hugetlb.c 83.5 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
Linus Torvalds's avatar
Linus Torvalds committed
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
Linus Torvalds's avatar
Linus Torvalds committed
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
12
#include <linux/mmu_notifier.h>
Linus Torvalds's avatar
Linus Torvalds committed
13
#include <linux/nodemask.h>
David Gibson's avatar
David Gibson committed
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

David Gibson's avatar
David Gibson committed
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
David Gibson's avatar
David Gibson committed
28

29
#include <linux/io.h>
David Gibson's avatar
David Gibson committed
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include "internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
34 35

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 37
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50 51 52
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
53
DEFINE_SPINLOCK(hugetlb_lock);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(vma->vm_file->f_dentry->d_inode);
}

133 134 135
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
136 137 138 139 140 141
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
142
 *	down_write(&mm->mmap_sem);
143
 * or
144 145
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

Lucas De Marchi's avatar
Lucas De Marchi committed
226
		/* We overlap with this area, if it extends further than
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

268 269 270 271 272 273 274
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
275 276
		long seg_from;
		long seg_to;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

292 293 294 295
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
296 297
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
298
{
299 300
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
301 302
}

303 304 305 306 307 308
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
324
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325

326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

339 340 341 342 343 344 345
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
346
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347

348 349 350 351 352 353 354 355 356
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
357 358 359 360 361 362 363 364 365
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
366
 */
367 368 369 370 371 372 373 374 375 376 377
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

378 379 380 381 382
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

383
static struct resv_map *resv_map_alloc(void)
384 385 386 387 388 389 390 391 392 393 394
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

395
static void resv_map_release(struct kref *ref)
396 397 398 399 400 401 402 403 404
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 406
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407
	if (!(vma->vm_flags & VM_MAYSHARE))
408 409
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
410
	return NULL;
411 412
}

413
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 415
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417

418 419
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
420 421 422 423 424
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 427

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 429 430 431 432
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 434

	return (get_vma_private_data(vma) & flag) != 0;
435 436 437
}

/* Decrement the reserved pages in the hugepage pool by one */
438 439
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
440
{
441 442 443
	if (vma->vm_flags & VM_NORESERVE)
		return;

444
	if (vma->vm_flags & VM_MAYSHARE) {
445
		/* Shared mappings always use reserves */
446
		h->resv_huge_pages--;
447
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 449 450 451
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
452
		h->resv_huge_pages--;
453 454 455
	}
}

456
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 458 459
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460
	if (!(vma->vm_flags & VM_MAYSHARE))
461 462 463 464
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
465
static int vma_has_reserves(struct vm_area_struct *vma)
466
{
467
	if (vma->vm_flags & VM_MAYSHARE)
468 469 470 471
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

508
static void enqueue_huge_page(struct hstate *h, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
509 510
{
	int nid = page_to_nid(page);
511
	list_move(&page->lru, &h->hugepage_freelists[nid]);
512 513
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
Linus Torvalds's avatar
Linus Torvalds committed
514 515
}

516 517 518 519 520 521 522
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523
	list_move(&page->lru, &h->hugepage_activelist);
524
	set_page_refcounted(page);
525 526 527 528 529
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

530 531
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
532
				unsigned long address, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
533
{
534
	struct page *page = NULL;
535
	struct mempolicy *mpol;
536
	nodemask_t *nodemask;
537
	struct zonelist *zonelist;
538 539
	struct zone *zone;
	struct zoneref *z;
540
	unsigned int cpuset_mems_cookie;
Linus Torvalds's avatar
Linus Torvalds committed
541

542 543
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
544 545
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
546 547 548 549 550
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
551
	if (!vma_has_reserves(vma) &&
552
			h->free_huge_pages - h->resv_huge_pages == 0)
553
		goto err;
554

555
	/* If reserves cannot be used, ensure enough pages are in the pool */
556
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557
		goto err;
558

559 560
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
561 562 563 564 565 566 567
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
568
		}
Linus Torvalds's avatar
Linus Torvalds committed
569
	}
570

571
	mpol_cond_put(mpol);
572 573
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
Linus Torvalds's avatar
Linus Torvalds committed
574
	return page;
575 576 577 578

err:
	mpol_cond_put(mpol);
	return NULL;
Linus Torvalds's avatar
Linus Torvalds committed
579 580
}

581
static void update_and_free_page(struct hstate *h, struct page *page)
582 583
{
	int i;
584

585 586
	VM_BUG_ON(h->order >= MAX_ORDER);

587 588 589
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
590 591 592 593
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
594
	}
595
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
596 597
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
598
	arch_release_hugepage(page);
599
	__free_pages(page, huge_page_order(h));
600 601
}

602 603 604 605 606 607 608 609 610 611 612
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

613 614
static void free_huge_page(struct page *page)
{
615 616 617 618
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
619
	struct hstate *h = page_hstate(page);
620
	int nid = page_to_nid(page);
621 622
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
623

624
	set_page_private(page, 0);
625
	page->mapping = NULL;
626
	BUG_ON(page_count(page));
627
	BUG_ON(page_mapcount(page));
628 629

	spin_lock(&hugetlb_lock);
630 631
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
632
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 634
		/* remove the page from active list */
		list_del(&page->lru);
635 636 637
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
638
	} else {
639
		arch_clear_hugepage_flags(page);
640
		enqueue_huge_page(h, page);
641
	}
642
	spin_unlock(&hugetlb_lock);
643
	hugepage_subpool_put_pages(spool, 1);
644 645
}

646
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647
{
648
	INIT_LIST_HEAD(&page->lru);
649 650
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
651
	set_hugetlb_cgroup(page, NULL);
652 653
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
654 655 656 657
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

658 659 660 661 662 663 664 665 666 667 668
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
669
		set_page_count(p, 0);
670 671 672 673
		p->first_page = page;
	}
}

Andrew Morton's avatar
Andrew Morton committed
674 675 676 677 678
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
679 680 681 682 683 684 685 686 687 688 689 690
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
691 692
EXPORT_SYMBOL_GPL(PageHuge);

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

710
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
Linus Torvalds's avatar
Linus Torvalds committed
711 712
{
	struct page *page;
713

714 715 716
	if (h->order >= MAX_ORDER)
		return NULL;

717
	page = alloc_pages_exact_node(nid,
718 719
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
720
		huge_page_order(h));
Linus Torvalds's avatar
Linus Torvalds committed
721
	if (page) {
722
		if (arch_prepare_hugepage(page)) {
723
			__free_pages(page, huge_page_order(h));
724
			return NULL;
725
		}
726
		prep_new_huge_page(h, page, nid);
Linus Torvalds's avatar
Linus Torvalds committed
727
	}
728 729 730 731

	return page;
}

732
/*
733 734 735 736 737
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
738
 */
739
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
740
{
741
	nid = next_node(nid, *nodes_allowed);
742
	if (nid == MAX_NUMNODES)
743
		nid = first_node(*nodes_allowed);
744 745 746 747 748
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

749 750 751 752 753 754 755
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

756
/*
757 758 759 760
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
761
 */
762 763
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
764
{
765 766 767 768 769 770
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
771 772

	return nid;
773 774
}

775
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
776 777 778 779 780 781
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

782
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
783
	next_nid = start_nid;
784 785

	do {
786
		page = alloc_fresh_huge_page_node(h, next_nid);
787
		if (page) {
788
			ret = 1;
789 790
			break;
		}
791
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
792
	} while (next_nid != start_nid);
793

794 795 796 797 798
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

799
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
800 801
}

802
/*
803 804 805 806
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
807
 */
808
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
809
{
810 811 812 813 814 815
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
816 817

	return nid;
818 819 820 821 822 823 824 825
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
826 827
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
828 829 830 831 832
{
	int start_nid;
	int next_nid;
	int ret = 0;

833
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
834 835 836
	next_nid = start_nid;

	do {
837 838 839 840 841 842
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
843 844 845 846 847 848
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
849 850 851 852
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
853 854
			update_and_free_page(h, page);
			ret = 1;
855
			break;
856
		}
857
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
858
	} while (next_nid != start_nid);
859 860 861 862

	return ret;
}

863
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
864 865
{
	struct page *page;
866
	unsigned int r_nid;
867

868 869 870
	if (h->order >= MAX_ORDER)
		return NULL;

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
895
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
896 897 898
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
899 900
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
901 902 903
	}
	spin_unlock(&hugetlb_lock);

904 905 906 907 908 909 910 911
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
912

913 914
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
915
		page = NULL;
916 917
	}

918
	spin_lock(&hugetlb_lock);
919
	if (page) {
920
		INIT_LIST_HEAD(&page->lru);
921
		r_nid = page_to_nid(page);
922
		set_compound_page_dtor(page, free_huge_page);
923
		set_hugetlb_cgroup(page, NULL);
924 925 926
		/*
		 * We incremented the global counters already
		 */
927 928
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
929
		__count_vm_event(HTLB_BUDDY_PGALLOC);
930
	} else {
931 932
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
933
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
934
	}
935
	spin_unlock(&hugetlb_lock);
936 937 938 939

	return page;
}

940 941 942 943 944 945 946 947 948 949 950 951 952
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

953
	if (!page)
954 955 956 957 958
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

959
/*
Lucas De Marchi's avatar
Lucas De Marchi committed
960
 * Increase the hugetlb pool such that it can accommodate a reservation
961 962
 * of size 'delta'.
 */
963
static int gather_surplus_pages(struct hstate *h, int delta)
964 965 966 967 968
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
969
	bool alloc_ok = true;
970

971
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
972
	if (needed <= 0) {
973
		h->resv_huge_pages += delta;
974
		return 0;
975
	}
976 977 978 979 980 981 982 983

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
984
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
985 986 987 988
		if (!page) {
			alloc_ok = false;
			break;
		}
989 990
		list_add(&page->lru, &surplus_list);
	}
991
	allocated += i;
992 993 994 995 996 997

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
998 999
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1010 1011
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
Lucas De Marchi's avatar
Lucas De Marchi committed
1012
	 * needed to accommodate the reservation.  Add the appropriate number
1013
	 * of pages to the hugetlb pool and free the extras back to the buddy
1014 1015 1016
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1017 1018
	 */
	needed += allocated;
1019
	h->resv_huge_pages += delta;
1020
	ret = 0;
1021

1022
	/* Free the needed pages to the hugetlb pool */
1023
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024 1025
		if ((--needed) < 0)
			break;
1026 1027 1028 1029 1030 1031
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1032
		enqueue_huge_page(h, page);
1033
	}
1034
free:
1035
	spin_unlock(&hugetlb_lock);
1036 1037 1038 1039

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1040
			put_page(page);
1041
		}
1042
	}
1043
	spin_lock(&hugetlb_lock);
1044 1045 1046 1047 1048 1049 1050 1051

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1052
 * Called with hugetlb_lock held.
1053
 */
1054 1055
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1056 1057 1058
{
	unsigned long nr_pages;

1059
	/* Uncommit the reservation */
1060
	h->resv_huge_pages -= unused_resv_pages;
1061

1062 1063 1064 1065
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1066
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1067

1068 1069
	/*
	 * We want to release as many surplus pages as possible, spread
1070 1071 1072 1073 1074
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1075 1076
	 */
	while (nr_pages--) {
1077
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1078
			break;
1079 1080 1081
	}
}

1082 1083 1084
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1085 1086 1087 1088 1089 1090
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1091
 */
1092
static long vma_needs_reservation(struct hstate *h,
1093
			struct vm_area_struct *vma, unsigned long addr)
1094 1095 1096 1097
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1098
	if (vma->vm_flags & VM_MAYSHARE) {
1099
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1100 1101 1102
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1103 1104
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1105

1106
	} else  {
1107
		long err;
1108
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109 1110 1111 1112 1113 1114 1115
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1116
}
1117 1118
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1119 1120 1121 1122
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1123
	if (vma->vm_flags & VM_MAYSHARE) {
1124
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1126 1127

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1128
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1129 1130 1131 1132
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1133 1134 1135
	}
}

1136
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1137
				    unsigned long addr, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
1138
{
1139
	struct hugepage_subpool *spool = subpool_vma(vma);
1140
	struct hstate *h = hstate_vma(vma);
1141
	struct page *page;
1142
	long chg;
1143 1144
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1145

1146
	idx = hstate_index(h);
1147
	/*
1148 1149 1150 1151 1152 1153
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1154
	 */
1155
	chg = vma_needs_reservation(h, vma, addr);
1156
	if (chg < 0)
1157
		return ERR_PTR(-ENOMEM);
1158
	if (chg)
1159
		if (hugepage_subpool_get_pages(spool, chg))
1160
			return ERR_PTR(-ENOSPC);
Linus Torvalds's avatar
Linus Torvalds committed
1161

1162 1163 1164 1165 1166
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
Linus Torvalds's avatar
Linus Torvalds committed
1167
	spin_lock(&hugetlb_lock);
1168
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1169 1170 1171 1172 1173 1174 1175
	if (page) {
		/* update page cgroup details */
		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
					     h_cg, page);
		spin_unlock(&hugetlb_lock);
	} else {
		spin_unlock(&hugetlb_lock);
1176
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
Ken Chen's avatar
Ken Chen committed
1177
		if (!page) {
1178 1179 1180
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1181
			hugepage_subpool_put_pages(spool, chg);
1182
			return ERR_PTR(-ENOSPC);
Ken Chen's avatar
Ken Chen committed
1183
		}
1184
		spin_lock(&hugetlb_lock);
1185 1186
		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
					     h_cg, page);
1187 1188
		list_move(&page->lru, &h->hugepage_activelist);
		spin_unlock(&hugetlb_lock);
Ken Chen's avatar
Ken Chen committed
1189
	}
1190

1191
	set_page_private(page, (unsigned long)spool);
1192

1193
	vma_commit_reservation(h, vma, addr);
1194
	return page;
1195 1196
}

1197
int __weak alloc_bootmem_huge_page(struct hstate *h)
1198 1199
{
	struct huge_bootmem_page *m;
1200
	int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1201 1202 1203 1204 1205

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1206
				NODE_DATA(hstate_next_node_to_alloc(h,
1207
						&node_states[N_MEMORY])),
1208 1209 1210 1211 1212 1213 1214 1215 1216
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1217
			goto found;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1231 1232 1233 1234 1235 1236 1237 1238
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1239 1240 1241 1242 1243 1244 1245
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1246 1247 1248 1249 1250 1251 1252 1253 1254
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1255 1256
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1257
		prep_compound_huge_page(page, h->order);
1258
		prep_new_huge_page(h, page, page_to_nid(page));
1259 1260 1261 1262 1263 1264 1265 1266
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1267 1268 1269
	}
}

1270
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
Linus Torvalds's avatar
Linus Torvalds committed
1271 1272
{
	unsigned long i;
1273

1274
	for (i = 0; i < h->max_huge_pages; ++i) {
1275 1276 1277
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1278
		} else if (!alloc_fresh_huge_page(h,
1279
					 &node_states[N_MEMORY]))
Linus Torvalds's avatar
Linus Torvalds committed
1280 1281
			break;
	}
1282
	h->max_huge_pages = i;
1283 1284 1285 1286 1287 1288 1289
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1290 1291 1292
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1293 1294 1295
	}
}

Andi Kleen's avatar
Andi Kleen committed
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1307 1308 1309 1310 1311
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
Andi Kleen's avatar
Andi Kleen committed
1312 1313 1314 1315 1316
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1317 1318 1319
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
1320
#ifdef CONFIG_HIGHMEM
1321 1322
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
Linus Torvalds's avatar
Linus Torvalds committed
1323
{
1324 1325
	int i;

1326 1327 1328
	if (h->order >= MAX_ORDER)
		return;

1329
	for_each_node_mask(i, *nodes_allowed) {
Linus Torvalds's avatar
Linus Torvalds committed
1330
		struct page *page, *next;
1331 1332 1333
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1334
				return;
Linus Torvalds's avatar
Linus Torvalds committed
1335 1336 1337
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1338
			update_and_free_page(h, page);
1339 1340
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
Linus Torvalds's avatar
Linus Torvalds committed
1341 1342 1343 1344
		}
	}
}
#else
1345 1346
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
Linus Torvalds's avatar
Linus Torvalds committed
1347 1348 1349 1350
{
}
#endif

1351 1352 1353 1354 1355
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1356 1357
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1358
{
1359
	int start_nid, next_nid;
1360 1361 1362 1363
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1364
	if (delta < 0)
1365
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1366
	else
1367
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1368 1369 1370 1371 1372 1373 1374 1375
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1376
			if (!h->surplus_huge_pages_node[nid]) {
1377 1378
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1379
				continue;
1380
			}
1381 1382 1383 1384 1385 1386
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1387
						h->nr_huge_pages_node[nid]) {
1388 1389
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1390
				continue;
1391
			}
1392
		}
1393 1394 1395 1396 1397

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1398
	} while (next_nid != start_nid);
1399 1400 1401 1402

	return ret;
}

1403
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1404 1405
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
Linus Torvalds's avatar
Linus Torvalds committed
1406
{
1407
	unsigned long min_count, ret;
Linus Torvalds's avatar
Linus Torvalds committed
1408

1409 1410 1411
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1412 1413 1414 1415
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1416 1417 1418 1419 1420 1421
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1422
	 */
Linus Torvalds's avatar
Linus Torvalds committed
1423
	spin_lock(&hugetlb_lock);
1424
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1425
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1426 1427 1428
			break;
	}

1429
	while (count > persistent_huge_pages(h)) {
1430 1431 1432 1433 1434 1435
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1436
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1437 1438 1439 1440
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1441 1442 1443
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1444 1445 1446 1447 1448 1449 1450 1451
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1452 1453 1454 1455 1456 1457 1458 1459
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1460
	 */
1461
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1462
	min_count = max(count, min_count);
1463
	try_to_free_low(h, min_count, nodes_allowed);
1464
	while (min_count < persistent_huge_pages(h)) {
1465
		if (!free_pool_huge_page(h, nodes_allowed, 0))
Linus Torvalds's avatar
Linus Torvalds committed
1466
			break;
1467
		cond_resched_lock(&hugetlb_lock);
Linus Torvalds's avatar
Linus Torvalds committed
1468
	}
1469
	while (count < persistent_huge_pages(h)) {
1470
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1471 1472 1473
			break;
	}
out:
1474
	ret = persistent_huge_pages(h);
Linus Torvalds's avatar
Linus Torvalds committed
1475
	spin_unlock(&hugetlb_lock);
1476
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
1477 1478
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1489 1490 1491
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1492 1493
{
	int i;
1494

1495
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1496 1497 1498
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1499
			return &hstates[i];
1500 1501 1502
		}

	return kobj_to_node_hstate(kobj, nidp);
1503 1504
}

1505
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1506 1507
					struct kobj_attribute *attr, char *buf)
{
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1519
}
1520

1521 1522 1523
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1524 1525
{
	int err;
1526
	int nid;
1527
	unsigned long count;
1528
	struct hstate *h;
1529
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1530

1531
	err = strict_strtoul(buf, 10, &count);
1532
	if (err)
1533
		goto out;
1534

1535
	h = kobj_to_hstate(kobj, &nid);
1536 1537 1538 1539 1540
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1541 1542 1543 1544 1545 1546 1547
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1548
			nodes_allowed = &node_states[N_MEMORY];
1549 1550 1551 1552 1553 1554 1555 1556 1557
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1558
		nodes_allowed = &node_states[N_MEMORY];
1559

1560
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1561

1562
	if (nodes_allowed != &node_states[N_MEMORY])
1563 1564 1565
		NODEMASK_FREE(nodes_allowed);

	return len;
1566 1567 1568
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1581 1582 1583
}
HSTATE_ATTR(nr_hugepages);

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1605 1606 1607
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1608
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1609 1610
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1611

1612 1613 1614 1615 1616
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1617
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1618

1619 1620 1621
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1622 1623
	err = strict_strtoul(buf, 10, &input);
	if (err)
1624
		return err;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1648 1649 1650 1651 1652 1653
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1654
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1655 1656 1657 1658 1659 1660 1661
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1673 1674 1675 1676 1677 1678 1679 1680 1681
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1682 1683 1684
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1685 1686 1687 1688 1689 1690 1691
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

Jeff Mahoney's avatar
Jeff Mahoney committed
1692 1693 1694
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1695 1696
{
	int retval;
1697
	int hi = hstate_index(h);
1698

1699 1700
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1701 1702
		return -ENOMEM;

1703
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1704
	if (retval)
1705
		kobject_put(hstate_kobjs[hi]);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1720 1721
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1722 1723 1724 1725 1726 1727
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1728 1729 1730 1731
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1732 1733 1734
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1735 1736 1737 1738 1739 1740 1741 1742 1743
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1744
 * A subset of global hstate attributes for node devices
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1758
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1781
 * Unregister hstate attributes from a single node device.
1782 1783 1784 1785 1786
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1787
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1788 1789

	if (!nhs->hugepages_kobj)
1790
		return;		/* no hstate attributes */
1791

1792 1793 1794 1795 1796
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1797
		}
1798
	}
1799 1800 1801 1802 1803 1804

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1805
 * hugetlb module exit:  unregister hstate attributes from node devices
1806 1807 1808 1809 1810 1811 1812
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1813
	 * disable node device registrations.
1814 1815 1816 1817 1818 1819 1820
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1821
		hugetlb_unregister_node(node_devices[nid]);
1822 1823 1824
}

/*
1825
 * Register hstate attributes for a single node device.
1826 1827 1828 1829 1830
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1831
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1832 1833 1834 1835 1836 1837
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1838
							&node->dev.kobj);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1849
						h->name, node->dev.id);
1850 1851 1852 1853 1854 1855 1856
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1857
 * hugetlb init time:  register hstate attributes for all registered node
1858 1859
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1860 1861 1862 1863 1864
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1865
	for_each_node_state(nid, N_MEMORY) {
1866
		struct node *node = node_devices[nid];
1867
		if (node->dev.id == nid)
1868 1869 1870 1871
			hugetlb_register_node(node);
	}

	/*
1872
	 * Let the node device driver know we're here so it can
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1894 1895 1896 1897
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1898 1899
	hugetlb_unregister_all_nodes();

1900
	for_each_hstate(h) {
1901
		kobject_put(hstate_kobjs[hstate_index(h)]);
1902 1903 1904 1905 1906 1907 1908 1909
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1910 1911 1912 1913 1914 1915
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1916

1917 1918 1919 1920
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1921
	}
1922
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1923 1924
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1925 1926

	hugetlb_init_hstates();
1927
	gather_bootmem_prealloc();
1928 1929 1930
	report_hugepages();

	hugetlb_sysfs_init();
1931
	hugetlb_register_all_nodes();
1932
	hugetlb_cgroup_file_init();
1933

1934 1935 1936 1937 1938 1939 1940 1941
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1942 1943
	unsigned long i;

1944 1945 1946 1947
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
1948
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1949
	BUG_ON(order == 0);
1950
	h = &hstates[hugetlb_max_hstate++];
1951 1952
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1953 1954 1955 1956
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1957
	INIT_LIST_HEAD(&h->hugepage_activelist);
1958 1959
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1960 1961
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1962

1963 1964 1965
	parsed_hstate = h;
}

1966
static int __init hugetlb_nrpages_setup(char *s)
1967 1968
{
	unsigned long *mhp;
1969
	static unsigned long *last_mhp;
1970 1971

	/*
1972
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1973 1974
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1975
	if (!hugetlb_max_hstate)
1976 1977 1978 1979
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1980 1981 1982 1983 1984 1985
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1986 1987 1988
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1989 1990 1991 1992 1993
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1994
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1995 1996 1997 1998
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1999 2000
	return 1;
}
2001 2002 2003 2004 2005 2006 2007 2008
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2009

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2022 2023 2024
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
Linus Torvalds's avatar
Linus Torvalds committed
2025
{
2026 2027
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2028
	int ret;
2029

2030
	tmp = h->max_huge_pages;
2031

2032 2033 2034
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2035 2036
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2037 2038 2039
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2040

2041
	if (write) {
2042 2043
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2044 2045 2046
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2047
			nodes_allowed = &node_states[N_MEMORY];
2048 2049 2050
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2051
		if (nodes_allowed != &node_states[N_MEMORY])
2052 2053
			NODEMASK_FREE(nodes_allowed);
	}
2054 2055
out:
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
2056
}
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2075
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2076
			void __user *buffer,
2077 2078
			size_t *length, loff_t *ppos)
{
2079
	proc_dointvec(table, write, buffer, length, ppos);
2080 2081 2082 2083 2084 2085 2086
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2087
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2088
			void __user *buffer,
2089 2090
			size_t *length, loff_t *ppos)
{
2091
	struct hstate *h = &default_hstate;
2092
	unsigned long tmp;
2093
	int ret;
2094

2095
	tmp = h->nr_overcommit_huge_pages;
2096

2097 2098 2099
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2100 2101
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2102 2103 2104
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2105 2106 2107 2108 2109 2110

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2111 2112
out:
	return ret;
2113 2114
}

Linus Torvalds's avatar
Linus Torvalds committed
2115 2116
#endif /* CONFIG_SYSCTL */

2117
void hugetlb_report_meminfo(struct seq_file *m)
Linus Torvalds's avatar
Linus Torvalds committed
2118
{
2119
	struct hstate *h = &default_hstate;
2120
	seq_printf(m,
2121 2122 2123 2124 2125
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2126 2127 2128 2129 2130
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
Linus Torvalds's avatar
Linus Torvalds committed
2131 2132 2133 2134
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2135
	struct hstate *h = &default_hstate;
Linus Torvalds's avatar
Linus Torvalds committed
2136 2137
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2138 2139
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2140 2141 2142
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
Linus Torvalds's avatar
Linus Torvalds committed
2143 2144 2145 2146 2147
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2148 2149 2150 2151 2152 2153
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
Linus Torvalds's avatar
Linus Torvalds committed
2154 2155
}

2156
static int hugetlb_acct_memory(struct hstate *h, long delta)
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2179
		if (gather_surplus_pages(h, delta) < 0)
2180 2181
			goto out;

2182 2183
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
2184 2185 2186 2187 2188 2189
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2190
		return_unused_surplus_pages(h, (unsigned long) -delta);
2191 2192 2193 2194 2195 2196

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2197 2198 2199 2200 2201 2202 2203 2204
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
Lucas De Marchi's avatar
Lucas De Marchi committed
2205
	 * has a reference to the reservation map it cannot disappear until
2206 2207 2208 2209 2210 2211 2212
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2213 2214 2215 2216 2217 2218 2219 2220 2221
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2222 2223
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2224
	struct hstate *h = hstate_vma(vma);
2225
	struct resv_map *reservations = vma_resv_map(vma);
2226
	struct hugepage_subpool *spool = subpool_vma(vma);
2227 2228 2229 2230 2231
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2232 2233
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2234 2235 2236 2237

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2238
		resv_map_put(vma);
2239

2240
		if (reserve) {
2241
			hugetlb_acct_memory(h, -reserve);
2242
			hugepage_subpool_put_pages(spool, reserve);
2243
		}
2244
	}
2245 2246
}

Linus Torvalds's avatar
Linus Torvalds committed
2247 2248 2249 2250 2251 2252
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
Nick Piggin's avatar
Nick Piggin committed
2253
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
Linus Torvalds's avatar
Linus Torvalds committed
2254 2255
{
	BUG();
Nick Piggin's avatar
Nick Piggin committed
2256
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
2257 2258
}

2259
const struct vm_operations_struct hugetlb_vm_ops = {
Nick Piggin's avatar
Nick Piggin committed
2260
	.fault = hugetlb_vm_op_fault,
2261
	.open = hugetlb_vm_op_open,
2262
	.close = hugetlb_vm_op_close,
Linus Torvalds's avatar
Linus Torvalds committed
2263 2264
};

2265 2266
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
David Gibson's avatar
David Gibson committed
2267 2268 2269
{
	pte_t entry;

2270
	if (writable) {
David Gibson's avatar
David Gibson committed
2271 2272 2273
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2274
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
David Gibson's avatar
David Gibson committed
2275 2276 2277
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2278
	entry = arch_make_huge_pte(entry, vma, page, writable);
David Gibson's avatar
David Gibson committed
2279 2280 2281 2282

	return entry;
}

2283 2284 2285 2286 2287
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2288
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2289
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2290
		update_mmu_cache(vma, address, ptep);
2291 2292 2293
}


David Gibson's avatar
David Gibson committed
2294 2295 2296 2297 2298
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2299
	unsigned long addr;
2300
	int cow;
2301 2302
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2303 2304

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
David Gibson's avatar
David Gibson committed
2305

2306
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2307 2308 2309
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2310
		dst_pte = huge_pte_alloc(dst, addr, sz);
David Gibson's avatar
David Gibson committed
2311 2312
		if (!dst_pte)
			goto nomem;
2313 2314 2315 2316 2317

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2318
		spin_lock(&dst->page_table_lock);
Nick Piggin's avatar
Nick Piggin committed
2319
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2320
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2321
			if (cow)
2322 2323
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2324 2325
			ptepage = pte_page(entry);
			get_page(ptepage);
2326
			page_dup_rmap(ptepage);
2327 2328 2329
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
2330
		spin_unlock(&dst->page_table_lock);
David Gibson's avatar
David Gibson committed
2331 2332 2333 2334 2335 2336 2337
	}
	return 0;

nomem:
	return -ENOMEM;
}

2338 2339 2340 2341 2342 2343 2344
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2345
	if (non_swap_entry(swp) && is_migration_entry(swp))
2346
		return 1;
2347
	else
2348 2349 2350
		return 0;
}

2351 2352 2353 2354 2355 2356 2357
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2358
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2359
		return 1;
2360
	else
2361 2362 2363
		return 0;
}

2364 2365 2366
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
David Gibson's avatar
David Gibson committed
2367
{
2368
	int force_flush = 0;
David Gibson's avatar
David Gibson committed
2369 2370
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2371
	pte_t *ptep;
David Gibson's avatar
David Gibson committed
2372 2373
	pte_t pte;
	struct page *page;
2374 2375
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2376 2377
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2378

David Gibson's avatar
David Gibson committed
2379
	WARN_ON(!is_vm_hugetlb_page(vma));
2380 2381
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
David Gibson's avatar
David Gibson committed
2382

2383
	tlb_start_vma(tlb, vma);
2384
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2385
again:
2386
	spin_lock(&mm->page_table_lock);
2387
	for (address = start; address < end; address += sz) {
2388
		ptep = huge_pte_offset(mm, address);
2389
		if (!ptep)
2390 2391
			continue;

2392 2393 2394
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2395 2396 2397 2398 2399 2400 2401
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2402 2403
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			pte_clear(mm, address, ptep);
2404
			continue;
2405
		}
2406 2407

		page = pte_page(pte);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2425
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2426
		tlb_remove_tlb_entry(tlb, ptep, address);
2427 2428
		if (pte_dirty(pte))
			set_page_dirty(page);
2429

2430 2431 2432 2433
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2434 2435 2436
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
David Gibson's avatar
David Gibson committed
2437
	}
2438
	spin_unlock(&mm->page_table_lock);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2449
	}
2450
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2451
	tlb_end_vma(tlb, vma);
Linus Torvalds's avatar
Linus Torvalds committed
2452
}
David Gibson's avatar
David Gibson committed
2453

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2473
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2474
			  unsigned long end, struct page *ref_page)
2475
{
2476 2477 2478 2479 2480
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2481
	tlb_gather_mmu(&tlb, mm, start, end);
2482 2483
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2484 2485
}

2486 2487 2488 2489 2490 2491
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2492 2493
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2494
{
2495
	struct hstate *h = hstate_vma(vma);
2496 2497 2498 2499 2500 2501 2502 2503
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2504
	address = address & huge_page_mask(h);
2505 2506
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
2507
	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2508

2509 2510 2511 2512 2513
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2514
	mutex_lock(&mapping->i_mmap_mutex);
2515
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2528 2529
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2530
	}
2531
	mutex_unlock(&mapping->i_mmap_mutex);
2532 2533 2534 2535

	return 1;
}

2536 2537
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2538 2539 2540
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2541
 */
2542
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2543 2544
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2545
{
2546
	struct hstate *h = hstate_vma(vma);
2547
	struct page *old_page, *new_page;
2548
	int avoidcopy;
2549
	int outside_reserve = 0;
2550 2551
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2552 2553 2554

	old_page = pte_page(pte);

2555
retry_avoidcopy:
2556 2557
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2558
	avoidcopy = (page_mapcount(old_page) == 1);
2559
	if (avoidcopy) {
2560 2561
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2562
		set_huge_ptep_writable(vma, address, ptep);
Nick Piggin's avatar
Nick Piggin committed
2563
		return 0;
2564 2565
	}

2566 2567 2568 2569 2570 2571 2572 2573 2574
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2575
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2576 2577 2578 2579
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2580
	page_cache_get(old_page);
2581 2582 2583

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2584
	new_page = alloc_huge_page(vma, address, outside_reserve);
2585

2586
	if (IS_ERR(new_page)) {
2587
		long err = PTR_ERR(new_page);
2588
		page_cache_release(old_page);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2601
				spin_lock(&mm->page_table_lock);
2602 2603 2604 2605 2606 2607 2608 2609
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2610 2611 2612 2613
			}
			WARN_ON_ONCE(1);
		}

2614 2615
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2616 2617 2618 2619
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2620 2621
	}

2622 2623 2624 2625
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2626
	if (unlikely(anon_vma_prepare(vma))) {
2627 2628
		page_cache_release(new_page);
		page_cache_release(old_page);
2629 2630
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2631
		return VM_FAULT_OOM;
2632
	}
2633

Andrea Arcangeli's avatar
Andrea Arcangeli committed
2634 2635
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
Nick Piggin's avatar
Nick Piggin committed
2636
	__SetPageUptodate(new_page);
2637

2638 2639 2640
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2641 2642 2643 2644 2645
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2646
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2647
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2648
		/* Break COW */
2649
		huge_ptep_clear_flush(vma, address, ptep);
2650 2651
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2652
		page_remove_rmap(old_page);
2653
		hugepage_add_new_anon_rmap(new_page, vma, address);
2654 2655 2656
		/* Make the old page be freed below */
		new_page = old_page;
	}
2657 2658 2659 2660
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
2661 2662
	page_cache_release(new_page);
	page_cache_release(old_page);
Nick Piggin's avatar
Nick Piggin committed
2663
	return 0;
2664 2665
}

2666
/* Return the pagecache page at a given address within a VMA */
2667 2668
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2669 2670
{
	struct address_space *mapping;
2671
	pgoff_t idx;
2672 2673

	mapping = vma->vm_file->f_mapping;
2674
	idx = vma_hugecache_offset(h, vma, address);
2675 2676 2677 2678

	return find_lock_page(mapping, idx);
}

Hugh Dickins's avatar
Hugh Dickins committed
2679 2680 2681 2682 2683
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
Hugh Dickins's avatar
Hugh Dickins committed
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2699
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2700
			unsigned long address, pte_t *ptep, unsigned int flags)
2701
{
2702
	struct hstate *h = hstate_vma(vma);
2703
	int ret = VM_FAULT_SIGBUS;
2704
	int anon_rmap = 0;
2705
	pgoff_t idx;
2706 2707 2708
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2709
	pte_t new_pte;
2710

2711 2712 2713
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
Lucas De Marchi's avatar
Lucas De Marchi committed
2714
	 * COW. Warn that such a situation has occurred as it may not be obvious
2715 2716 2717 2718 2719 2720 2721 2722
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

2723
	mapping = vma->vm_file->f_mapping;
2724
	idx = vma_hugecache_offset(h, vma, address);
2725 2726 2727 2728 2729

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2730 2731 2732
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2733
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2734 2735
		if (idx >= size)
			goto out;
2736
		page = alloc_huge_page(vma, address, 0);
2737
		if (IS_ERR(page)) {
2738 2739 2740 2741 2742
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2743 2744
			goto out;
		}
Andrea Arcangeli's avatar
Andrea Arcangeli committed
2745
		clear_huge_page(page, address, pages_per_huge_page(h));
Nick Piggin's avatar
Nick Piggin committed
2746
		__SetPageUptodate(page);
2747

2748
		if (vma->vm_flags & VM_MAYSHARE) {
2749
			int err;
Ken Chen's avatar
Ken Chen committed
2750
			struct inode *inode = mapping->host;
2751 2752 2753 2754 2755 2756 2757 2758

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
Ken Chen's avatar
Ken Chen committed
2759 2760

			spin_lock(&inode->i_lock);
2761
			inode->i_blocks += blocks_per_huge_page(h);
Ken Chen's avatar
Ken Chen committed
2762
			spin_unlock(&inode->i_lock);
2763
		} else {
2764
			lock_page(page);
2765 2766 2767 2768
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2769
			anon_rmap = 1;
2770
		}
2771
	} else {
2772 2773 2774 2775 2776 2777
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2778
			ret = VM_FAULT_HWPOISON |
2779
				VM_FAULT_SET_HINDEX(hstate_index(h));
2780 2781
			goto backout_unlocked;
		}
2782
	}
2783

2784 2785 2786 2787 2788 2789
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2790
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2791 2792 2793 2794
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2795

2796
	spin_lock(&mm->page_table_lock);
2797
	size = i_size_read(mapping->host) >> huge_page_shift(h);
2798 2799 2800
	if (idx >= size)
		goto backout;

Nick Piggin's avatar
Nick Piggin committed
2801
	ret = 0;
2802
	if (!huge_pte_none(huge_ptep_get(ptep)))
2803 2804
		goto backout;

2805 2806 2807 2808
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2809 2810 2811 2812
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2813
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2814
		/* Optimization, do the COW without a second fault */
2815
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2816 2817
	}

2818
	spin_unlock(&mm->page_table_lock);
2819 2820
	unlock_page(page);
out:
2821
	return ret;
2822 2823 2824

backout:
	spin_unlock(&mm->page_table_lock);
2825
backout_unlocked:
2826 2827 2828
	unlock_page(page);
	put_page(page);
	goto out;
2829 2830
}

2831
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2832
			unsigned long address, unsigned int flags)
2833 2834 2835
{
	pte_t *ptep;
	pte_t entry;
2836
	int ret;
2837
	struct page *page = NULL;
2838
	struct page *pagecache_page = NULL;
2839
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2840
	struct hstate *h = hstate_vma(vma);
2841

2842 2843
	address &= huge_page_mask(h);

2844 2845 2846
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
2847
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2848
			migration_entry_wait_huge(mm, ptep);
2849 2850
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2851
			return VM_FAULT_HWPOISON_LARGE |
2852
				VM_FAULT_SET_HINDEX(hstate_index(h));
2853 2854
	}

2855
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2856 2857 2858
	if (!ptep)
		return VM_FAULT_OOM;

2859 2860 2861 2862 2863 2864
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2865 2866
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2867
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2868
		goto out_mutex;
2869
	}
2870

Nick Piggin's avatar
Nick Piggin committed
2871
	ret = 0;
2872

2873 2874 2875 2876 2877 2878 2879 2880
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2881
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2882 2883
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2884
			goto out_mutex;
2885
		}
2886

2887
		if (!(vma->vm_flags & VM_MAYSHARE))
2888 2889 2890 2891
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2892 2893 2894 2895 2896 2897 2898 2899
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2900
	get_page(page);
2901
	if (page != pagecache_page)
2902 2903
		lock_page(page);

2904 2905
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2906 2907 2908 2909
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2910
	if (flags & FAULT_FLAG_WRITE) {
2911
		if (!pte_write(entry)) {
2912 2913
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2914 2915 2916 2917 2918
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2919 2920
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2921
		update_mmu_cache(vma, address, ptep);
2922 2923

out_page_table_lock:
2924
	spin_unlock(&mm->page_table_lock);
2925 2926 2927 2928 2929

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2930 2931
	if (page != pagecache_page)
		unlock_page(page);
2932
	put_page(page);
2933

2934
out_mutex:
2935
	mutex_unlock(&hugetlb_instantiation_mutex);
2936 2937

	return ret;
2938 2939
}

Andi Kleen's avatar
Andi Kleen committed
2940 2941 2942 2943 2944 2945 2946 2947 2948
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

David Gibson's avatar
David Gibson committed
2949 2950
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2951
			unsigned long *position, int *length, int i,
Hugh Dickins's avatar
Hugh Dickins committed
2952
			unsigned int flags)
David Gibson's avatar
David Gibson committed
2953
{
2954 2955
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
David Gibson's avatar
David Gibson committed
2956
	int remainder = *length;
2957
	struct hstate *h = hstate_vma(vma);
David Gibson's avatar
David Gibson committed
2958

2959
	spin_lock(&mm->page_table_lock);
David Gibson's avatar
David Gibson committed
2960
	while (vaddr < vma->vm_end && remainder) {
2961
		pte_t *pte;
Hugh Dickins's avatar
Hugh Dickins committed
2962
		int absent;
2963
		struct page *page;
David Gibson's avatar
David Gibson committed
2964

2965 2966
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
Hugh Dickins's avatar
Hugh Dickins committed
2967
		 * each hugepage.  We have to make sure we get the
2968 2969
		 * first, for the page indexing below to work.
		 */
2970
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
Hugh Dickins's avatar
Hugh Dickins committed
2971 2972 2973 2974
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
Hugh Dickins's avatar
Hugh Dickins committed
2975 2976 2977 2978
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
Hugh Dickins's avatar
Hugh Dickins committed
2979
		 */
Hugh Dickins's avatar
Hugh Dickins committed
2980 2981
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
Hugh Dickins's avatar
Hugh Dickins committed
2982 2983 2984
			remainder = 0;
			break;
		}
David Gibson's avatar
David Gibson committed
2985

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
Hugh Dickins's avatar
Hugh Dickins committed
2997
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2998
			int ret;
David Gibson's avatar
David Gibson committed
2999

3000
			spin_unlock(&mm->page_table_lock);
Hugh Dickins's avatar
Hugh Dickins committed
3001 3002
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3003
			spin_lock(&mm->page_table_lock);
3004
			if (!(ret & VM_FAULT_ERROR))
3005
				continue;
David Gibson's avatar
David Gibson committed
3006

3007 3008 3009 3010
			remainder = 0;
			break;
		}

3011
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3012
		page = pte_page(huge_ptep_get(pte));
3013
same_page:
3014
		if (pages) {
Hugh Dickins's avatar
Hugh Dickins committed
3015
			pages[i] = mem_map_offset(page, pfn_offset);
3016
			get_page(pages[i]);
3017
		}
David Gibson's avatar
David Gibson committed
3018 3019 3020 3021 3022

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3023
		++pfn_offset;
David Gibson's avatar
David Gibson committed
3024 3025
		--remainder;
		++i;
3026
		if (vaddr < vma->vm_end && remainder &&
3027
				pfn_offset < pages_per_huge_page(h)) {
3028 3029 3030 3031 3032 3033
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
David Gibson's avatar
David Gibson committed
3034
	}
3035
	spin_unlock(&mm->page_table_lock);
David Gibson's avatar
David Gibson committed
3036 3037 3038
	*length = remainder;
	*position = vaddr;

Hugh Dickins's avatar
Hugh Dickins committed
3039
	return i ? i : -EFAULT;
David Gibson's avatar
David Gibson committed
3040
}
3041

3042
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3043 3044 3045 3046 3047 3048
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3049
	struct hstate *h = hstate_vma(vma);
3050
	unsigned long pages = 0;
3051 3052 3053 3054

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3055
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3056
	spin_lock(&mm->page_table_lock);
3057
	for (; address < end; address += huge_page_size(h)) {
3058 3059 3060
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3061 3062
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3063
			continue;
3064
		}
3065
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3066 3067
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
3068
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3069
			set_huge_pte_at(mm, address, ptep, pte);
3070
			pages++;
3071 3072 3073
		}
	}
	spin_unlock(&mm->page_table_lock);
3074 3075 3076 3077 3078 3079
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3080
	flush_tlb_range(vma, start, end);
3081
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3082 3083

	return pages << h->order;
3084 3085
}

3086 3087
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3088
					struct vm_area_struct *vma,
3089
					vm_flags_t vm_flags)
3090
{
3091
	long ret, chg;
3092
	struct hstate *h = hstate_inode(inode);
3093
	struct hugepage_subpool *spool = subpool_inode(inode);
3094

3095 3096 3097
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3098
	 * without using reserves
3099
	 */
3100
	if (vm_flags & VM_NORESERVE)
3101 3102
		return 0;

3103 3104 3105 3106 3107 3108
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3109
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3110
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3111 3112 3113 3114 3115
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3116
		chg = to - from;
3117

3118 3119 3120 3121
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3122 3123 3124 3125
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3126

3127
	/* There must be enough pages in the subpool for the mapping */
3128 3129 3130 3131
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3132 3133

	/*
3134
	 * Check enough hugepages are available for the reservation.
3135
	 * Hand the pages back to the subpool if there are not
3136
	 */
3137
	ret = hugetlb_acct_memory(h, chg);
Ken Chen's avatar
Ken Chen committed
3138
	if (ret < 0) {
3139
		hugepage_subpool_put_pages(spool, chg);
3140
		goto out_err;
Ken Chen's avatar
Ken Chen committed
3141
	}
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3154
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3155
		region_add(&inode->i_mapping->private_list, from, to);
3156
	return 0;
3157
out_err:
3158 3159
	if (vma)
		resv_map_put(vma);
3160
	return ret;
3161 3162 3163 3164
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3165
	struct hstate *h = hstate_inode(inode);
3166
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3167
	struct hugepage_subpool *spool = subpool_inode(inode);
Ken Chen's avatar
Ken Chen committed
3168 3169

	spin_lock(&inode->i_lock);
3170
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
Ken Chen's avatar
Ken Chen committed
3171 3172
	spin_unlock(&inode->i_lock);

3173
	hugepage_subpool_put_pages(spool, (chg - freed));
3174
	hugetlb_acct_memory(h, -(chg - freed));
3175
}
3176

3177 3178
#ifdef CONFIG_MEMORY_FAILURE

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3193 3194 3195 3196
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3197
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3198 3199 3200
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3201
	int ret = -EBUSY;
3202 3203

	spin_lock(&hugetlb_lock);
3204
	if (is_hugepage_on_freelist(hpage)) {
3205 3206 3207 3208 3209 3210 3211
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3212
		set_page_refcounted(hpage);
3213 3214 3215 3216
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3217
	spin_unlock(&hugetlb_lock);
3218
	return ret;
3219
}
3220
#endif