eeh.c 47.6 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
/*
2 3 4
 * Copyright IBM Corporation 2001, 2005, 2006
 * Copyright Dave Engebretsen & Todd Inglett 2001
 * Copyright Linas Vepstas 2005, 2006
5
 * Copyright 2001-2012 IBM Corporation.
6
 *
Linus Torvalds's avatar
Linus Torvalds committed
7 8 9 10
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
11
 *
Linus Torvalds's avatar
Linus Torvalds committed
12 13 14 15
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
16
 *
Linus Torvalds's avatar
Linus Torvalds committed
17 18 19
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20 21
 *
 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
Linus Torvalds's avatar
Linus Torvalds committed
22 23
 */

24
#include <linux/delay.h>
25
#include <linux/sched.h>
Linus Torvalds's avatar
Linus Torvalds committed
26 27 28
#include <linux/init.h>
#include <linux/list.h>
#include <linux/pci.h>
29
#include <linux/iommu.h>
Linus Torvalds's avatar
Linus Torvalds committed
30 31
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
32
#include <linux/reboot.h>
Linus Torvalds's avatar
Linus Torvalds committed
33 34
#include <linux/seq_file.h>
#include <linux/spinlock.h>
35
#include <linux/export.h>
36 37
#include <linux/of.h>

Arun Sharma's avatar
Arun Sharma committed
38
#include <linux/atomic.h>
39
#include <asm/debugfs.h>
Linus Torvalds's avatar
Linus Torvalds committed
40
#include <asm/eeh.h>
41
#include <asm/eeh_event.h>
Linus Torvalds's avatar
Linus Torvalds committed
42
#include <asm/io.h>
43
#include <asm/iommu.h>
Linus Torvalds's avatar
Linus Torvalds committed
44
#include <asm/machdep.h>
45
#include <asm/ppc-pci.h>
Linus Torvalds's avatar
Linus Torvalds committed
46
#include <asm/rtas.h>
47
#include <asm/pte-walk.h>
Linus Torvalds's avatar
Linus Torvalds committed
48 49 50


/** Overview:
51
 *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
Linus Torvalds's avatar
Linus Torvalds committed
52 53 54 55 56 57 58 59 60 61
 *  dealing with PCI bus errors that can't be dealt with within the
 *  usual PCI framework, except by check-stopping the CPU.  Systems
 *  that are designed for high-availability/reliability cannot afford
 *  to crash due to a "mere" PCI error, thus the need for EEH.
 *  An EEH-capable bridge operates by converting a detected error
 *  into a "slot freeze", taking the PCI adapter off-line, making
 *  the slot behave, from the OS'es point of view, as if the slot
 *  were "empty": all reads return 0xff's and all writes are silently
 *  ignored.  EEH slot isolation events can be triggered by parity
 *  errors on the address or data busses (e.g. during posted writes),
62 63
 *  which in turn might be caused by low voltage on the bus, dust,
 *  vibration, humidity, radioactivity or plain-old failed hardware.
Linus Torvalds's avatar
Linus Torvalds committed
64 65 66 67 68 69 70 71 72 73 74
 *
 *  Note, however, that one of the leading causes of EEH slot
 *  freeze events are buggy device drivers, buggy device microcode,
 *  or buggy device hardware.  This is because any attempt by the
 *  device to bus-master data to a memory address that is not
 *  assigned to the device will trigger a slot freeze.   (The idea
 *  is to prevent devices-gone-wild from corrupting system memory).
 *  Buggy hardware/drivers will have a miserable time co-existing
 *  with EEH.
 *
 *  Ideally, a PCI device driver, when suspecting that an isolation
Lucas De Marchi's avatar
Lucas De Marchi committed
75
 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
Linus Torvalds's avatar
Linus Torvalds committed
76 77 78 79 80 81 82 83
 *  whether this is the case, and then take appropriate steps to
 *  reset the PCI slot, the PCI device, and then resume operations.
 *  However, until that day,  the checking is done here, with the
 *  eeh_check_failure() routine embedded in the MMIO macros.  If
 *  the slot is found to be isolated, an "EEH Event" is synthesized
 *  and sent out for processing.
 */

84
/* If a device driver keeps reading an MMIO register in an interrupt
85 86 87
 * handler after a slot isolation event, it might be broken.
 * This sets the threshold for how many read attempts we allow
 * before printing an error message.
Linus Torvalds's avatar
Linus Torvalds committed
88
 */
89
#define EEH_MAX_FAILS	2100000
Linus Torvalds's avatar
Linus Torvalds committed
90

91
/* Time to wait for a PCI slot to report status, in milliseconds */
92
#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93

Gavin Shan's avatar
Gavin Shan committed
94
/*
95 96 97 98 99 100 101 102
 * EEH probe mode support, which is part of the flags,
 * is to support multiple platforms for EEH. Some platforms
 * like pSeries do PCI emunation based on device tree.
 * However, other platforms like powernv probe PCI devices
 * from hardware. The flag is used to distinguish that.
 * In addition, struct eeh_ops::probe would be invoked for
 * particular OF node or PCI device so that the corresponding
 * PE would be created there.
Gavin Shan's avatar
Gavin Shan committed
103
 */
104 105 106
int eeh_subsystem_flags;
EXPORT_SYMBOL(eeh_subsystem_flags);

107 108 109 110 111 112 113
/*
 * EEH allowed maximal frozen times. If one particular PE's
 * frozen count in last hour exceeds this limit, the PE will
 * be forced to be offline permanently.
 */
int eeh_max_freezes = 5;

114 115
/* Platform dependent EEH operations */
struct eeh_ops *eeh_ops = NULL;
Gavin Shan's avatar
Gavin Shan committed
116

117
/* Lock to avoid races due to multiple reports of an error */
118
DEFINE_RAW_SPINLOCK(confirm_error_lock);
119
EXPORT_SYMBOL_GPL(confirm_error_lock);
120

121 122 123
/* Lock to protect passed flags */
static DEFINE_MUTEX(eeh_dev_mutex);

124 125 126 127
/* Buffer for reporting pci register dumps. Its here in BSS, and
 * not dynamically alloced, so that it ends up in RMO where RTAS
 * can access it.
 */
128
#define EEH_PCI_REGS_LOG_LEN 8192
129 130
static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * The struct is used to maintain the EEH global statistic
 * information. Besides, the EEH global statistics will be
 * exported to user space through procfs
 */
struct eeh_stats {
	u64 no_device;		/* PCI device not found		*/
	u64 no_dn;		/* OF node not found		*/
	u64 no_cfg_addr;	/* Config address not found	*/
	u64 ignored_check;	/* EEH check skipped		*/
	u64 total_mmio_ffs;	/* Total EEH checks		*/
	u64 false_positives;	/* Unnecessary EEH checks	*/
	u64 slot_resets;	/* PE reset			*/
};

static struct eeh_stats eeh_stats;
Linus Torvalds's avatar
Linus Torvalds committed
147

148 149 150
static int __init eeh_setup(char *str)
{
	if (!strcmp(str, "off"))
151
		eeh_add_flag(EEH_FORCE_DISABLED);
152 153
	else if (!strcmp(str, "early_log"))
		eeh_add_flag(EEH_EARLY_DUMP_LOG);
154 155 156 157 158

	return 1;
}
__setup("eeh=", eeh_setup);

159 160 161 162
/*
 * This routine captures assorted PCI configuration space data
 * for the indicated PCI device, and puts them into a buffer
 * for RTAS error logging.
163
 */
164
static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165
{
166
	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167
	u32 cfg;
168
	int cap, i;
169 170
	int n = 0, l = 0;
	char buffer[128];
171

172 173 174 175 176
	if (!pdn) {
		pr_warn("EEH: Note: No error log for absent device.\n");
		return 0;
	}

177
	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
178
		       pdn->phb->global_number, pdn->busno,
179
		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
180
	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
181
		pdn->phb->global_number, pdn->busno,
182
		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
183

184
	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
185
	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
186
	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
187

188
	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
189
	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
190
	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
191

192
	/* Gather bridge-specific registers */
193
	if (edev->mode & EEH_DEV_BRIDGE) {
194
		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
195
		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
196
		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
197

198
		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
199
		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
200
		pr_warn("EEH: Bridge control: %04x\n", cfg);
201 202
	}

203
	/* Dump out the PCI-X command and status regs */
204
	cap = edev->pcix_cap;
205
	if (cap) {
206
		eeh_ops->read_config(pdn, cap, 4, &cfg);
207
		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
208
		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
209

210
		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
211
		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
212
		pr_warn("EEH: PCI-X status: %08x\n", cfg);
213 214
	}

215 216 217
	/* If PCI-E capable, dump PCI-E cap 10 */
	cap = edev->pcie_cap;
	if (cap) {
218
		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
219
		pr_warn("EEH: PCI-E capabilities and status follow:\n");
220 221

		for (i=0; i<=8; i++) {
222
			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
223
			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
224 225 226 227 228 229 230 231 232 233 234 235 236

			if ((i % 4) == 0) {
				if (i != 0)
					pr_warn("%s\n", buffer);

				l = scnprintf(buffer, sizeof(buffer),
					      "EEH: PCI-E %02x: %08x ",
					      4*i, cfg);
			} else {
				l += scnprintf(buffer+l, sizeof(buffer)-l,
					       "%08x ", cfg);
			}

237
		}
238 239

		pr_warn("%s\n", buffer);
240
	}
241

242 243 244 245 246 247
	/* If AER capable, dump it */
	cap = edev->aer_cap;
	if (cap) {
		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
		pr_warn("EEH: PCI-E AER capability register set follows:\n");

248
		for (i=0; i<=13; i++) {
249
			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
250
			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
251 252 253 254 255 256 257 258 259 260 261 262

			if ((i % 4) == 0) {
				if (i != 0)
					pr_warn("%s\n", buffer);

				l = scnprintf(buffer, sizeof(buffer),
					      "EEH: PCI-E AER %02x: %08x ",
					      4*i, cfg);
			} else {
				l += scnprintf(buffer+l, sizeof(buffer)-l,
					       "%08x ", cfg);
			}
263
		}
264 265

		pr_warn("%s\n", buffer);
266
	}
267

268 269 270
	return n;
}

271
static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
272 273 274 275 276 277 278 279 280 281 282
{
	struct eeh_dev *edev, *tmp;
	size_t *plen = flag;

	eeh_pe_for_each_dev(pe, edev, tmp)
		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
					  EEH_PCI_REGS_LOG_LEN - *plen);

	return NULL;
}

283 284
/**
 * eeh_slot_error_detail - Generate combined log including driver log and error log
285
 * @pe: EEH PE
286 287 288 289 290 291 292
 * @severity: temporary or permanent error log
 *
 * This routine should be called to generate the combined log, which
 * is comprised of driver log and error log. The driver log is figured
 * out from the config space of the corresponding PCI device, while
 * the error log is fetched through platform dependent function call.
 */
293
void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
294 295 296
{
	size_t loglen = 0;

297 298 299 300 301
	/*
	 * When the PHB is fenced or dead, it's pointless to collect
	 * the data from PCI config space because it should return
	 * 0xFF's. For ER, we still retrieve the data from the PCI
	 * config space.
302 303 304
	 *
	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
	 * 0xFF's is always returned from PCI config space.
305 306 307 308 309 310 311
	 *
	 * When the @severity is EEH_LOG_PERM, the PE is going to be
	 * removed. Prior to that, the drivers for devices included in
	 * the PE will be closed. The drivers rely on working IO path
	 * to bring the devices to quiet state. Otherwise, PCI traffic
	 * from those devices after they are removed is like to cause
	 * another unexpected EEH error.
312
	 */
313
	if (!(pe->type & EEH_PE_PHB)) {
314 315
		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
		    severity == EEH_LOG_PERM)
316
			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
317 318 319 320 321 322 323 324 325 326 327 328 329

		/*
		 * The config space of some PCI devices can't be accessed
		 * when their PEs are in frozen state. Otherwise, fenced
		 * PHB might be seen. Those PEs are identified with flag
		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
		 *
		 * Restoring BARs possibly triggers PCI config access in
		 * (OPAL) firmware and then causes fenced PHB. If the
		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
		 * pointless to restore BARs and dump config space.
		 */
330
		eeh_ops->configure_bridge(pe);
331 332
		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
			eeh_pe_restore_bars(pe);
333

334 335 336
			pci_regs_buf[0] = 0;
			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
		}
337
	}
338 339

	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
340 341
}

Linus Torvalds's avatar
Linus Torvalds committed
342
/**
343 344 345 346 347
 * eeh_token_to_phys - Convert EEH address token to phys address
 * @token: I/O token, should be address in the form 0xA....
 *
 * This routine should be called to convert virtual I/O address
 * to physical one.
Linus Torvalds's avatar
Linus Torvalds committed
348 349 350 351 352
 */
static inline unsigned long eeh_token_to_phys(unsigned long token)
{
	pte_t *ptep;
	unsigned long pa;
353
	int hugepage_shift;
Linus Torvalds's avatar
Linus Torvalds committed
354

355
	/*
356 357 358
	 * We won't find hugepages here(this is iomem). Hence we are not
	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
	 * page table free, because of init_mm.
359
	 */
360
	ptep = find_init_mm_pte(token, &hugepage_shift);
Linus Torvalds's avatar
Linus Torvalds committed
361 362
	if (!ptep)
		return token;
363
	WARN_ON(hugepage_shift);
Linus Torvalds's avatar
Linus Torvalds committed
364 365 366 367 368
	pa = pte_pfn(*ptep) << PAGE_SHIFT;

	return pa | (token & (PAGE_SIZE-1));
}

369 370 371 372 373 374 375 376 377 378 379
/*
 * On PowerNV platform, we might already have fenced PHB there.
 * For that case, it's meaningless to recover frozen PE. Intead,
 * We have to handle fenced PHB firstly.
 */
static int eeh_phb_check_failure(struct eeh_pe *pe)
{
	struct eeh_pe *phb_pe;
	unsigned long flags;
	int ret;

380
	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
381 382 383 384 385
		return -EPERM;

	/* Find the PHB PE */
	phb_pe = eeh_phb_pe_get(pe->phb);
	if (!phb_pe) {
386
		pr_warn("%s Can't find PE for PHB#%x\n",
387
			__func__, pe->phb->global_number);
388 389 390 391 392
		return -EEXIST;
	}

	/* If the PHB has been in problematic state */
	eeh_serialize_lock(&flags);
393
	if (phb_pe->state & EEH_PE_ISOLATED) {
394 395 396 397 398 399 400
		ret = 0;
		goto out;
	}

	/* Check PHB state */
	ret = eeh_ops->get_state(phb_pe, NULL);
	if ((ret < 0) ||
401
	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
402 403 404 405 406
		ret = 0;
		goto out;
	}

	/* Isolate the PHB and send event */
407
	eeh_pe_mark_isolated(phb_pe);
408 409
	eeh_serialize_unlock(flags);

410 411
	pr_err("EEH: PHB#%x failure detected, location: %s\n",
		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
412
	dump_stack();
413
	eeh_send_failure_event(phb_pe);
414 415 416 417 418 419 420

	return 1;
out:
	eeh_serialize_unlock(flags);
	return ret;
}

Linus Torvalds's avatar
Linus Torvalds committed
421
/**
422 423
 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 * @edev: eeh device
Linus Torvalds's avatar
Linus Torvalds committed
424 425 426 427 428 429 430
 *
 * Check for an EEH failure for the given device node.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze.  This routine
 * will query firmware for the EEH status.
 *
 * Returns 0 if there has not been an EEH error; otherwise returns
431
 * a non-zero value and queues up a slot isolation event notification.
Linus Torvalds's avatar
Linus Torvalds committed
432 433 434
 *
 * It is safe to call this routine in an interrupt context.
 */
435
int eeh_dev_check_failure(struct eeh_dev *edev)
Linus Torvalds's avatar
Linus Torvalds committed
436 437 438
{
	int ret;
	unsigned long flags;
439
	struct device_node *dn;
440
	struct pci_dev *dev;
441
	struct eeh_pe *pe, *parent_pe, *phb_pe;
442
	int rc = 0;
443
	const char *location = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
444

445
	eeh_stats.total_mmio_ffs++;
Linus Torvalds's avatar
Linus Torvalds committed
446

447
	if (!eeh_enabled())
Linus Torvalds's avatar
Linus Torvalds committed
448 449
		return 0;

450
	if (!edev) {
451
		eeh_stats.no_dn++;
Linus Torvalds's avatar
Linus Torvalds committed
452
		return 0;
453
	}
454
	dev = eeh_dev_to_pci_dev(edev);
455
	pe = eeh_dev_to_pe(edev);
Linus Torvalds's avatar
Linus Torvalds committed
456 457

	/* Access to IO BARs might get this far and still not want checking. */
458
	if (!pe) {
459
		eeh_stats.ignored_check++;
460 461
		pr_debug("EEH: Ignored check for %s\n",
			eeh_pci_name(dev));
Linus Torvalds's avatar
Linus Torvalds committed
462 463 464
		return 0;
	}

465
	if (!pe->addr && !pe->config_addr) {
466
		eeh_stats.no_cfg_addr++;
Linus Torvalds's avatar
Linus Torvalds committed
467 468 469
		return 0;
	}

470 471 472 473 474 475 476 477
	/*
	 * On PowerNV platform, we might already have fenced PHB
	 * there and we need take care of that firstly.
	 */
	ret = eeh_phb_check_failure(pe);
	if (ret > 0)
		return ret;

478 479 480 481 482 483 484 485
	/*
	 * If the PE isn't owned by us, we shouldn't check the
	 * state. Instead, let the owner handle it if the PE has
	 * been frozen.
	 */
	if (eeh_pe_passed(pe))
		return 0;

486 487 488 489 490
	/* If we already have a pending isolation event for this
	 * slot, we know it's bad already, we don't need to check.
	 * Do this checking under a lock; as multiple PCI devices
	 * in one slot might report errors simultaneously, and we
	 * only want one error recovery routine running.
Linus Torvalds's avatar
Linus Torvalds committed
491
	 */
492
	eeh_serialize_lock(&flags);
493
	rc = 1;
494 495 496
	if (pe->state & EEH_PE_ISOLATED) {
		pe->check_count++;
		if (pe->check_count % EEH_MAX_FAILS == 0) {
497 498 499 500
			dn = pci_device_to_OF_node(dev);
			if (dn)
				location = of_get_property(dn, "ibm,loc-code",
						NULL);
501
			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
502
				"location=%s driver=%s pci addr=%s\n",
503 504
				pe->check_count,
				location ? location : "unknown",
505
				eeh_driver_name(dev), eeh_pci_name(dev));
506
			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
507
				eeh_driver_name(dev));
508
			dump_stack();
Linus Torvalds's avatar
Linus Torvalds committed
509
		}
510
		goto dn_unlock;
Linus Torvalds's avatar
Linus Torvalds committed
511 512 513 514 515 516 517 518 519
	}

	/*
	 * Now test for an EEH failure.  This is VERY expensive.
	 * Note that the eeh_config_addr may be a parent device
	 * in the case of a device behind a bridge, or it may be
	 * function zero of a multi-function device.
	 * In any case they must share a common PHB.
	 */
520
	ret = eeh_ops->get_state(pe, NULL);
521

522
	/* Note that config-io to empty slots may fail;
523
	 * they are empty when they don't have children.
524 525 526
	 * We will punt with the following conditions: Failure to get
	 * PE's state, EEH not support and Permanently unavailable
	 * state, PE is in good state.
527
	 */
528
	if ((ret < 0) ||
529
	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
530
		eeh_stats.false_positives++;
531
		pe->false_positives++;
532 533
		rc = 0;
		goto dn_unlock;
534 535
	}

536 537 538 539 540 541 542 543 544 545 546 547 548
	/*
	 * It should be corner case that the parent PE has been
	 * put into frozen state as well. We should take care
	 * that at first.
	 */
	parent_pe = pe->parent;
	while (parent_pe) {
		/* Hit the ceiling ? */
		if (parent_pe->type & EEH_PE_PHB)
			break;

		/* Frozen parent PE ? */
		ret = eeh_ops->get_state(parent_pe, NULL);
549
		if (ret > 0 && !eeh_state_active(ret)) {
550
			pe = parent_pe;
551 552 553 554
			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
			       pe->phb->global_number, pe->addr,
			       pe->phb->global_number, parent_pe->addr);
		}
555 556 557 558 559

		/* Next parent level */
		parent_pe = parent_pe->parent;
	}

560
	eeh_stats.slot_resets++;
561

562 563
	/* Avoid repeated reports of this failure, including problems
	 * with other functions on this device, and functions under
564 565
	 * bridges.
	 */
566
	eeh_pe_mark_isolated(pe);
567
	eeh_serialize_unlock(flags);
Linus Torvalds's avatar
Linus Torvalds committed
568 569 570

	/* Most EEH events are due to device driver bugs.  Having
	 * a stack trace will help the device-driver authors figure
571 572
	 * out what happened.  So print that out.
	 */
573 574 575 576 577
	phb_pe = eeh_phb_pe_get(pe->phb);
	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
	       pe->phb->global_number, pe->addr);
	pr_err("EEH: PE location: %s, PHB location: %s\n",
	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
578 579
	dump_stack();

580 581
	eeh_send_failure_event(pe);

582 583 584
	return 1;

dn_unlock:
585
	eeh_serialize_unlock(flags);
586
	return rc;
Linus Torvalds's avatar
Linus Torvalds committed
587 588
}

589
EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
Linus Torvalds's avatar
Linus Torvalds committed
590 591

/**
592
 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
593
 * @token: I/O address
Linus Torvalds's avatar
Linus Torvalds committed
594
 *
595
 * Check for an EEH failure at the given I/O address. Call this
Linus Torvalds's avatar
Linus Torvalds committed
596
 * routine if the result of a read was all 0xff's and you want to
597
 * find out if this is due to an EEH slot freeze event. This routine
Linus Torvalds's avatar
Linus Torvalds committed
598 599 600 601
 * will query firmware for the EEH status.
 *
 * Note this routine is safe to call in an interrupt context.
 */
602
int eeh_check_failure(const volatile void __iomem *token)
Linus Torvalds's avatar
Linus Torvalds committed
603 604
{
	unsigned long addr;
605
	struct eeh_dev *edev;
Linus Torvalds's avatar
Linus Torvalds committed
606 607 608

	/* Finding the phys addr + pci device; this is pretty quick. */
	addr = eeh_token_to_phys((unsigned long __force) token);
609
	edev = eeh_addr_cache_get_dev(addr);
610
	if (!edev) {
611
		eeh_stats.no_device++;
612
		return 0;
613
	}
Linus Torvalds's avatar
Linus Torvalds committed
614

615
	return eeh_dev_check_failure(edev);
Linus Torvalds's avatar
Linus Torvalds committed
616 617 618
}
EXPORT_SYMBOL(eeh_check_failure);

619

620
/**
621
 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
622
 * @pe: EEH PE
623 624 625 626
 *
 * This routine should be called to reenable frozen MMIO or DMA
 * so that it would work correctly again. It's useful while doing
 * recovery or log collection on the indicated device.
627
 */
628
int eeh_pci_enable(struct eeh_pe *pe, int function)
629
{
630
	int active_flag, rc;
631 632 633 634

	/*
	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
	 * Also, it's pointless to enable them on unfrozen PE. So
635
	 * we have to check before enabling IO or DMA.
636
	 */
637 638
	switch (function) {
	case EEH_OPT_THAW_MMIO:
639
		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
		break;
	case EEH_OPT_THAW_DMA:
		active_flag = EEH_STATE_DMA_ACTIVE;
		break;
	case EEH_OPT_DISABLE:
	case EEH_OPT_ENABLE:
	case EEH_OPT_FREEZE_PE:
		active_flag = 0;
		break;
	default:
		pr_warn("%s: Invalid function %d\n",
			__func__, function);
		return -EINVAL;
	}

	/*
	 * Check if IO or DMA has been enabled before
	 * enabling them.
	 */
	if (active_flag) {
660 661 662 663
		rc = eeh_ops->get_state(pe, NULL);
		if (rc < 0)
			return rc;

664 665 666 667 668 669
		/* Needn't enable it at all */
		if (rc == EEH_STATE_NOT_SUPPORT)
			return 0;

		/* It's already enabled */
		if (rc & active_flag)
670 671
			return 0;
	}
672

673 674

	/* Issue the request */
675
	rc = eeh_ops->set_option(pe, function);
676
	if (rc)
677
		pr_warn("%s: Unexpected state change %d on "
678
			"PHB#%x-PE#%x, err=%d\n",
679 680
			__func__, function, pe->phb->global_number,
			pe->addr, rc);
681

682 683
	/* Check if the request is finished successfully */
	if (active_flag) {
684
		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
685
		if (rc < 0)
686
			return rc;
687

688 689
		if (rc & active_flag)
			return 0;
690

691 692
		return -EIO;
	}
693

694 695 696
	return rc;
}

697 698
static void *eeh_disable_and_save_dev_state(struct eeh_dev *edev,
					    void *userdata)
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
{
	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
	struct pci_dev *dev = userdata;

	/*
	 * The caller should have disabled and saved the
	 * state for the specified device
	 */
	if (!pdev || pdev == dev)
		return NULL;

	/* Ensure we have D0 power state */
	pci_set_power_state(pdev, PCI_D0);

	/* Save device state */
	pci_save_state(pdev);

	/*
	 * Disable device to avoid any DMA traffic and
	 * interrupt from the device
	 */
	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);

	return NULL;
}

725
static void *eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
726
{
727
	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
728 729 730 731 732 733 734
	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
	struct pci_dev *dev = userdata;

	if (!pdev)
		return NULL;

	/* Apply customization from firmware */
735 736
	if (pdn && eeh_ops->restore_config)
		eeh_ops->restore_config(pdn);
737 738 739

	/* The caller should restore state for the specified device */
	if (pdev != dev)
740
		pci_restore_state(pdev);
741 742 743 744

	return NULL;
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
int eeh_restore_vf_config(struct pci_dn *pdn)
{
	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
	u32 devctl, cmd, cap2, aer_capctl;
	int old_mps;

	if (edev->pcie_cap) {
		/* Restore MPS */
		old_mps = (ffs(pdn->mps) - 8) << 5;
		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
				     2, &devctl);
		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
		devctl |= old_mps;
		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
				      2, devctl);

761
		/* Disable Completion Timeout if possible */
762 763
		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
				     4, &cap2);
764
		if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
765 766 767
			eeh_ops->read_config(pdn,
					     edev->pcie_cap + PCI_EXP_DEVCTL2,
					     4, &cap2);
768
			cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
			eeh_ops->write_config(pdn,
					      edev->pcie_cap + PCI_EXP_DEVCTL2,
					      4, cap2);
		}
	}

	/* Enable SERR and parity checking */
	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);

	/* Enable report various errors */
	if (edev->pcie_cap) {
		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
				     2, &devctl);
		devctl &= ~PCI_EXP_DEVCTL_CERE;
		devctl |= (PCI_EXP_DEVCTL_NFERE |
			   PCI_EXP_DEVCTL_FERE |
			   PCI_EXP_DEVCTL_URRE);
		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
				      2, devctl);
	}

	/* Enable ECRC generation and check */
	if (edev->pcie_cap && edev->aer_cap) {
		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
				     4, &aer_capctl);
		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
				      4, aer_capctl);
	}

	return 0;
}

804
/**
805
 * pcibios_set_pcie_reset_state - Set PCI-E reset state
806 807
 * @dev: pci device struct
 * @state: reset state to enter
808 809 810
 *
 * Return value:
 * 	0 if success
811
 */
812 813
int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
{
814
	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
815
	struct eeh_pe *pe = eeh_dev_to_pe(edev);
816 817 818 819 820 821

	if (!pe) {
		pr_err("%s: No PE found on PCI device %s\n",
			__func__, pci_name(dev));
		return -EINVAL;
	}
822 823 824

	switch (state) {
	case pcie_deassert_reset:
825
		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
826
		eeh_unfreeze_pe(pe);
827
		if (!(pe->type & EEH_PE_VF))
828
			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
829
		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
830
		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
831 832
		break;
	case pcie_hot_reset:
833
		eeh_pe_mark_isolated(pe);
834
		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
835 836
		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
837 838
		if (!(pe->type & EEH_PE_VF))
			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
839
		eeh_ops->reset(pe, EEH_RESET_HOT);
840 841
		break;
	case pcie_warm_reset:
842
		eeh_pe_mark_isolated(pe);
843
		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
844 845
		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
846 847
		if (!(pe->type & EEH_PE_VF))
			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
848
		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
849 850
		break;
	default:
851
		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
852 853 854 855 856 857
		return -EINVAL;
	};

	return 0;
}

858
/**
859 860 861
 * eeh_set_pe_freset - Check the required reset for the indicated device
 * @data: EEH device
 * @flag: return value
862 863 864 865 866 867
 *
 * Each device might have its preferred reset type: fundamental or
 * hot reset. The routine is used to collected the information for
 * the indicated device and its children so that the bunch of the
 * devices could be reset properly.
 */
868
static void *eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
869 870
{
	struct pci_dev *dev;
871
	unsigned int *freset = (unsigned int *)flag;
872

873
	dev = eeh_dev_to_pci_dev(edev);
874 875 876
	if (dev)
		*freset |= dev->needs_freset;

877
	return NULL;
878 879 880
}

/**
881
 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
882
 * @pe: EEH PE
883
 *
884 885 886 887 888 889 890
 * This function executes a full reset procedure on a PE, including setting
 * the appropriate flags, performing a fundamental or hot reset, and then
 * deactivating the reset status.  It is designed to be used within the EEH
 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
 * only performs a single operation at a time.
 *
 * This function will attempt to reset a PE three times before failing.
891
 */
892
int eeh_pe_reset_full(struct eeh_pe *pe)
893
{
894 895
	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
	int type = EEH_RESET_HOT;
896
	unsigned int freset = 0;
897
	int i, state, ret;
898

899 900 901 902
	/*
	 * Determine the type of reset to perform - hot or fundamental.
	 * Hot reset is the default operation, unless any device under the
	 * PE requires a fundamental reset.
903
	 */
904
	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
905 906

	if (freset)
907
		type = EEH_RESET_FUNDAMENTAL;
908

909 910
	/* Mark the PE as in reset state and block config space accesses */
	eeh_pe_state_mark(pe, reset_state);
911

912
	/* Make three attempts at resetting the bus */
913
	for (i = 0; i < 3; i++) {
914 915 916
		ret = eeh_pe_reset(pe, type);
		if (ret)
			break;
917

918 919 920 921 922
		ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
		if (ret)
			break;

		/* Wait until the PE is in a functioning state */
923
		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
924
		if (state < 0) {
925
			pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
926
				__func__, pe->phb->global_number, pe->addr);
927
			ret = -ENOTRECOVERABLE;
928
			break;
929
		}
930 931
		if (eeh_state_active(state))
			break;
932

933
		/* Set error in case this is our last attempt */
934 935 936
		ret = -EIO;
		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
			__func__, state, pe->phb->global_number, pe->addr, (i + 1));
937
	}
938

939
	eeh_pe_state_clear(pe, reset_state, true);
940
	return ret;
941 942
}

943
/**
944
 * eeh_save_bars - Save device bars
945
 * @edev: PCI device associated EEH device
946 947 948
 *
 * Save the values of the device bars. Unlike the restore
 * routine, this routine is *not* recursive. This is because
949
 * PCI devices are added individually; but, for the restore,
950 951
 * an entire slot is reset at a time.
 */
Gavin Shan's avatar
Gavin Shan committed
952
void eeh_save_bars(struct eeh_dev *edev)
953
{
954
	struct pci_dn *pdn;
955 956
	int i;

957 958
	pdn = eeh_dev_to_pdn(edev);
	if (!pdn)
959
		return;
960

961
	for (i = 0; i < 16; i++)
962
		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
963 964 965 966 967 968 969 970 971

	/*
	 * For PCI bridges including root port, we need enable bus
	 * master explicitly. Otherwise, it can't fetch IODA table
	 * entries correctly. So we cache the bit in advance so that
	 * we can restore it after reset, either PHB range or PE range.
	 */
	if (edev->mode & EEH_DEV_BRIDGE)
		edev->config_space[1] |= PCI_COMMAND_MASTER;
972 973
}

974 975 976 977 978 979 980 981 982 983 984
/**
 * eeh_ops_register - Register platform dependent EEH operations
 * @ops: platform dependent EEH operations
 *
 * Register the platform dependent EEH operation callback
 * functions. The platform should call this function before
 * any other EEH operations.
 */
int __init eeh_ops_register(struct eeh_ops *ops)
{
	if (!ops->name) {
985
		pr_warn("%s: Invalid EEH ops name for %p\n",
986 987 988 989 990
			__func__, ops);
		return -EINVAL;
	}

	if (eeh_ops && eeh_ops != ops) {
991
		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
			__func__, eeh_ops->name, ops->name);
		return -EEXIST;
	}

	eeh_ops = ops;

	return 0;
}

/**
 * eeh_ops_unregister - Unreigster platform dependent EEH operations
 * @name: name of EEH platform operations
 *
 * Unregister the platform dependent EEH operation callback
 * functions.
 */
int __exit eeh_ops_unregister(const char *name)
{
	if (!name || !strlen(name)) {
1011
		pr_warn("%s: Invalid EEH ops name\n",
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			__func__);
		return -EINVAL;
	}

	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
		eeh_ops = NULL;
		return 0;
	}

	return -EEXIST;
}

1024 1025 1026
static int eeh_reboot_notifier(struct notifier_block *nb,
			       unsigned long action, void *unused)
{
1027
	eeh_clear_flag(EEH_ENABLED);
1028 1029 1030 1031 1032 1033 1034
	return NOTIFY_DONE;
}

static struct notifier_block eeh_reboot_nb = {
	.notifier_call = eeh_reboot_notifier,
};

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
void eeh_probe_devices(void)
{
	struct pci_controller *hose, *tmp;
	struct pci_dn *pdn;

	/* Enable EEH for all adapters */
	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		pdn = hose->pci_data;
		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
	}
1045 1046 1047 1048 1049
	if (eeh_enabled())
		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
	else
		pr_info("EEH: No capable adapters found\n");

1050 1051
}

1052 1053 1054
/**
 * eeh_init - EEH initialization
 *
Linus Torvalds's avatar
Linus Torvalds committed
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
 * Initialize EEH by trying to enable it for all of the adapters in the system.
 * As a side effect we can determine here if eeh is supported at all.
 * Note that we leave EEH on so failed config cycles won't cause a machine
 * check.  If a user turns off EEH for a particular adapter they are really
 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 * grant access to a slot if EEH isn't enabled, and so we always enable
 * EEH for all slots/all devices.
 *
 * The eeh-force-off option disables EEH checking globally, for all slots.
 * Even if force-off is set, the EEH hardware is still enabled, so that
 * newer systems can boot.
 */
1067
static int eeh_init(void)
Linus Torvalds's avatar
Linus Torvalds committed
1068
{
1069
	struct pci_controller *hose, *tmp;
1070 1071
	int ret = 0;

1072 1073 1074 1075 1076 1077 1078 1079
	/* Register reboot notifier */
	ret = register_reboot_notifier(&eeh_reboot_nb);
	if (ret) {
		pr_warn("%s: Failed to register notifier (%d)\n",
			__func__, ret);
		return ret;
	}

1080 1081
	/* call platform initialization function */
	if (!eeh_ops) {
1082
		pr_warn("%s: Platform EEH operation not found\n",
1083
			__func__);
1084
		return -EEXIST;
1085
	} else if ((ret = eeh_ops->init()))
1086
		return ret;
Linus Torvalds's avatar
Linus Torvalds committed
1087

1088 1089 1090 1091
	/* Initialize PHB PEs */
	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
		eeh_dev_phb_init_dynamic(hose);

1092
	/* Initialize EEH event */
1093
	return eeh_event_init();
Linus Torvalds's avatar
Linus Torvalds committed
1094 1095
}

1096 1097
core_initcall_sync(eeh_init);

Linus Torvalds's avatar
Linus Torvalds committed
1098
/**
1099
 * eeh_add_device_early - Enable EEH for the indicated device node
1100
 * @pdn: PCI device node for which to set up EEH
Linus Torvalds's avatar
Linus Torvalds committed
1101 1102 1103 1104 1105 1106 1107 1108 1109
 *
 * This routine must be used to perform EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 * This routine must be called before any i/o is performed to the
 * adapter (inluding any config-space i/o).
 * Whether this actually enables EEH or not for this device depends
 * on the CEC architecture, type of the device, on earlier boot
 * command-line arguments & etc.
 */
1110
void eeh_add_device_early(struct pci_dn *pdn)
Linus Torvalds's avatar
Linus Torvalds committed
1111
{
1112
	struct pci_controller *phb = pdn ? pdn->phb : NULL;
1113
	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
Linus Torvalds's avatar
Linus Torvalds committed
1114

1115
	if (!edev)
Linus Torvalds's avatar
Linus Torvalds committed
1116
		return;
1117

1118 1119 1120
	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
		return;

1121
	/* USB Bus children of PCI devices will not have BUID's */
1122 1123
	if (NULL == phb ||
	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
Linus Torvalds's avatar
Linus Torvalds committed
1124 1125
		return;

1126
	eeh_ops->probe(pdn, NULL);
Linus Torvalds's avatar
Linus Torvalds committed
1127 1128
}

1129 1130
/**
 * eeh_add_device_tree_early - Enable EEH for the indicated device
1131
 * @pdn: PCI device node
1132 1133 1134 1135 1136
 *
 * This routine must be used to perform EEH initialization for the
 * indicated PCI device that was added after system boot (e.g.
 * hotplug, dlpar).
 */
1137
void eeh_add_device_tree_early(struct pci_dn *pdn)
1138
{
1139 1140 1141 1142
	struct pci_dn *n;

	if (!pdn)
		return;
1143

1144 1145 1146
	list_for_each_entry(n, &pdn->child_list, list)
		eeh_add_device_tree_early(n);
	eeh_add_device_early(pdn);
1147 1148 1149
}
EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);

Linus Torvalds's avatar
Linus Torvalds committed
1150
/**
1151
 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
Linus Torvalds's avatar
Linus Torvalds committed
1152 1153 1154 1155 1156
 * @dev: pci device for which to set up EEH
 *
 * This routine must be used to complete EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 */
1157
void eeh_add_device_late(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
1158
{
1159
	struct pci_dn *pdn;
1160
	struct eeh_dev *edev;
1161

1162
	if (!dev || !eeh_enabled())
Linus Torvalds's avatar
Linus Torvalds committed
1163 1164
		return;

1165
	pr_debug("EEH: Adding device %s\n", pci_name(dev));
Linus Torvalds's avatar
Linus Torvalds committed
1166

1167 1168
	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
	edev = pdn_to_eeh_dev(pdn);
1169
	if (edev->pdev == dev) {
1170 1171 1172
		pr_debug("EEH: Already referenced !\n");
		return;
	}
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	/*
	 * The EEH cache might not be removed correctly because of
	 * unbalanced kref to the device during unplug time, which
	 * relies on pcibios_release_device(). So we have to remove
	 * that here explicitly.
	 */
	if (edev->pdev) {
		eeh_rmv_from_parent_pe(edev);
		eeh_addr_cache_rmv_dev(edev->pdev);
		eeh_sysfs_remove_device(edev->pdev);
1184
		edev->mode &= ~EEH_DEV_SYSFS;
1185

1186 1187 1188 1189 1190 1191 1192
		/*
		 * We definitely should have the PCI device removed
		 * though it wasn't correctly. So we needn't call
		 * into error handler afterwards.
		 */
		edev->mode |= EEH_DEV_NO_HANDLER;

1193 1194 1195
		edev->pdev = NULL;
		dev->dev.archdata.edev = NULL;
	}
1196

1197 1198 1199
	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
		eeh_ops->probe(pdn, NULL);

1200 1201
	edev->pdev = dev;
	dev->dev.archdata.edev = edev;
1202

1203
	eeh_addr_cache_insert_dev(dev);
Linus Torvalds's avatar
Linus Torvalds committed
1204
}
1205

1206 1207 1208 1209 1210 1211 1212 1213
/**
 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
 * @bus: PCI bus
 *
 * This routine must be used to perform EEH initialization for PCI
 * devices which are attached to the indicated PCI bus. The PCI bus
 * is added after system boot through hotplug or dlpar.
 */
1214 1215 1216 1217 1218
void eeh_add_device_tree_late(struct pci_bus *bus)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
1219 1220 1221 1222 1223 1224
		eeh_add_device_late(dev);
		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
			struct pci_bus *subbus = dev->subordinate;
			if (subbus)
				eeh_add_device_tree_late(subbus);
		}
1225 1226 1227
	}
}
EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
Linus Torvalds's avatar
Linus Torvalds committed
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
 * @bus: PCI bus
 *
 * This routine must be used to add EEH sysfs files for PCI
 * devices which are attached to the indicated PCI bus. The PCI bus
 * is added after system boot through hotplug or dlpar.
 */
void eeh_add_sysfs_files(struct pci_bus *bus)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		eeh_sysfs_add_device(dev);
		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
			struct pci_bus *subbus = dev->subordinate;
			if (subbus)
				eeh_add_sysfs_files(subbus);
		}
	}
}
EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);

Linus Torvalds's avatar
Linus Torvalds committed
1252
/**
1253
 * eeh_remove_device - Undo EEH setup for the indicated pci device
Linus Torvalds's avatar
Linus Torvalds committed
1254 1255
 * @dev: pci device to be removed
 *
1256 1257 1258 1259 1260
 * This routine should be called when a device is removed from
 * a running system (e.g. by hotplug or dlpar).  It unregisters
 * the PCI device from the EEH subsystem.  I/O errors affecting
 * this device will no longer be detected after this call; thus,
 * i/o errors affecting this slot may leave this device unusable.
Linus Torvalds's avatar
Linus Torvalds committed
1261
 */
1262
void eeh_remove_device(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
1263
{
1264 1265
	struct eeh_dev *edev;

1266
	if (!dev || !eeh_enabled())
Linus Torvalds's avatar
Linus Torvalds committed
1267
		return;
1268
	edev = pci_dev_to_eeh_dev(dev);
Linus Torvalds's avatar
Linus Torvalds committed
1269 1270

	/* Unregister the device with the EEH/PCI address search system */
1271
	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1272

1273
	if (!edev || !edev->pdev || !edev->pe) {
1274 1275
		pr_debug("EEH: Not referenced !\n");
		return;
1276
	}
1277 1278 1279 1280 1281 1282 1283

	/*
	 * During the hotplug for EEH error recovery, we need the EEH
	 * device attached to the parent PE in order for BAR restore
	 * a bit later. So we keep it for BAR restore and remove it
	 * from the parent PE during the BAR resotre.
	 */
1284
	edev->pdev = NULL;
1285 1286 1287 1288 1289 1290 1291 1292

	/*
	 * The flag "in_error" is used to trace EEH devices for VFs
	 * in error state or not. It's set in eeh_report_error(). If
	 * it's not set, eeh_report_{reset,resume}() won't be called
	 * for the VF EEH device.
	 */
	edev->in_error = false;
1293
	dev->dev.archdata.edev = NULL;
1294 1295 1296 1297
	if (!(edev->pe->state & EEH_PE_KEEP))
		eeh_rmv_from_parent_pe(edev);
	else
		edev->mode |= EEH_DEV_DISCONNECTED;
1298

1299 1300 1301 1302 1303 1304 1305 1306
	/*
	 * We're removing from the PCI subsystem, that means
	 * the PCI device driver can't support EEH or not
	 * well. So we rely on hotplug completely to do recovery
	 * for the specific PCI device.
	 */
	edev->mode |= EEH_DEV_NO_HANDLER;

1307
	eeh_addr_cache_rmv_dev(dev);
1308
	eeh_sysfs_remove_device(dev);
1309
	edev->mode &= ~EEH_DEV_SYSFS;
Linus Torvalds's avatar
Linus Torvalds committed
1310 1311
}

1312
int eeh_unfreeze_pe(struct eeh_pe *pe)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
{
	int ret;

	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
	if (ret) {
		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
			__func__, ret, pe->phb->global_number, pe->addr);
		return ret;
	}

	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
	if (ret) {
		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
			__func__, ret, pe->phb->global_number, pe->addr);
		return ret;
	}

	return ret;
}

1333 1334 1335 1336

static struct pci_device_id eeh_reset_ids[] = {
	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1337
	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1338 1339 1340 1341 1342 1343 1344 1345
	{ 0 }
};

static int eeh_pe_change_owner(struct eeh_pe *pe)
{
	struct eeh_dev *edev, *tmp;
	struct pci_dev *pdev;
	struct pci_device_id *id;
1346
	int ret;
1347 1348 1349 1350 1351 1352 1353

	/* Check PE state */
	ret = eeh_ops->get_state(pe, NULL);
	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
		return 0;

	/* Unfrozen PE, nothing to do */
1354
	if (eeh_state_active(ret))
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		return 0;

	/* Frozen PE, check if it needs PE level reset */
	eeh_pe_for_each_dev(pe, edev, tmp) {
		pdev = eeh_dev_to_pci_dev(edev);
		if (!pdev)
			continue;

		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
			if (id->vendor != PCI_ANY_ID &&
			    id->vendor != pdev->vendor)
				continue;
			if (id->device != PCI_ANY_ID &&
			    id->device != pdev->device)
				continue;
			if (id->subvendor != PCI_ANY_ID &&
			    id->subvendor != pdev->subsystem_vendor)
				continue;
			if (id->subdevice != PCI_ANY_ID &&
			    id->subdevice != pdev->subsystem_device)
				continue;

1377
			return eeh_pe_reset_and_recover(pe);
1378 1379 1380
		}
	}

1381 1382
	ret = eeh_unfreeze_pe(pe);
	if (!ret)
1383
		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1384
	return ret;
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/**
 * eeh_dev_open - Increase count of pass through devices for PE
 * @pdev: PCI device
 *
 * Increase count of passed through devices for the indicated
 * PE. In the result, the EEH errors detected on the PE won't be
 * reported. The PE owner will be responsible for detection
 * and recovery.
 */
int eeh_dev_open(struct pci_dev *pdev)
{
	struct eeh_dev *edev;
1399
	int ret = -ENODEV;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	mutex_lock(&eeh_dev_mutex);

	/* No PCI device ? */
	if (!pdev)
		goto out;

	/* No EEH device or PE ? */
	edev = pci_dev_to_eeh_dev(pdev);
	if (!edev || !edev->pe)
		goto out;

1412 1413 1414 1415 1416 1417
	/*
	 * The PE might have been put into frozen state, but we
	 * didn't detect that yet. The passed through PCI devices
	 * in frozen PE won't work properly. Clear the frozen state
	 * in advance.
	 */
1418
	ret = eeh_pe_change_owner(edev->pe);
1419 1420
	if (ret)
		goto out;
1421

1422 1423 1424 1425 1426 1427 1428
	/* Increase PE's pass through count */
	atomic_inc(&edev->pe->pass_dev_cnt);
	mutex_unlock(&eeh_dev_mutex);

	return 0;
out:
	mutex_unlock(&eeh_dev_mutex);
1429
	return ret;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
}
EXPORT_SYMBOL_GPL(eeh_dev_open);

/**
 * eeh_dev_release - Decrease count of pass through devices for PE
 * @pdev: PCI device
 *
 * Decrease count of pass through devices for the indicated PE. If
 * there is no passed through device in PE, the EEH errors detected
 * on the PE will be reported and handled as usual.
 */
void eeh_dev_release(struct pci_dev *pdev)
{
	struct eeh_dev *edev;

	mutex_lock(&eeh_dev_mutex);

	/* No PCI device ? */
	if (!pdev)
		goto out;

	/* No EEH device ? */
	edev = pci_dev_to_eeh_dev(pdev);
	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
		goto out;

	/* Decrease PE's pass through count */
1457
	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1458
	eeh_pe_change_owner(edev->pe);
1459 1460 1461 1462 1463
out:
	mutex_unlock(&eeh_dev_mutex);
}
EXPORT_SYMBOL(eeh_dev_release);

1464 1465
#ifdef CONFIG_IOMMU_API

1466 1467 1468 1469 1470 1471 1472 1473
static int dev_has_iommu_table(struct device *dev, void *data)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct pci_dev **ppdev = data;

	if (!dev)
		return 0;

1474
	if (device_iommu_mapped(dev)) {
1475 1476 1477 1478 1479 1480 1481
		*ppdev = pdev;
		return 1;
	}

	return 0;
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/**
 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
 * @group: IOMMU group
 *
 * The routine is called to convert IOMMU group to EEH PE.
 */
struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
{
	struct pci_dev *pdev = NULL;
	struct eeh_dev *edev;
1492
	int ret;
1493 1494 1495 1496 1497

	/* No IOMMU group ? */
	if (!group)
		return NULL;

1498 1499
	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
	if (!ret || !pdev)
1500 1501 1502 1503 1504 1505 1506 1507 1508
		return NULL;

	/* No EEH device or PE ? */
	edev = pci_dev_to_eeh_dev(pdev);
	if (!edev || !edev->pe)
		return NULL;

	return edev->pe;
}
1509
EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1510

1511 1512
#endif /* CONFIG_IOMMU_API */

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
/**
 * eeh_pe_set_option - Set options for the indicated PE
 * @pe: EEH PE
 * @option: requested option
 *
 * The routine is called to enable or disable EEH functionality
 * on the indicated PE, to enable IO or DMA for the frozen PE.
 */
int eeh_pe_set_option(struct eeh_pe *pe, int option)
{
	int ret = 0;

	/* Invalid PE ? */
	if (!pe)
		return -ENODEV;

	/*
	 * EEH functionality could possibly be disabled, just
	 * return error for the case. And the EEH functinality
	 * isn't expected to be disabled on one specific PE.
	 */
	switch (option) {
	case EEH_OPT_ENABLE:
1536
		if (eeh_enabled()) {
1537
			ret = eeh_pe_change_owner(pe);
1538
			break;
1539
		}
1540 1541 1542 1543 1544 1545
		ret = -EIO;
		break;
	case EEH_OPT_DISABLE:
		break;
	case EEH_OPT_THAW_MMIO:
	case EEH_OPT_THAW_DMA:
1546
	case EEH_OPT_FREEZE_PE:
1547 1548 1549 1550 1551
		if (!eeh_ops || !eeh_ops->set_option) {
			ret = -ENOENT;
			break;
		}

1552
		ret = eeh_pci_enable(pe, option);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		break;
	default:
		pr_debug("%s: Option %d out of range (%d, %d)\n",
			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
		ret = -EINVAL;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(eeh_pe_set_option);

/**
 * eeh_pe_get_state - Retrieve PE's state
 * @pe: EEH PE
 *
 * Retrieve the PE's state, which includes 3 aspects: enabled
 * DMA, enabled IO and asserted reset.
 */
int eeh_pe_get_state(struct eeh_pe *pe)
{
	int result, ret = 0;
	bool rst_active, dma_en, mmio_en;

	/* Existing PE ? */
	if (!pe)
		return -ENODEV;

	if (!eeh_ops || !eeh_ops->get_state)
		return -ENOENT;

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	/*
	 * If the parent PE is owned by the host kernel and is undergoing
	 * error recovery, we should return the PE state as temporarily
	 * unavailable so that the error recovery on the guest is suspended
	 * until the recovery completes on the host.
	 */
	if (pe->parent &&
	    !(pe->state & EEH_PE_REMOVED) &&
	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
		return EEH_PE_STATE_UNAVAIL;

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	result = eeh_ops->get_state(pe, NULL);
	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);

	if (rst_active)
		ret = EEH_PE_STATE_RESET;
	else if (dma_en && mmio_en)
		ret = EEH_PE_STATE_NORMAL;
	else if (!dma_en && !mmio_en)
		ret = EEH_PE_STATE_STOPPED_IO_DMA;
	else if (!dma_en && mmio_en)
		ret = EEH_PE_STATE_STOPPED_DMA;
	else
		ret = EEH_PE_STATE_UNAVAIL;

	return ret;
}
EXPORT_SYMBOL_GPL(eeh_pe_get_state);

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static int eeh_pe_reenable_devices(struct eeh_pe *pe)
{
	struct eeh_dev *edev, *tmp;
	struct pci_dev *pdev;
	int ret = 0;

	/* Restore config space */
	eeh_pe_restore_bars(pe);

	/*
	 * Reenable PCI devices as the devices passed
	 * through are always enabled before the reset.
	 */
	eeh_pe_for_each_dev(pe, edev, tmp) {
		pdev = eeh_dev_to_pci_dev(edev);
		if (!pdev)
			continue;

		ret = pci_reenable_device(pdev);
		if (ret) {
			pr_warn("%s: Failure %d reenabling %s\n",
				__func__, ret, pci_name(pdev));
			return ret;
		}
	}

	/* The PE is still in frozen state */
1641 1642
	ret = eeh_unfreeze_pe(pe);
	if (!ret)
1643
		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1644
	return ret;
1645 1646
}

1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/**
 * eeh_pe_reset - Issue PE reset according to specified type
 * @pe: EEH PE
 * @option: reset type
 *
 * The routine is called to reset the specified PE with the
 * indicated type, either fundamental reset or hot reset.
 * PE reset is the most important part for error recovery.
 */
int eeh_pe_reset(struct eeh_pe *pe, int option)
{
	int ret = 0;

	/* Invalid PE ? */
	if (!pe)
		return -ENODEV;

	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
		return -ENOENT;

	switch (option) {
	case EEH_RESET_DEACTIVATE:
		ret = eeh_ops->reset(pe, option);
1671
		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
1672 1673 1674
		if (ret)
			break;

1675
		ret = eeh_pe_reenable_devices(pe);
1676 1677 1678
		break;
	case EEH_RESET_HOT:
	case EEH_RESET_FUNDAMENTAL:
1679 1680 1681 1682 1683 1684 1685
		/*
		 * Proactively freeze the PE to drop all MMIO access
		 * during reset, which should be banned as it's always
		 * cause recursive EEH error.
		 */
		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);

1686
		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		ret = eeh_ops->reset(pe, option);
		break;
	default:
		pr_debug("%s: Unsupported option %d\n",
			__func__, option);
		ret = -EINVAL;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(eeh_pe_reset);

/**
 * eeh_pe_configure - Configure PCI bridges after PE reset
 * @pe: EEH PE
 *
 * The routine is called to restore the PCI config space for
 * those PCI devices, especially PCI bridges affected by PE
 * reset issued previously.
 */
int eeh_pe_configure(struct eeh_pe *pe)
{
	int ret = 0;

	/* Invalid PE ? */
	if (!pe)
		return -ENODEV;

	return ret;
}
EXPORT_SYMBOL_GPL(eeh_pe_configure);

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
/**
 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
 * @pe: the indicated PE
 * @type: error type
 * @function: error function
 * @addr: address
 * @mask: address mask
 *
 * The routine is called to inject the specified PCI error, which
 * is determined by @type and @function, to the indicated PE for
 * testing purpose.
 */
int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
		      unsigned long addr, unsigned long mask)
{
	/* Invalid PE ? */
	if (!pe)
		return -ENODEV;

	/* Unsupported operation ? */
	if (!eeh_ops || !eeh_ops->err_inject)
		return -ENOENT;

	/* Check on PCI error type */
	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
		return -EINVAL;

	/* Check on PCI error function */
	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
		return -EINVAL;

	return eeh_ops->err_inject(pe, type, func, addr, mask);
}
EXPORT_SYMBOL_GPL(eeh_pe_inject_err);

Linus Torvalds's avatar
Linus Torvalds committed
1754 1755
static int proc_eeh_show(struct seq_file *m, void *v)
{
1756
	if (!eeh_enabled()) {
Linus Torvalds's avatar
Linus Torvalds committed
1757
		seq_printf(m, "EEH Subsystem is globally disabled\n");
1758
		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
Linus Torvalds's avatar
Linus Torvalds committed
1759 1760
	} else {
		seq_printf(m, "EEH Subsystem is enabled\n");
1761
		seq_printf(m,
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
				"no device=%llu\n"
				"no device node=%llu\n"
				"no config address=%llu\n"
				"check not wanted=%llu\n"
				"eeh_total_mmio_ffs=%llu\n"
				"eeh_false_positives=%llu\n"
				"eeh_slot_resets=%llu\n",
				eeh_stats.no_device,
				eeh_stats.no_dn,
				eeh_stats.no_cfg_addr,
				eeh_stats.ignored_check,
				eeh_stats.total_mmio_ffs,
				eeh_stats.false_positives,
				eeh_stats.slot_resets);
Linus Torvalds's avatar
Linus Torvalds committed
1776 1777 1778 1779 1780
	}

	return 0;
}

1781 1782 1783 1784
#ifdef CONFIG_DEBUG_FS
static int eeh_enable_dbgfs_set(void *data, u64 val)
{
	if (val)
1785
		eeh_clear_flag(EEH_FORCE_DISABLED);
1786
	else
1787
		eeh_add_flag(EEH_FORCE_DISABLED);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

	return 0;
}

static int eeh_enable_dbgfs_get(void *data, u64 *val)
{
	if (eeh_enabled())
		*val = 0x1ul;
	else
		*val = 0x0ul;
	return 0;
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
static int eeh_freeze_dbgfs_set(void *data, u64 val)
{
	eeh_max_freezes = val;
	return 0;
}

static int eeh_freeze_dbgfs_get(void *data, u64 *val)
{
	*val = eeh_max_freezes;
	return 0;
}

1813 1814 1815 1816
DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
			 eeh_enable_dbgfs_set, "0x%llx\n");
DEFINE_DEBUGFS_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
			 eeh_freeze_dbgfs_set, "0x%llx\n");
1817 1818
#endif

Linus Torvalds's avatar
Linus Torvalds committed
1819 1820
static int __init eeh_init_proc(void)
{
1821
	if (machine_is(pseries) || machine_is(powernv)) {
1822
		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1823
#ifdef CONFIG_DEBUG_FS
1824 1825 1826 1827 1828 1829
		debugfs_create_file_unsafe("eeh_enable", 0600,
					   powerpc_debugfs_root, NULL,
					   &eeh_enable_dbgfs_ops);
		debugfs_create_file_unsafe("eeh_max_freezes", 0600,
					   powerpc_debugfs_root, NULL,
					   &eeh_freeze_dbgfs_ops);
1830 1831 1832
#endif
	}

Linus Torvalds's avatar
Linus Torvalds committed
1833 1834 1835
	return 0;
}
__initcall(eeh_init_proc);