core.c 114 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61 62
static struct class regulator_class;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator_dev *rdev);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111 112
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
113
static void _regulator_put(struct regulator *regulator);
114

115 116 117 118
static struct regulator_dev *dev_to_rdev(struct device *dev)
{
	return container_of(dev, struct regulator_dev, dev);
}
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146 147
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

148 149 150 151 152 153 154 155
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

156 157 158 159 160 161
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
162
	int i;
163

164
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165
		mutex_lock_nested(&rdev->mutex, i);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
		mutex_unlock(&rdev->mutex);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

187 188 189 190 191 192
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
193
 * returns the device node corresponding to the regulator if found, else
194 195 196 197 198 199 200 201 202 203 204 205 206
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
207
		dev_dbg(dev, "Looking up %s property in node %s failed",
208 209 210 211 212 213
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

214 215 216 217 218 219
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

220
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221
		rdev_err(rdev, "voltage operation not allowed\n");
222 223 224 225 226 227 228 229
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

230 231
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232
			 *min_uV, *max_uV);
233
		return -EINVAL;
234
	}
235 236 237 238

	return 0;
}

239 240 241 242 243 244 245 246 247
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 249 250 251 252 253 254
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

255 256 257 258 259 260
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

261
	if (*min_uV > *max_uV) {
262 263
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
264
		return -EINVAL;
265
	}
266 267 268 269

	return 0;
}

270 271 272 273 274 275
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

276
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277
		rdev_err(rdev, "current operation not allowed\n");
278 279 280 281 282 283 284 285
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

286 287
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288
			 *min_uA, *max_uA);
289
		return -EINVAL;
290
	}
291 292 293 294 295

	return 0;
}

/* operating mode constraint check */
296
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297
{
298
	switch (*mode) {
299 300 301 302 303 304
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
305
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
306 307 308
		return -EINVAL;
	}

309
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310
		rdev_err(rdev, "mode operation not allowed\n");
311 312
		return -EPERM;
	}
313 314 315 316 317 318 319 320

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
321
	}
322 323

	return -EINVAL;
324 325 326 327 328
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
329
	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 331 332 333 334 335 336 337
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
338
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339 340 341 342

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
343
	struct regulator_dev *rdev = dev_get_drvdata(dev);
344 345 346

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
347
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348

349 350
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
351 352 353
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

354
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
355
}
356
static DEVICE_ATTR_RO(name);
357

David Brownell's avatar
David Brownell committed
358
static ssize_t regulator_print_opmode(char *buf, int mode)
359 360 361 362 363 364 365 366 367 368 369 370 371 372
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

David Brownell's avatar
David Brownell committed
373 374
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
375
{
376
	struct regulator_dev *rdev = dev_get_drvdata(dev);
377

David Brownell's avatar
David Brownell committed
378 379
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
380
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
David Brownell's avatar
David Brownell committed
381 382 383

static ssize_t regulator_print_state(char *buf, int state)
{
384 385 386 387 388 389 390 391
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

David Brownell's avatar
David Brownell committed
392 393 394 395
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
396 397 398 399 400
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
David Brownell's avatar
David Brownell committed
401

402
	return ret;
David Brownell's avatar
David Brownell committed
403
}
404
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
David Brownell's avatar
David Brownell committed
405

David Brownell's avatar
David Brownell committed
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
439 440 441
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
442 443 444
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
David Brownell's avatar
David Brownell committed
445 446 447 448 449 450 451 452
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

453 454 455
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
456
	struct regulator_dev *rdev = dev_get_drvdata(dev);
457 458 459 460 461 462

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
463
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464 465 466 467

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
468
	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 470 471 472 473 474

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
475
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476 477 478 479

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
480
	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 482 483 484 485 486

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
487
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488 489 490 491

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
492
	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 494 495 496 497 498

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
499
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500 501 502 503

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
504
	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 506 507 508 509
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
510
		uA += regulator->uA_load;
511 512 513
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
514
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515

516 517
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
518
{
519
	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 521
	return sprintf(buf, "%d\n", rdev->use_count);
}
522
static DEVICE_ATTR_RO(num_users);
523

524 525
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
526
{
527
	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 529 530 531 532 533 534 535 536

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
537
static DEVICE_ATTR_RO(type);
538 539 540 541

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
542
	struct regulator_dev *rdev = dev_get_drvdata(dev);
543 544 545

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
546 547
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
548 549 550 551

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
552
	struct regulator_dev *rdev = dev_get_drvdata(dev);
553 554 555

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
556 557
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
558 559 560 561

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
562
	struct regulator_dev *rdev = dev_get_drvdata(dev);
563 564 565

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
566 567
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
568 569 570 571

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
572
	struct regulator_dev *rdev = dev_get_drvdata(dev);
573

David Brownell's avatar
David Brownell committed
574 575
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
576
}
577 578
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
579 580 581 582

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584

David Brownell's avatar
David Brownell committed
585 586
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
587
}
588 589
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
590 591 592 593

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
594
	struct regulator_dev *rdev = dev_get_drvdata(dev);
595

David Brownell's avatar
David Brownell committed
596 597
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
598
}
599 600
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
601 602 603 604

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
605
	struct regulator_dev *rdev = dev_get_drvdata(dev);
606

David Brownell's avatar
David Brownell committed
607 608
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
609
}
610 611
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
612 613 614 615

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
616
	struct regulator_dev *rdev = dev_get_drvdata(dev);
617

David Brownell's avatar
David Brownell committed
618 619
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
620
}
621 622
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
623 624 625 626

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
627
	struct regulator_dev *rdev = dev_get_drvdata(dev);
628

David Brownell's avatar
David Brownell committed
629 630
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
631
}
632 633 634
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
656

657 658
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
659
static int drms_uA_update(struct regulator_dev *rdev)
660 661 662 663 664
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

665 666
	lockdep_assert_held_once(&rdev->mutex);

667 668 669 670
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
671
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672 673
		return 0;

674 675
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
676 677
		return 0;

678 679
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
680
		return -EINVAL;
681 682

	/* get output voltage */
683
	output_uV = _regulator_get_voltage(rdev);
684 685 686 687
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
688 689

	/* get input voltage */
690 691
	input_uV = 0;
	if (rdev->supply)
692
		input_uV = regulator_get_voltage(rdev->supply);
693
	if (input_uV <= 0)
694
		input_uV = rdev->constraints->input_uV;
695 696 697 698
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
699 700 701

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
702
		current_uA += sibling->uA_load;
703

704 705
	current_uA += rdev->constraints->system_load;

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
723

724 725 726
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727 728 729
	}

	return err;
730 731 732 733 734 735
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
736 737

	/* If we have no suspend mode configration don't set anything;
738 739
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
740 741
	 */
	if (!rstate->enabled && !rstate->disabled) {
742 743
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
744
			rdev_warn(rdev, "No configuration\n");
745 746 747 748
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
749
		rdev_err(rdev, "invalid configuration\n");
750 751
		return -EINVAL;
	}
752

753
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754
		ret = rdev->desc->ops->set_suspend_enable(rdev);
755
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756
		ret = rdev->desc->ops->set_suspend_disable(rdev);
757 758 759
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

760
	if (ret < 0) {
761
		rdev_err(rdev, "failed to enabled/disable\n");
762 763 764 765 766 767
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
768
			rdev_err(rdev, "failed to set voltage\n");
769 770 771 772 773 774 775
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
776
			rdev_err(rdev, "failed to set mode\n");
777 778 779 780 781 782 783 784 785
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
786 787
	lockdep_assert_held_once(&rdev->mutex);

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
809
	char buf[160] = "";
810
	size_t len = sizeof(buf) - 1;
811 812
	int count = 0;
	int ret;
813

814
	if (constraints->min_uV && constraints->max_uV) {
815
		if (constraints->min_uV == constraints->max_uV)
816 817
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
818
		else
819 820 821 822
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
823 824 825 826 827 828
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
829 830
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
831 832
	}

833
	if (constraints->uV_offset)
834 835
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
836

837
	if (constraints->min_uA && constraints->max_uA) {
838
		if (constraints->min_uA == constraints->max_uA)
839 840
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
841
		else
842 843 844 845
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
846 847 848 849 850 851
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
852 853
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
854
	}
855

856
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
857
		count += scnprintf(buf + count, len - count, "fast ");
858
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
859
		count += scnprintf(buf + count, len - count, "normal ");
860
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
861
		count += scnprintf(buf + count, len - count, "idle ");
862
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
863
		count += scnprintf(buf + count, len - count, "standby");
864

865
	if (!count)
866
		scnprintf(buf, len, "no parameters");
867

868
	rdev_dbg(rdev, "%s\n", buf);
869 870

	if ((constraints->min_uV != constraints->max_uV) &&
871
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
872 873
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
874 875
}

876
static int machine_constraints_voltage(struct regulator_dev *rdev,
877
	struct regulation_constraints *constraints)
878
{
879
	const struct regulator_ops *ops = rdev->desc->ops;
880 881 882 883
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
884 885
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
886 887
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
888 889 890
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
891 892
			return current_uV;
		}
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
913 914
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
915
			ret = _regulator_do_set_voltage(
916
				rdev, target_min, target_max);
917 918
			if (ret < 0) {
				rdev_err(rdev,
919 920
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
921 922
				return ret;
			}
923
		}
924
	}
925

926 927 928 929 930 931 932 933 934 935 936
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

937 938
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
939
		if (count == 1 && !cmin) {
940
			cmin = 1;
941
			cmax = INT_MAX;
942 943
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
944 945
		}

946 947
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
948
			return 0;
949

950
		/* else require explicit machine-level constraints */
951
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
952
			rdev_err(rdev, "invalid voltage constraints\n");
953
			return -EINVAL;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
973 974 975
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
976
			return -EINVAL;
977 978 979 980
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
981 982
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
983 984 985
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
986 987
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
988 989 990 991
			constraints->max_uV = max_uV;
		}
	}

992 993 994
	return 0;
}

995 996 997
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
998
	const struct regulator_ops *ops = rdev->desc->ops;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1025 1026
static int _regulator_do_enable(struct regulator_dev *rdev);

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1039
	const struct regulation_constraints *constraints)
1040 1041
{
	int ret = 0;
1042
	const struct regulator_ops *ops = rdev->desc->ops;
1043

1044 1045 1046 1047 1048 1049
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1050 1051
	if (!rdev->constraints)
		return -ENOMEM;
1052

1053
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1054
	if (ret != 0)
1055
		return ret;
1056

1057
	ret = machine_constraints_current(rdev, rdev->constraints);
1058
	if (ret != 0)
1059
		return ret;
1060

1061 1062 1063 1064 1065
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1066
			return ret;
1067 1068 1069
		}
	}

1070
	/* do we need to setup our suspend state */
1071
	if (rdev->constraints->initial_state) {
1072
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1073
		if (ret < 0) {
1074
			rdev_err(rdev, "failed to set suspend state\n");
1075
			return ret;
1076 1077
		}
	}
1078

1079
	if (rdev->constraints->initial_mode) {
1080
		if (!ops->set_mode) {
1081
			rdev_err(rdev, "no set_mode operation\n");
1082
			return -EINVAL;
1083 1084
		}

1085
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1086
		if (ret < 0) {
1087
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1088
			return ret;
1089 1090 1091
		}
	}

1092 1093 1094
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1095 1096 1097
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1098
			rdev_err(rdev, "failed to enable\n");
1099
			return ret;
1100 1101 1102
		}
	}

1103 1104
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1105 1106 1107
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1108
			return ret;
1109 1110 1111
		}
	}

1112 1113 1114 1115
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1116
			return ret;
1117 1118 1119
		}
	}

1120 1121 1122 1123
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1124
			return ret;
1125 1126 1127
		}
	}

1128 1129 1130 1131 1132
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1133
			return ret;
1134 1135 1136
		}
	}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1148 1149 1150 1151 1152 1153 1154 1155
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
1156 1157 1158
		}
	}

1159
	print_constraints(rdev);
1160
	return 0;
1161 1162 1163 1164
}

/**
 * set_supply - set regulator supply regulator
1165 1166
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1167 1168 1169 1170 1171 1172
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1173
		      struct regulator_dev *supply_rdev)
1174 1175 1176
{
	int err;

1177 1178
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1179 1180 1181
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1182
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1183 1184
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1185
		return err;
1186
	}
1187
	supply_rdev->open_count++;
1188 1189

	return 0;
1190 1191 1192
}

/**
1193
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1194
 * @rdev:         regulator source
1195
 * @consumer_dev_name: dev_name() string for device supply applies to
1196
 * @supply:       symbolic name for supply
1197 1198 1199 1200 1201 1202 1203
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1204 1205
				      const char *consumer_dev_name,
				      const char *supply)
1206 1207
{
	struct regulator_map *node;
1208
	int has_dev;
1209 1210 1211 1212

	if (supply == NULL)
		return -EINVAL;

1213 1214 1215 1216 1217
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1218
	list_for_each_entry(node, &regulator_map_list, list) {
1219 1220 1221 1222
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1223
			continue;
1224 1225
		}

1226 1227 1228
		if (strcmp(node->supply, supply) != 0)
			continue;

1229 1230 1231 1232 1233 1234
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1235 1236 1237
		return -EBUSY;
	}

1238
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1239 1240 1241 1242 1243 1244
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1245 1246 1247 1248 1249 1250
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1251 1252
	}

1253 1254 1255 1256
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1257 1258 1259 1260 1261 1262 1263
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1264
			kfree(node->dev_name);
1265 1266 1267 1268 1269
			kfree(node);
		}
	}
}

1270
#define REG_STR_SIZE	64
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1289 1290
		regulator->dev = dev;

1291
		/* Add a link to the device sysfs entry */
1292 1293 1294
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1295
			goto overflow_err;
1296 1297 1298

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1299
			goto overflow_err;
1300

1301
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1302 1303
					buf);
		if (err) {
1304
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1305
				  dev->kobj.name, err);
1306
			/* non-fatal */
1307
		}
1308 1309 1310
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1311
			goto overflow_err;
1312 1313 1314 1315
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1316
	if (!regulator->debugfs) {
1317
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1318 1319 1320 1321 1322 1323 1324
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1325
	}
1326

1327 1328 1329 1330 1331
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1332
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1333 1334 1335
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1336 1337 1338 1339 1340 1341 1342 1343 1344
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1345 1346
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1347 1348
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1349
	if (!rdev->desc->ops->enable_time)
1350
		return rdev->desc->enable_time;
1351 1352 1353
	return rdev->desc->ops->enable_time(rdev);
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
static int of_node_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, np, of_node_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
 * lookup could succeed in the future.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
 * @supply and with the embedded struct device refcount incremented by one,
 * or NULL on failure. The refcount must be dropped by calling put_device().
 */
1421
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1422 1423
						  const char *supply,
						  int *ret)
1424 1425 1426
{
	struct regulator_dev *r;
	struct device_node *node;
1427 1428
	struct regulator_map *map;
	const char *devname = NULL;
1429

1430 1431
	regulator_supply_alias(&dev, &supply);

1432 1433 1434
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1435
		if (node) {
1436 1437 1438
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1439 1440
			*ret = -EPROBE_DEFER;
			return NULL;
1441 1442 1443 1444 1445 1446 1447 1448 1449
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1450 1451 1452
	}

	/* if not found, try doing it non-dt way */
1453 1454 1455
	if (dev)
		devname = dev_name(dev);

1456 1457 1458
	r = regulator_lookup_by_name(supply);
	if (r)
		return r;
1459

1460
	mutex_lock(&regulator_list_mutex);
1461 1462 1463 1464 1465 1466
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1467 1468 1469
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
			mutex_unlock(&regulator_list_mutex);
1470
			return map->regulator;
1471
		}
1472
	}
1473
	mutex_unlock(&regulator_list_mutex);
1474

1475 1476 1477
	return NULL;
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
	if (!r) {
1494 1495 1496 1497 1498 1499 1500 1501
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			return 0;
		}

1502 1503 1504 1505
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1506 1507
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1508
			get_device(&r->dev);
1509 1510 1511 1512 1513
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1514 1515 1516 1517
	}

	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1518 1519
	if (ret < 0) {
		put_device(&r->dev);
1520
		return ret;
1521
	}
1522 1523

	ret = set_supply(rdev, r);
1524 1525
	if (ret < 0) {
		put_device(&r->dev);
1526
		return ret;
1527
	}
1528 1529

	/* Cascade always-on state to supply */
1530
	if (_regulator_is_enabled(rdev) && rdev->supply) {
1531
		ret = regulator_enable(rdev->supply);
1532
		if (ret < 0) {
1533
			_regulator_put(rdev->supply);
1534
			return ret;
1535
		}
1536 1537 1538 1539 1540
	}

	return 0;
}

1541 1542
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1543
					bool exclusive, bool allow_dummy)
1544 1545
{
	struct regulator_dev *rdev;
1546
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1547
	const char *devname = NULL;
1548
	int ret;
1549 1550

	if (id == NULL) {
1551
		pr_err("get() with no identifier\n");
1552
		return ERR_PTR(-EINVAL);
1553 1554
	}

1555 1556 1557
	if (dev)
		devname = dev_name(dev);

1558 1559 1560 1561 1562
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1563
	rdev = regulator_dev_lookup(dev, id, &ret);
1564 1565 1566
	if (rdev)
		goto found;

1567 1568
	regulator = ERR_PTR(ret);

1569 1570 1571 1572
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1573
	if (ret && ret != -ENODEV)
1574
		return regulator;
1575

1576 1577 1578
	if (!devname)
		devname = "deviceless";

1579 1580 1581
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1582
	 */
1583
	if (have_full_constraints() && allow_dummy) {
1584 1585
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1586

1587
		rdev = dummy_regulator_rdev;
1588
		get_device(&rdev->dev);
1589
		goto found;
1590 1591
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1592
		dev_warn(dev, "dummy supplies not allowed\n");
1593 1594
	}

1595 1596 1597
	return regulator;

found:
1598 1599
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1600 1601
		put_device(&rdev->dev);
		return regulator;
1602 1603 1604 1605
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
1606 1607
		put_device(&rdev->dev);
		return regulator;
1608 1609
	}

1610 1611 1612
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1613 1614
		put_device(&rdev->dev);
		return regulator;
1615 1616
	}

1617 1618 1619 1620
	if (!try_module_get(rdev->owner)) {
		put_device(&rdev->dev);
		return regulator;
	}
1621

1622 1623 1624
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1625
		put_device(&rdev->dev);
1626
		module_put(rdev->owner);
1627
		return regulator;
1628 1629
	}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1641 1642
	return regulator;
}
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1659
	return _regulator_get(dev, id, false, true);
1660
}
1661 1662
EXPORT_SYMBOL_GPL(regulator_get);

1663 1664 1665 1666 1667 1668 1669
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1670 1671 1672
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1686
	return _regulator_get(dev, id, true, false);
1687 1688 1689
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1690 1691 1692 1693 1694 1695
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1696
 * or IS_ERR() condition containing errno.
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1712
	return _regulator_get(dev, id, false, false);
1713 1714 1715
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1716
/* regulator_list_mutex lock held by regulator_put() */
1717
static void _regulator_put(struct regulator *regulator)
1718 1719 1720
{
	struct regulator_dev *rdev;

1721
	if (IS_ERR_OR_NULL(regulator))
1722 1723
		return;

1724 1725
	lockdep_assert_held_once(&regulator_list_mutex);

1726 1727
	rdev = regulator->rdev;

1728 1729
	debugfs_remove_recursive(regulator->debugfs);

1730
	/* remove any sysfs entries */
1731
	if (regulator->dev)
1732
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1733
	mutex_lock(&rdev->mutex);
1734 1735
	list_del(&regulator->list);

1736 1737
	rdev->open_count--;
	rdev->exclusive = 0;
1738
	put_device(&rdev->dev);
1739
	mutex_unlock(&rdev->mutex);
1740

1741 1742 1743
	kfree(regulator->supply_name);
	kfree(regulator);

1744
	module_put(rdev->owner);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1759 1760 1761 1762
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1840 1841
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1842
					 struct device *alias_dev,
1843
					 const char *const *alias_id,
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1881
					    const char *const *id,
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1892 1893 1894 1895 1896
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1897
	struct gpio_desc *gpiod;
1898 1899
	int ret;

1900 1901
	gpiod = gpio_to_desc(config->ena_gpio);

1902
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1903
		if (pin->gpiod == gpiod) {
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1922
	pin->gpiod = gpiod;
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1941
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1942 1943
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1944
				gpiod_put(pin->gpiod);
1945 1946
				list_del(&pin->list);
				kfree(pin);
1947 1948
				rdev->ena_pin = NULL;
				return;
1949 1950 1951 1952 1953 1954 1955
			} else {
				pin->request_count--;
			}
		}
	}
}

1956
/**
1957 1958 1959 1960
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1974 1975
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1986 1987
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1988 1989 1990 1991 1992 1993 1994
			pin->enable_count = 0;
		}
	}

	return 0;
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2074
	if (rdev->ena_pin) {
2075 2076 2077 2078 2079 2080
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2081
	} else if (rdev->desc->ops->enable) {
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2094
	_regulator_enable_delay(delay);
2095 2096 2097 2098 2099 2100

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2101 2102 2103
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2104
	int ret;
2105

2106 2107
	lockdep_assert_held_once(&rdev->mutex);

2108
	/* check voltage and requested load before enabling */
2109
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2110
		drms_uA_update(rdev);
2111

2112 2113 2114 2115
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2116 2117
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2118 2119
				return -EPERM;

2120
			ret = _regulator_do_enable(rdev);
2121 2122 2123
			if (ret < 0)
				return ret;

2124
		} else if (ret < 0) {
2125
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2126 2127
			return ret;
		}
2128
		/* Fallthrough on positive return values - already enabled */
2129 2130
	}

2131 2132 2133
	rdev->use_count++;

	return 0;
2134 2135 2136 2137 2138 2139
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2140 2141 2142 2143
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2144
 * NOTE: the output value can be set by other drivers, boot loader or may be
2145
 * hardwired in the regulator.
2146 2147 2148
 */
int regulator_enable(struct regulator *regulator)
{
2149 2150
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2151

2152 2153 2154
	if (regulator->always_on)
		return 0;

2155 2156 2157 2158 2159 2160
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2161
	mutex_lock(&rdev->mutex);
David Brownell's avatar
David Brownell committed
2162
	ret = _regulator_enable(rdev);
2163
	mutex_unlock(&rdev->mutex);
2164

2165
	if (ret != 0 && rdev->supply)
2166 2167
		regulator_disable(rdev->supply);

2168 2169 2170 2171
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2172 2173 2174 2175 2176 2177
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2178
	if (rdev->ena_pin) {
2179 2180 2181 2182 2183 2184
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2185 2186 2187 2188 2189 2190 2191

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2192 2193 2194 2195 2196 2197
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2198 2199 2200 2201 2202
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2203
/* locks held by regulator_disable() */
2204
static int _regulator_disable(struct regulator_dev *rdev)
2205 2206 2207
{
	int ret = 0;

2208 2209
	lockdep_assert_held_once(&rdev->mutex);

David Brownell's avatar
David Brownell committed
2210
	if (WARN(rdev->use_count <= 0,
2211
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
David Brownell's avatar
David Brownell committed
2212 2213
		return -EIO;

2214
	/* are we the last user and permitted to disable ? */
2215 2216
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2217 2218

		/* we are last user */
2219
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2220 2221 2222 2223 2224 2225
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2226
			ret = _regulator_do_disable(rdev);
2227
			if (ret < 0) {
2228
				rdev_err(rdev, "failed to disable\n");
2229 2230 2231
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2232 2233
				return ret;
			}
2234 2235
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2236 2237 2238 2239
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2240
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2241 2242 2243 2244
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2245

2246 2247 2248 2249 2250 2251 2252
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2253 2254 2255
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2256
 *
2257
 * NOTE: this will only disable the regulator output if no other consumer
2258 2259
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2260 2261 2262
 */
int regulator_disable(struct regulator *regulator)
{
2263 2264
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2265

2266 2267 2268
	if (regulator->always_on)
		return 0;

2269
	mutex_lock(&rdev->mutex);
2270
	ret = _regulator_disable(rdev);
2271
	mutex_unlock(&rdev->mutex);
2272

2273 2274
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2275

2276 2277 2278 2279 2280
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2281
static int _regulator_force_disable(struct regulator_dev *rdev)
2282 2283 2284
{
	int ret = 0;

2285 2286
	lockdep_assert_held_once(&rdev->mutex);

2287 2288 2289 2290 2291
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2292 2293 2294
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2295 2296
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2297
		return ret;
2298 2299
	}

2300 2301 2302 2303
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2317
	struct regulator_dev *rdev = regulator->rdev;
2318 2319
	int ret;

2320
	mutex_lock(&rdev->mutex);
2321
	regulator->uA_load = 0;
2322
	ret = _regulator_force_disable(regulator->rdev);
2323
	mutex_unlock(&rdev->mutex);
2324

2325 2326 2327
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2328

2329 2330 2331 2332
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2381 2382 2383
	if (regulator->always_on)
		return 0;

2384 2385 2386
	if (!ms)
		return regulator_disable(regulator);

2387 2388 2389 2390
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2391 2392 2393
	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			   msecs_to_jiffies(ms));
	return 0;
2394 2395 2396
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2397 2398
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2399
	/* A GPIO control always takes precedence */
2400
	if (rdev->ena_pin)
2401 2402
		return rdev->ena_gpio_state;

2403
	/* If we don't know then assume that the regulator is always on */
2404
	if (!rdev->desc->ops->is_enabled)
2405
		return 1;
2406

2407
	return rdev->desc->ops->is_enabled(rdev);
2408 2409
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static int _regulator_list_voltage(struct regulator *regulator,
				    unsigned selector, int lock)
{
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
			mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		if (lock)
			mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = _regulator_list_voltage(rdev->supply, selector, lock);
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2444 2445 2446 2447
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2448 2449 2450 2451 2452 2453 2454
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2455 2456 2457
 */
int regulator_is_enabled(struct regulator *regulator)
{
2458 2459
	int ret;

2460 2461 2462
	if (regulator->always_on)
		return 1;

2463 2464 2465 2466 2467
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2468 2469 2470
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2471 2472 2473 2474 2475
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2476
 * can change its voltage, false otherwise. Useful for detecting fixed
2477 2478 2479 2480 2481 2482 2483
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2484
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2485 2486 2487 2488 2489 2490 2491 2492
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2493 2494 2495 2496 2497

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2510 2511 2512 2513 2514 2515 2516
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
Thomas Weber's avatar
Thomas Weber committed
2527
 * zero if this selector code can't be used on this system, or a
2528 2529 2530 2531
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2532
	return _regulator_list_voltage(regulator, selector, 1);
2533 2534 2535
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2568 2569
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2595 2596
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2634
	struct regulator_dev *rdev = regulator->rdev;
2635 2636
	int i, voltages, ret;

2637
	/* If we can't change voltage check the current voltage */
2638
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2639 2640
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2641
			return min_uV <= ret && ret <= max_uV;
2642 2643 2644 2645
		else
			return ret;
	}

2646 2647 2648 2649 2650
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2665
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2733 2734 2735 2736
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2737
	int delay = 0;
2738
	int best_val = 0;
2739
	unsigned int selector;
2740
	int old_selector = -1;
2741 2742 2743

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2744 2745 2746
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2747 2748 2749 2750
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2751 2752
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2753 2754 2755 2756 2757 2758
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2759
	if (rdev->desc->ops->set_voltage) {
2760 2761
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2762 2763 2764 2765 2766 2767 2768 2769 2770

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2771
	} else if (rdev->desc->ops->set_voltage_sel) {
2772
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2773
		if (ret >= 0) {
2774 2775 2776
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2777 2778 2779
				if (old_selector == selector)
					ret = 0;
				else
2780 2781
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2782 2783 2784
			} else {
				ret = -EINVAL;
			}
2785
		}
2786 2787 2788
	} else {
		ret = -EINVAL;
	}
2789

2790
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2791 2792
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2793

2794 2795 2796 2797 2798 2799
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2800
		}
2801

2802 2803 2804 2805 2806 2807 2808
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2809 2810
	}

2811 2812 2813
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2814
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2815 2816
				     (void *)data);
	}
2817

2818
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2819 2820 2821 2822

	return ret;
}

2823 2824
static int regulator_set_voltage_unlocked(struct regulator *regulator,
					  int min_uV, int max_uV)
2825 2826
{
	struct regulator_dev *rdev = regulator->rdev;
2827
	int ret = 0;
2828
	int old_min_uV, old_max_uV;
2829
	int current_uV;
2830 2831
	int best_supply_uV = 0;
	int supply_change_uV = 0;
2832

2833 2834 2835 2836 2837 2838 2839
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2840
	/* If we're trying to set a range that overlaps the current voltage,
2841
	 * return successfully even though the regulator does not support
2842 2843
	 * changing the voltage.
	 */
2844
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2845 2846 2847 2848 2849 2850 2851 2852
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2853
	/* sanity check */
2854 2855
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2856 2857 2858 2859 2860 2861 2862 2863
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2864

2865 2866 2867
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2868 2869
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2870

2871 2872
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2873
		goto out2;
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	if (rdev->supply && (rdev->desc->min_dropout_uV ||
				!rdev->desc->ops->get_voltage)) {
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
			goto out2;
		}

		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
			goto out2;
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
			goto out2;
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
			goto out2;
		}
	}

2913
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2914 2915
	if (ret < 0)
		goto out2;
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

2927 2928
out:
	return ret;
2929 2930 2931
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957

	return ret;
}

/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

2958
	regulator_lock_supply(regulator->rdev);
2959 2960 2961

	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);

2962
	regulator_unlock_supply(regulator->rdev);
2963

2964 2965 2966 2967
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2981 2982
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3013
/**
3014 3015
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3016 3017 3018 3019 3020 3021
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3022
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3023
 * set_voltage_time_sel() operation.
3024 3025 3026 3027 3028
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3029
	unsigned int ramp_delay = 0;
3030
	int old_volt, new_volt;
3031 3032 3033 3034 3035 3036 3037

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
3038
		rdev_warn(rdev, "ramp_delay not set\n");
3039
		return 0;
3040
	}
3041

3042 3043 3044
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3045

3046 3047 3048 3049
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3050
}
3051
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3100 3101
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3102
	int sel, ret;
3103 3104 3105 3106 3107

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3108
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3109
	} else if (rdev->desc->ops->get_voltage) {
3110
		ret = rdev->desc->ops->get_voltage(rdev);
3111 3112
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3113 3114
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3115
	} else if (rdev->supply) {
3116
		ret = _regulator_get_voltage(rdev->supply->rdev);
3117
	} else {
3118
		return -EINVAL;
3119
	}
3120

3121 3122
	if (ret < 0)
		return ret;
3123
	return ret - rdev->constraints->uV_offset;
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3139
	regulator_lock_supply(regulator->rdev);
3140 3141 3142

	ret = _regulator_get_voltage(regulator->rdev);

3143
	regulator_unlock_supply(regulator->rdev);
3144 3145 3146 3147 3148 3149 3150 3151

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3152
 * @min_uA: Minimum supported current in uA
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3239
	int regulator_curr_mode;
3240 3241 3242 3243 3244 3245 3246 3247 3248

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3249 3250 3251 3252 3253 3254 3255 3256 3257
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3258
	/* constraints check */
3259
	ret = regulator_mode_constrain(rdev, &mode);
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
3301
 * regulator_set_load - set regulator load
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3324
 * On error a negative errno is returned.
3325
 */
3326
int regulator_set_load(struct regulator *regulator, int uA_load)
3327 3328
{
	struct regulator_dev *rdev = regulator->rdev;
3329
	int ret;
3330

3331 3332
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3333
	ret = drms_uA_update(rdev);
3334
	mutex_unlock(&rdev->mutex);
3335

3336 3337
	return ret;
}
3338
EXPORT_SYMBOL_GPL(regulator_set_load);
3339

3340 3341 3342 3343
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3344
 * @enable: enable or disable bypass mode
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3359
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3392 3393 3394
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3395
 * @nb: notifier block
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3410
 * @nb: notifier block
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3422 3423 3424
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3425
static int _notifier_call_chain(struct regulator_dev *rdev,
3426 3427 3428
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3429
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3456 3457 3458 3459
		consumers[i].consumer = _regulator_get(dev,
						       consumers[i].supply,
						       false,
						       !consumers[i].optional);
3460 3461
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3462 3463
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3464 3465 3466 3467 3468 3469 3470 3471
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3472
	while (--i >= 0)
3473 3474 3475 3476 3477 3478
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3479 3480 3481 3482 3483 3484 3485
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3501
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3502
	int i;
3503
	int ret = 0;
3504

3505 3506 3507 3508 3509 3510 3511
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3512 3513 3514 3515

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3516
	for (i = 0; i < num_consumers; i++) {
3517 3518
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3519
			goto err;
3520
		}
3521 3522 3523 3524 3525
	}

	return 0;

err:
3526 3527 3528 3529 3530 3531 3532
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3546 3547
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3548 3549 3550 3551 3552 3553
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3554
	int ret, r;
3555

3556
	for (i = num_consumers - 1; i >= 0; --i) {
3557 3558 3559 3560 3561 3562 3563 3564
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3565
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3566 3567 3568 3569 3570 3571
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3572 3573 3574 3575 3576

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3637
 * @rdev: regulator source
3638
 * @event: notifier block
3639
 * @data: callback-specific data.
3640 3641 3642
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3643
 * Note lock must be held by caller.
3644 3645 3646 3647
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3648 3649
	lockdep_assert_held_once(&rdev->mutex);

3650 3651 3652 3653 3654 3655
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3672
	case REGULATOR_MODE_STANDBY:
3673 3674
		return REGULATOR_STATUS_STANDBY;
	default:
3675
		return REGULATOR_STATUS_UNDEFINED;
3676 3677 3678 3679
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3707 3708 3709 3710
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3711 3712
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3713
{
3714
	struct device *dev = kobj_to_dev(kobj);
3715
	struct regulator_dev *rdev = dev_to_rdev(dev);
3716
	const struct regulator_ops *ops = rdev->desc->ops;
3717 3718 3719 3720 3721 3722 3723
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3724 3725

	/* some attributes need specific methods to be displayed */
3726 3727 3728 3729 3730 3731 3732
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3733
	}
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3750
	/* some attributes are type-specific */
3751 3752
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3753 3754

	/* constraints need specific supporting methods */
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3790

3791 3792 3793
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
3794 3795 3796

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
3797
	kfree(rdev);
3798 3799
}

3800 3801 3802 3803 3804 3805
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3806 3807
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3820
	if (!rdev->debugfs) {
3821 3822 3823 3824 3825 3826 3827 3828
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3829 3830
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3831 3832
}

3833 3834
/**
 * regulator_register - register regulator
3835
 * @regulator_desc: regulator to register
3836
 * @cfg: runtime configuration for regulator
3837 3838
 *
 * Called by regulator drivers to register a regulator.
3839 3840
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3841
 */
3842 3843
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3844
		   const struct regulator_config *cfg)
3845
{
3846
	const struct regulation_constraints *constraints = NULL;
3847
	const struct regulator_init_data *init_data;
3848
	struct regulator_config *config = NULL;
3849
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3850
	struct regulator_dev *rdev;
3851
	struct device *dev;
3852
	int ret, i;
3853

3854
	if (regulator_desc == NULL || cfg == NULL)
3855 3856
		return ERR_PTR(-EINVAL);

3857
	dev = cfg->dev;
3858
	WARN_ON(!dev);
3859

3860 3861 3862
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3863 3864
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3865 3866
		return ERR_PTR(-EINVAL);

3867 3868 3869
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3870 3871
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3872 3873 3874 3875 3876 3877

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3878 3879 3880 3881
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3882

3883 3884 3885 3886
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3897
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3898 3899 3900 3901 3902 3903
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3904 3905 3906
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3907
	rdev->reg_data = config->driver_data;
3908 3909
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3910 3911
	if (config->regmap)
		rdev->regmap = config->regmap;
3912
	else if (dev_get_regmap(dev, NULL))
3913
		rdev->regmap = dev_get_regmap(dev, NULL);
3914 3915
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3916 3917 3918
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3919
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3920

3921
	/* preform any regulator specific init */
3922
	if (init_data && init_data->regulator_init) {
3923
		ret = init_data->regulator_init(rdev->reg_data);
David Brownell's avatar
David Brownell committed
3924 3925
		if (ret < 0)
			goto clean;
3926 3927
	}

3928 3929 3930 3931 3932 3933
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3934
			goto clean;
3935 3936 3937
		}
	}

3938
	/* register with sysfs */
3939
	rdev->dev.class = &regulator_class;
3940
	rdev->dev.parent = dev;
3941
	dev_set_name(&rdev->dev, "regulator.%lu",
3942
		    (unsigned long) atomic_inc_return(&regulator_no));
3943
	ret = device_register(&rdev->dev);
3944 3945
	if (ret != 0) {
		put_device(&rdev->dev);
3946
		goto wash;
3947
	}
3948 3949 3950

	dev_set_drvdata(&rdev->dev, rdev);

3951
	/* set regulator constraints */
3952 3953 3954 3955
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3956 3957 3958
	if (ret < 0)
		goto scrub;

3959
	if (init_data && init_data->supply_regulator)
3960
		rdev->supply_name = init_data->supply_regulator;
3961
	else if (regulator_desc->supply_name)
3962
		rdev->supply_name = regulator_desc->supply_name;
3963

3964
	/* add consumers devices */
3965 3966 3967 3968
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3969
				init_data->consumer_supplies[i].supply);
3970 3971 3972 3973 3974
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3975
		}
3976
	}
3977

3978
	rdev_init_debugfs(rdev);
3979
out:
3980
	mutex_unlock(&regulator_list_mutex);
3981
	kfree(config);
3982
	return rdev;
David Brownell's avatar
David Brownell committed
3983

3984 3985 3986
unset_supplies:
	unset_regulator_supplies(rdev);

David Brownell's avatar
David Brownell committed
3987
scrub:
3988
	regulator_ena_gpio_free(rdev);
David Brownell's avatar
David Brownell committed
3989
	device_unregister(&rdev->dev);
3990 3991 3992 3993
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

3994 3995
wash:
	regulator_ena_gpio_free(rdev);
David Brownell's avatar
David Brownell committed
3996 3997 3998 3999
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
4000 4001 4002 4003 4004
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4005
 * @rdev: regulator to unregister
4006 4007 4008 4009 4010 4011 4012 4013
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4014 4015 4016
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4017
		regulator_put(rdev->supply);
4018
	}
4019
	mutex_lock(&regulator_list_mutex);
4020
	debugfs_remove_recursive(rdev->debugfs);
4021
	flush_work(&rdev->disable_work.work);
4022
	WARN_ON(rdev->open_count);
4023
	unset_regulator_supplies(rdev);
4024
	list_del(&rdev->list);
4025
	mutex_unlock(&regulator_list_mutex);
4026
	regulator_ena_gpio_free(rdev);
4027
	device_unregister(&rdev->dev);
4028 4029 4030
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
static int _regulator_suspend_prepare(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const suspend_state_t *state = data;
	int ret;

	mutex_lock(&rdev->mutex);
	ret = suspend_prepare(rdev, *state);
	mutex_unlock(&rdev->mutex);

	return ret;
}

4044
/**
4045
 * regulator_suspend_prepare - prepare regulators for system wide suspend
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

4057 4058 4059 4060
	return class_for_each_device(&regulator_class, NULL, &state,
				     _regulator_suspend_prepare);
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4061

4062 4063 4064 4065
static int _regulator_suspend_finish(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	int ret;
4066

4067 4068 4069 4070 4071 4072 4073 4074
	mutex_lock(&rdev->mutex);
	if (rdev->use_count > 0  || rdev->constraints->always_on) {
		if (!_regulator_is_enabled(rdev)) {
			ret = _regulator_do_enable(rdev);
			if (ret)
				dev_err(dev,
					"Failed to resume regulator %d\n",
					ret);
4075
		}
4076 4077 4078 4079 4080 4081 4082 4083 4084
	} else {
		if (!have_full_constraints())
			goto unlock;
		if (!_regulator_is_enabled(rdev))
			goto unlock;

		ret = _regulator_do_disable(rdev);
		if (ret)
			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4085
	}
4086 4087 4088 4089 4090
unlock:
	mutex_unlock(&rdev->mutex);

	/* Keep processing regulators in spite of any errors */
	return 0;
4091 4092
}

4093 4094 4095 4096 4097 4098 4099 4100
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
4101 4102
	return class_for_each_device(&regulator_class, NULL, NULL,
				     _regulator_suspend_finish);
4103 4104 4105
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4123 4124
/**
 * rdev_get_drvdata - get rdev regulator driver data
4125
 * @rdev: regulator
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4162
 * @rdev: regulator
4163 4164 4165 4166 4167 4168 4169
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4212
#endif
4213 4214

static const struct file_operations supply_map_fops = {
4215
#ifdef CONFIG_DEBUG_FS
4216 4217 4218
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4219
};
4220

4221
#ifdef CONFIG_DEBUG_FS
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4244 4245 4246 4247 4248 4249
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4250
	struct summary_data summary_data;
4251 4252 4253 4254 4255 4256 4257 4258 4259

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4260 4261
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
		if (consumer->dev->class == &regulator_class)
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
			   30 - (level + 1) * 3, dev_name(consumer->dev));

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4289
			seq_printf(s, "%37dmV %5dmV",
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4300 4301 4302
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4303

4304 4305
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4306 4307
}

4308
static int regulator_summary_show_roots(struct device *dev, void *data)
4309
{
4310 4311
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4312

4313 4314
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4315

4316 4317
	return 0;
}
4318

4319 4320 4321 4322
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4323

4324 4325
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4345 4346
static int __init regulator_init(void)
{
4347 4348 4349 4350
	int ret;

	ret = class_register(&regulator_class);

4351
	debugfs_root = debugfs_create_dir("regulator", NULL);
4352
	if (!debugfs_root)
4353
		pr_warn("regulator: Failed to create debugfs directory\n");
4354

4355 4356
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4357

4358
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4359
			    NULL, &regulator_summary_fops);
4360

4361 4362 4363
	regulator_dummy_init();

	return ret;
4364 4365 4366 4367
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4368

4369
static int __init regulator_late_cleanup(struct device *dev, void *data)
4370
{
4371 4372 4373
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4374 4375
	int enabled, ret;

4376 4377 4378
	if (c && c->always_on)
		return 0;

4379
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4420 4421 4422 4423 4424 4425 4426 4427 4428
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4429
	/* If we have a full configuration then disable any regulators
4430 4431 4432
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4433
	 */
4434 4435
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4436 4437 4438

	return 0;
}
4439
late_initcall_sync(regulator_init_complete);