX_DMA_ADDRESS)
		*count += (end - start) >> PAGE_SHIFT;
	return 0;
}
#endif

/*
 * Set up the page tables.
 */

void
paging_init (void)
{
	unsigned long max_dma;
	unsigned long zones_size[MAX_NR_ZONES];
#ifdef CONFIG_VIRTUAL_MEM_MAP
	unsigned long zholes_size[MAX_NR_ZONES];
	unsigned long max_gap;
#endif

	/* initialize mem_map[] */

	memset(zones_size, 0, sizeof(zones_size));

	num_physpages = 0;
	efi_memmap_walk(count_pages, &num_physpages);

	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;

#ifdef CONFIG_VIRTUAL_MEM_MAP
	memset(zholes_size, 0, sizeof(zholes_size));

	num_dma_physpages = 0;
	efi_memmap_walk(count_dma_pages, &num_dma_physpages);

	if (max_low_pfn < max_dma) {
		zones_size[ZONE_DMA] = max_low_pfn;
		zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
	} else {
		zones_size[ZONE_DMA] = max_dma;
		zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
		if (num_physpages > num_dma_physpages) {
			zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
			zholes_size[ZONE_NORMAL] =
				((max_low_pfn - max_dma) -
				 (num_physpages - num_dma_physpages));
		}
	}

	max_gap = 0;
	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
	if (max_gap < LARGE_GAP) {
		vmem_map = (struct page *) 0;
270
		free_area_init_node(0, &contig_page_data, zones_size, 0,
271 272 273 274 275 276 277 278 279 280 281 282
				    zholes_size);
		mem_map = contig_page_data.node_mem_map;
	} else {
		unsigned long map_size;

		/* allocate virtual_mem_map */

		map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page));
		vmalloc_end -= map_size;
		vmem_map = (struct page *) vmalloc_end;
		efi_memmap_walk(create_mem_map_page_table, 0);

283 284
		contig_page_data.node_mem_map = vmem_map;
		free_area_init_node(0, &contig_page_data, zones_size,
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
				    0, zholes_size);

		mem_map = contig_page_data.node_mem_map;
		printk("Virtual mem_map starts at 0x%p\n", mem_map);
	}
#else /* !CONFIG_VIRTUAL_MEM_MAP */
	if (max_low_pfn < max_dma)
		zones_size[ZONE_DMA] = max_low_pfn;
	else {
		zones_size[ZONE_DMA] = max_dma;
		zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
	}
	free_area_init(zones_size);
#endif /* !CONFIG_VIRTUAL_MEM_MAP */
	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
}