dax.c 55.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11
/*
 * fs/dax.c - Direct Access filesystem code
 * Copyright (c) 2013-2014 Intel Corporation
 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 */

#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
12
#include <linux/dax.h>
13
#include <linux/fs.h>
14 15 16
#include <linux/highmem.h>
#include <linux/memcontrol.h>
#include <linux/mm.h>
17
#include <linux/mutex.h>
18
#include <linux/pagevec.h>
19
#include <linux/sched.h>
20
#include <linux/sched/signal.h>
21
#include <linux/uio.h>
22
#include <linux/vmstat.h>
Dan Williams's avatar
Dan Williams committed
23
#include <linux/pfn_t.h>
24
#include <linux/sizes.h>
25
#include <linux/mmu_notifier.h>
26
#include <linux/iomap.h>
27
#include <linux/rmap.h>
28
#include <asm/pgalloc.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/fs_dax.h>

Jan Kara's avatar
Jan Kara committed
33 34 35 36
/* We choose 4096 entries - same as per-zone page wait tables */
#define DAX_WAIT_TABLE_BITS 12
#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)

37 38
/* The 'colour' (ie low bits) within a PMD of a page offset.  */
#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
39
#define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
40

41
static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
Jan Kara's avatar
Jan Kara committed
42 43 44 45 46 47 48 49 50 51 52

static int __init init_dax_wait_table(void)
{
	int i;

	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
		init_waitqueue_head(wait_table + i);
	return 0;
}
fs_initcall(init_dax_wait_table);

53
/*
54 55 56 57
 * DAX pagecache entries use XArray value entries so they can't be mistaken
 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
 * and two more to tell us if the entry is a zero page or an empty entry that
 * is just used for locking.  In total four special bits.
58 59 60 61 62
 *
 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
 * block allocation.
 */
63 64 65 66 67
#define DAX_SHIFT	(4)
#define DAX_LOCKED	(1UL << 0)
#define DAX_PMD		(1UL << 1)
#define DAX_ZERO_PAGE	(1UL << 2)
#define DAX_EMPTY	(1UL << 3)
68

Matthew Wilcox's avatar
Matthew Wilcox committed
69
static unsigned long dax_to_pfn(void *entry)
70
{
71
	return xa_to_value(entry) >> DAX_SHIFT;
72 73
}

74 75 76 77 78
static void *dax_make_entry(pfn_t pfn, unsigned long flags)
{
	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
}

79 80 81 82 83
static bool dax_is_locked(void *entry)
{
	return xa_to_value(entry) & DAX_LOCKED;
}

Matthew Wilcox's avatar
Matthew Wilcox committed
84
static unsigned int dax_entry_order(void *entry)
85
{
86
	if (xa_to_value(entry) & DAX_PMD)
87
		return PMD_ORDER;
88 89 90
	return 0;
}

91
static unsigned long dax_is_pmd_entry(void *entry)
92
{
93
	return xa_to_value(entry) & DAX_PMD;
94 95
}

96
static bool dax_is_pte_entry(void *entry)
97
{
98
	return !(xa_to_value(entry) & DAX_PMD);
99 100
}

101
static int dax_is_zero_entry(void *entry)
102
{
103
	return xa_to_value(entry) & DAX_ZERO_PAGE;
104 105
}

106
static int dax_is_empty_entry(void *entry)
107
{
108
	return xa_to_value(entry) & DAX_EMPTY;
109 110
}

111 112 113 114 115 116 117 118 119
/*
 * true if the entry that was found is of a smaller order than the entry
 * we were looking for
 */
static bool dax_is_conflict(void *entry)
{
	return entry == XA_RETRY_ENTRY;
}

Jan Kara's avatar
Jan Kara committed
120
/*
Matthew Wilcox's avatar
Matthew Wilcox committed
121
 * DAX page cache entry locking
Jan Kara's avatar
Jan Kara committed
122 123
 */
struct exceptional_entry_key {
124
	struct xarray *xa;
125
	pgoff_t entry_start;
Jan Kara's avatar
Jan Kara committed
126 127 128
};

struct wait_exceptional_entry_queue {
129
	wait_queue_entry_t wait;
Jan Kara's avatar
Jan Kara committed
130 131 132
	struct exceptional_entry_key key;
};

133 134 135 136 137 138 139 140 141 142
/**
 * enum dax_wake_mode: waitqueue wakeup behaviour
 * @WAKE_ALL: wake all waiters in the waitqueue
 * @WAKE_NEXT: wake only the first waiter in the waitqueue
 */
enum dax_wake_mode {
	WAKE_ALL,
	WAKE_NEXT,
};

143 144
static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
		void *entry, struct exceptional_entry_key *key)
145 146
{
	unsigned long hash;
147
	unsigned long index = xas->xa_index;
148 149 150 151 152 153

	/*
	 * If 'entry' is a PMD, align the 'index' that we use for the wait
	 * queue to the start of that PMD.  This ensures that all offsets in
	 * the range covered by the PMD map to the same bit lock.
	 */
154
	if (dax_is_pmd_entry(entry))
155
		index &= ~PG_PMD_COLOUR;
156
	key->xa = xas->xa;
157 158
	key->entry_start = index;

159
	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
160 161 162
	return wait_table + hash;
}

163 164
static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
		unsigned int mode, int sync, void *keyp)
Jan Kara's avatar
Jan Kara committed
165 166 167 168 169
{
	struct exceptional_entry_key *key = keyp;
	struct wait_exceptional_entry_queue *ewait =
		container_of(wait, struct wait_exceptional_entry_queue, wait);

170
	if (key->xa != ewait->key.xa ||
171
	    key->entry_start != ewait->key.entry_start)
Jan Kara's avatar
Jan Kara committed
172 173 174 175
		return 0;
	return autoremove_wake_function(wait, mode, sync, NULL);
}

176
/*
Matthew Wilcox's avatar
Matthew Wilcox committed
177 178 179
 * @entry may no longer be the entry at the index in the mapping.
 * The important information it's conveying is whether the entry at
 * this index used to be a PMD entry.
180
 */
181 182
static void dax_wake_entry(struct xa_state *xas, void *entry,
			   enum dax_wake_mode mode)
183 184 185 186
{
	struct exceptional_entry_key key;
	wait_queue_head_t *wq;

187
	wq = dax_entry_waitqueue(xas, entry, &key);
188 189 190

	/*
	 * Checking for locked entry and prepare_to_wait_exclusive() happens
Matthew Wilcox's avatar
Matthew Wilcox committed
191
	 * under the i_pages lock, ditto for entry handling in our callers.
192 193 194 195
	 * So at this point all tasks that could have seen our entry locked
	 * must be in the waitqueue and the following check will see them.
	 */
	if (waitqueue_active(wq))
196
		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
197 198
}

199 200 201 202
/*
 * Look up entry in page cache, wait for it to become unlocked if it
 * is a DAX entry and return it.  The caller must subsequently call
 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
203 204 205
 * if it did.  The entry returned may have a larger order than @order.
 * If @order is larger than the order of the entry found in i_pages, this
 * function returns a dax_is_conflict entry.
206 207 208
 *
 * Must be called with the i_pages lock held.
 */
209
static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
210 211 212 213 214 215 216 217 218
{
	void *entry;
	struct wait_exceptional_entry_queue ewait;
	wait_queue_head_t *wq;

	init_wait(&ewait.wait);
	ewait.wait.func = wake_exceptional_entry_func;

	for (;;) {
Matthew Wilcox's avatar
Matthew Wilcox committed
219
		entry = xas_find_conflict(xas);
220 221
		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
			return entry;
222 223
		if (dax_entry_order(entry) < order)
			return XA_RETRY_ENTRY;
224
		if (!dax_is_locked(entry))
225 226
			return entry;

227
		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
228 229 230 231 232 233 234 235 236 237
		prepare_to_wait_exclusive(wq, &ewait.wait,
					  TASK_UNINTERRUPTIBLE);
		xas_unlock_irq(xas);
		xas_reset(xas);
		schedule();
		finish_wait(wq, &ewait.wait);
		xas_lock_irq(xas);
	}
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * The only thing keeping the address space around is the i_pages lock
 * (it's cycled in clear_inode() after removing the entries from i_pages)
 * After we call xas_unlock_irq(), we cannot touch xas->xa.
 */
static void wait_entry_unlocked(struct xa_state *xas, void *entry)
{
	struct wait_exceptional_entry_queue ewait;
	wait_queue_head_t *wq;

	init_wait(&ewait.wait);
	ewait.wait.func = wake_exceptional_entry_func;

	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
252 253 254 255 256 257 258
	/*
	 * Unlike get_unlocked_entry() there is no guarantee that this
	 * path ever successfully retrieves an unlocked entry before an
	 * inode dies. Perform a non-exclusive wait in case this path
	 * never successfully performs its own wake up.
	 */
	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
259 260 261 262 263
	xas_unlock_irq(xas);
	schedule();
	finish_wait(wq, &ewait.wait);
}

264 265
static void put_unlocked_entry(struct xa_state *xas, void *entry,
			       enum dax_wake_mode mode)
266
{
267
	if (entry && !dax_is_conflict(entry))
268
		dax_wake_entry(xas, entry, mode);
269 270 271 272 273 274 275 276 277 278 279
}

/*
 * We used the xa_state to get the entry, but then we locked the entry and
 * dropped the xa_lock, so we know the xa_state is stale and must be reset
 * before use.
 */
static void dax_unlock_entry(struct xa_state *xas, void *entry)
{
	void *old;

280
	BUG_ON(dax_is_locked(entry));
281 282 283 284 285
	xas_reset(xas);
	xas_lock_irq(xas);
	old = xas_store(xas, entry);
	xas_unlock_irq(xas);
	BUG_ON(!dax_is_locked(old));
286
	dax_wake_entry(xas, entry, WAKE_NEXT);
287 288 289 290 291 292 293 294 295 296 297
}

/*
 * Return: The entry stored at this location before it was locked.
 */
static void *dax_lock_entry(struct xa_state *xas, void *entry)
{
	unsigned long v = xa_to_value(entry);
	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
}

298 299 300 301 302 303 304 305 306 307 308 309
static unsigned long dax_entry_size(void *entry)
{
	if (dax_is_zero_entry(entry))
		return 0;
	else if (dax_is_empty_entry(entry))
		return 0;
	else if (dax_is_pmd_entry(entry))
		return PMD_SIZE;
	else
		return PAGE_SIZE;
}

Matthew Wilcox's avatar
Matthew Wilcox committed
310
static unsigned long dax_end_pfn(void *entry)
311
{
Matthew Wilcox's avatar
Matthew Wilcox committed
312
	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
313 314 315 316 317 318 319
}

/*
 * Iterate through all mapped pfns represented by an entry, i.e. skip
 * 'empty' and 'zero' entries.
 */
#define for_each_mapped_pfn(entry, pfn) \
Matthew Wilcox's avatar
Matthew Wilcox committed
320 321
	for (pfn = dax_to_pfn(entry); \
			pfn < dax_end_pfn(entry); pfn++)
322

323
static inline bool dax_page_is_shared(struct page *page)
324
{
325
	return page->mapping == PAGE_MAPPING_DAX_SHARED;
326 327
}

328
/*
329 330
 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
 * refcount.
331
 */
332
static inline void dax_page_share_get(struct page *page)
333
{
334
	if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
335 336 337 338 339
		/*
		 * Reset the index if the page was already mapped
		 * regularly before.
		 */
		if (page->mapping)
340 341
			page->share = 1;
		page->mapping = PAGE_MAPPING_DAX_SHARED;
342
	}
343 344 345 346 347 348
	page->share++;
}

static inline unsigned long dax_page_share_put(struct page *page)
{
	return --page->share;
349 350 351
}

/*
352
 * When it is called in dax_insert_entry(), the shared flag will indicate that
353
 * whether this entry is shared by multiple files.  If so, set the page->mapping
354
 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
355 356
 */
static void dax_associate_entry(void *entry, struct address_space *mapping,
357
		struct vm_area_struct *vma, unsigned long address, bool shared)
358
{
359 360
	unsigned long size = dax_entry_size(entry), pfn, index;
	int i = 0;
361 362 363 364

	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
		return;

365
	index = linear_page_index(vma, address & ~(size - 1));
366 367 368
	for_each_mapped_pfn(entry, pfn) {
		struct page *page = pfn_to_page(pfn);

369 370
		if (shared) {
			dax_page_share_get(page);
371 372 373 374 375
		} else {
			WARN_ON_ONCE(page->mapping);
			page->mapping = mapping;
			page->index = index + i++;
		}
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	}
}

static void dax_disassociate_entry(void *entry, struct address_space *mapping,
		bool trunc)
{
	unsigned long pfn;

	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
		return;

	for_each_mapped_pfn(entry, pfn) {
		struct page *page = pfn_to_page(pfn);

		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
391 392 393
		if (dax_page_is_shared(page)) {
			/* keep the shared flag if this page is still shared */
			if (dax_page_share_put(page) > 0)
394 395 396
				continue;
		} else
			WARN_ON_ONCE(page->mapping && page->mapping != mapping);
397
		page->mapping = NULL;
398
		page->index = 0;
399 400 401
	}
}

402 403 404 405 406 407 408 409 410 411 412 413 414
static struct page *dax_busy_page(void *entry)
{
	unsigned long pfn;

	for_each_mapped_pfn(entry, pfn) {
		struct page *page = pfn_to_page(pfn);

		if (page_ref_count(page) > 1)
			return page;
	}
	return NULL;
}

415
/*
416
 * dax_lock_page - Lock the DAX entry corresponding to a page
417 418 419
 * @page: The page whose entry we want to lock
 *
 * Context: Process context.
420 421
 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 * not be locked.
422
 */
423
dax_entry_t dax_lock_page(struct page *page)
424
{
425 426
	XA_STATE(xas, NULL, 0);
	void *entry;
427

428 429
	/* Ensure page->mapping isn't freed while we look at it */
	rcu_read_lock();
430
	for (;;) {
431
		struct address_space *mapping = READ_ONCE(page->mapping);
432

433
		entry = NULL;
434
		if (!mapping || !dax_mapping(mapping))
435
			break;
436 437 438 439 440 441 442 443

		/*
		 * In the device-dax case there's no need to lock, a
		 * struct dev_pagemap pin is sufficient to keep the
		 * inode alive, and we assume we have dev_pagemap pin
		 * otherwise we would not have a valid pfn_to_page()
		 * translation.
		 */
444
		entry = (void *)~0UL;
445
		if (S_ISCHR(mapping->host->i_mode))
446
			break;
447

448 449
		xas.xa = &mapping->i_pages;
		xas_lock_irq(&xas);
450
		if (mapping != page->mapping) {
451
			xas_unlock_irq(&xas);
452 453
			continue;
		}
454 455 456
		xas_set(&xas, page->index);
		entry = xas_load(&xas);
		if (dax_is_locked(entry)) {
457
			rcu_read_unlock();
458
			wait_entry_unlocked(&xas, entry);
459
			rcu_read_lock();
460
			continue;
461
		}
462 463
		dax_lock_entry(&xas, entry);
		xas_unlock_irq(&xas);
464
		break;
465
	}
466
	rcu_read_unlock();
467
	return (dax_entry_t)entry;
468 469
}

470
void dax_unlock_page(struct page *page, dax_entry_t cookie)
471 472
{
	struct address_space *mapping = page->mapping;
473
	XA_STATE(xas, &mapping->i_pages, page->index);
474

475
	if (S_ISCHR(mapping->host->i_mode))
476 477
		return;

478
	dax_unlock_entry(&xas, (void *)cookie);
479 480
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
/*
 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
 * @mapping: the file's mapping whose entry we want to lock
 * @index: the offset within this file
 * @page: output the dax page corresponding to this dax entry
 *
 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
 * could not be locked.
 */
dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
		struct page **page)
{
	XA_STATE(xas, NULL, 0);
	void *entry;

	rcu_read_lock();
	for (;;) {
		entry = NULL;
		if (!dax_mapping(mapping))
			break;

		xas.xa = &mapping->i_pages;
		xas_lock_irq(&xas);
		xas_set(&xas, index);
		entry = xas_load(&xas);
		if (dax_is_locked(entry)) {
			rcu_read_unlock();
			wait_entry_unlocked(&xas, entry);
			rcu_read_lock();
			continue;
		}
		if (!entry ||
		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
			/*
			 * Because we are looking for entry from file's mapping
			 * and index, so the entry may not be inserted for now,
			 * or even a zero/empty entry.  We don't think this is
			 * an error case.  So, return a special value and do
			 * not output @page.
			 */
			entry = (void *)~0UL;
		} else {
			*page = pfn_to_page(dax_to_pfn(entry));
			dax_lock_entry(&xas, entry);
		}
		xas_unlock_irq(&xas);
		break;
	}
	rcu_read_unlock();
	return (dax_entry_t)entry;
}

void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
		dax_entry_t cookie)
{
	XA_STATE(xas, &mapping->i_pages, index);

	if (cookie == ~0UL)
		return;

	dax_unlock_entry(&xas, (void *)cookie);
}

Jan Kara's avatar
Jan Kara committed
544
/*
Matthew Wilcox's avatar
Matthew Wilcox committed
545 546 547
 * Find page cache entry at given index. If it is a DAX entry, return it
 * with the entry locked. If the page cache doesn't contain an entry at
 * that index, add a locked empty entry.
Jan Kara's avatar
Jan Kara committed
548
 *
549
 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
550 551 552
 * either return that locked entry or will return VM_FAULT_FALLBACK.
 * This will happen if there are any PTE entries within the PMD range
 * that we are requesting.
553
 *
554 555 556 557 558 559
 * We always favor PTE entries over PMD entries. There isn't a flow where we
 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 * insertion will fail if it finds any PTE entries already in the tree, and a
 * PTE insertion will cause an existing PMD entry to be unmapped and
 * downgraded to PTE entries.  This happens for both PMD zero pages as
 * well as PMD empty entries.
560
 *
561 562 563
 * The exception to this downgrade path is for PMD entries that have
 * real storage backing them.  We will leave these real PMD entries in
 * the tree, and PTE writes will simply dirty the entire PMD entry.
564
 *
Jan Kara's avatar
Jan Kara committed
565 566 567
 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 * persistent memory the benefit is doubtful. We can add that later if we can
 * show it helps.
568 569 570 571
 *
 * On error, this function does not return an ERR_PTR.  Instead it returns
 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 * overlap with xarray value entries.
Jan Kara's avatar
Jan Kara committed
572
 */
573
static void *grab_mapping_entry(struct xa_state *xas,
574
		struct address_space *mapping, unsigned int order)
Jan Kara's avatar
Jan Kara committed
575
{
576
	unsigned long index = xas->xa_index;
577
	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
578
	void *entry;
579

580
retry:
581
	pmd_downgrade = false;
582
	xas_lock_irq(xas);
583
	entry = get_unlocked_entry(xas, order);
584

585
	if (entry) {
586 587
		if (dax_is_conflict(entry))
			goto fallback;
Matthew Wilcox's avatar
Matthew Wilcox committed
588
		if (!xa_is_value(entry)) {
589
			xas_set_err(xas, -EIO);
590 591 592
			goto out_unlock;
		}

593
		if (order == 0) {
594
			if (dax_is_pmd_entry(entry) &&
595 596 597 598 599 600 601
			    (dax_is_zero_entry(entry) ||
			     dax_is_empty_entry(entry))) {
				pmd_downgrade = true;
			}
		}
	}

602 603 604 605 606 607
	if (pmd_downgrade) {
		/*
		 * Make sure 'entry' remains valid while we drop
		 * the i_pages lock.
		 */
		dax_lock_entry(xas, entry);
608 609 610 611 612 613

		/*
		 * Besides huge zero pages the only other thing that gets
		 * downgraded are empty entries which don't need to be
		 * unmapped.
		 */
614 615 616 617 618 619 620
		if (dax_is_zero_entry(entry)) {
			xas_unlock_irq(xas);
			unmap_mapping_pages(mapping,
					xas->xa_index & ~PG_PMD_COLOUR,
					PG_PMD_NR, false);
			xas_reset(xas);
			xas_lock_irq(xas);
621 622
		}

623 624
		dax_disassociate_entry(entry, mapping, false);
		xas_store(xas, NULL);	/* undo the PMD join */
625
		dax_wake_entry(xas, entry, WAKE_ALL);
626
		mapping->nrpages -= PG_PMD_NR;
627 628 629
		entry = NULL;
		xas_set(xas, index);
	}
630

631 632 633
	if (entry) {
		dax_lock_entry(xas, entry);
	} else {
634 635 636 637 638
		unsigned long flags = DAX_EMPTY;

		if (order > 0)
			flags |= DAX_PMD;
		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
639 640 641
		dax_lock_entry(xas, entry);
		if (xas_error(xas))
			goto out_unlock;
642
		mapping->nrpages += 1UL << order;
Jan Kara's avatar
Jan Kara committed
643
	}
644 645 646 647 648 649 650 651 652

out_unlock:
	xas_unlock_irq(xas);
	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
		goto retry;
	if (xas->xa_node == XA_ERROR(-ENOMEM))
		return xa_mk_internal(VM_FAULT_OOM);
	if (xas_error(xas))
		return xa_mk_internal(VM_FAULT_SIGBUS);
653
	return entry;
654 655 656
fallback:
	xas_unlock_irq(xas);
	return xa_mk_internal(VM_FAULT_FALLBACK);
Jan Kara's avatar
Jan Kara committed
657 658
}

659
/**
660
 * dax_layout_busy_page_range - find first pinned page in @mapping
661
 * @mapping: address space to scan for a page with ref count > 1
662 663 664
 * @start: Starting offset. Page containing 'start' is included.
 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
 *       pages from 'start' till the end of file are included.
665 666 667 668 669 670 671 672 673 674 675 676
 *
 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 * 'onlined' to the page allocator so they are considered idle when
 * page->count == 1. A filesystem uses this interface to determine if
 * any page in the mapping is busy, i.e. for DMA, or other
 * get_user_pages() usages.
 *
 * It is expected that the filesystem is holding locks to block the
 * establishment of new mappings in this address_space. I.e. it expects
 * to be able to run unmap_mapping_range() and subsequently not race
 * mapping_mapped() becoming true.
 */
677 678
struct page *dax_layout_busy_page_range(struct address_space *mapping,
					loff_t start, loff_t end)
679
{
680 681
	void *entry;
	unsigned int scanned = 0;
682
	struct page *page = NULL;
683 684 685
	pgoff_t start_idx = start >> PAGE_SHIFT;
	pgoff_t end_idx;
	XA_STATE(xas, &mapping->i_pages, start_idx);
686 687 688 689 690 691 692 693 694 695

	/*
	 * In the 'limited' case get_user_pages() for dax is disabled.
	 */
	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
		return NULL;

	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
		return NULL;

696 697 698 699 700
	/* If end == LLONG_MAX, all pages from start to till end of file */
	if (end == LLONG_MAX)
		end_idx = ULONG_MAX;
	else
		end_idx = end >> PAGE_SHIFT;
701 702
	/*
	 * If we race get_user_pages_fast() here either we'll see the
703
	 * elevated page count in the iteration and wait, or
704 705 706 707
	 * get_user_pages_fast() will see that the page it took a reference
	 * against is no longer mapped in the page tables and bail to the
	 * get_user_pages() slow path.  The slow path is protected by
	 * pte_lock() and pmd_lock(). New references are not taken without
708
	 * holding those locks, and unmap_mapping_pages() will not zero the
709 710 711 712
	 * pte or pmd without holding the respective lock, so we are
	 * guaranteed to either see new references or prevent new
	 * references from being established.
	 */
713
	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
714

715
	xas_lock_irq(&xas);
716
	xas_for_each(&xas, entry, end_idx) {
717 718 719
		if (WARN_ON_ONCE(!xa_is_value(entry)))
			continue;
		if (unlikely(dax_is_locked(entry)))
720
			entry = get_unlocked_entry(&xas, 0);
721 722
		if (entry)
			page = dax_busy_page(entry);
723
		put_unlocked_entry(&xas, entry, WAKE_NEXT);
724 725
		if (page)
			break;
726 727 728 729 730 731 732
		if (++scanned % XA_CHECK_SCHED)
			continue;

		xas_pause(&xas);
		xas_unlock_irq(&xas);
		cond_resched();
		xas_lock_irq(&xas);
733
	}
734
	xas_unlock_irq(&xas);
735 736
	return page;
}
737 738 739 740 741 742
EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);

struct page *dax_layout_busy_page(struct address_space *mapping)
{
	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
}
743 744
EXPORT_SYMBOL_GPL(dax_layout_busy_page);

Matthew Wilcox's avatar
Matthew Wilcox committed
745
static int __dax_invalidate_entry(struct address_space *mapping,
746 747
					  pgoff_t index, bool trunc)
{
748
	XA_STATE(xas, &mapping->i_pages, index);
749 750 751
	int ret = 0;
	void *entry;

752
	xas_lock_irq(&xas);
753
	entry = get_unlocked_entry(&xas, 0);
754
	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
755 756
		goto out;
	if (!trunc &&
757 758
	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
759
		goto out;
760
	dax_disassociate_entry(entry, mapping, trunc);
761
	xas_store(&xas, NULL);
762
	mapping->nrpages -= 1UL << dax_entry_order(entry);
763 764
	ret = 1;
out:
765
	put_unlocked_entry(&xas, entry, WAKE_ALL);
766
	xas_unlock_irq(&xas);
767 768
	return ret;
}
769

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
static int __dax_clear_dirty_range(struct address_space *mapping,
		pgoff_t start, pgoff_t end)
{
	XA_STATE(xas, &mapping->i_pages, start);
	unsigned int scanned = 0;
	void *entry;

	xas_lock_irq(&xas);
	xas_for_each(&xas, entry, end) {
		entry = get_unlocked_entry(&xas, 0);
		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
		put_unlocked_entry(&xas, entry, WAKE_NEXT);

		if (++scanned % XA_CHECK_SCHED)
			continue;

		xas_pause(&xas);
		xas_unlock_irq(&xas);
		cond_resched();
		xas_lock_irq(&xas);
	}
	xas_unlock_irq(&xas);

	return 0;
}

Jan Kara's avatar
Jan Kara committed
797
/*
798 799
 * Delete DAX entry at @index from @mapping.  Wait for it
 * to be unlocked before deleting it.
Jan Kara's avatar
Jan Kara committed
800 801 802
 */
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
{
Matthew Wilcox's avatar
Matthew Wilcox committed
803
	int ret = __dax_invalidate_entry(mapping, index, true);
Jan Kara's avatar
Jan Kara committed
804 805 806 807

	/*
	 * This gets called from truncate / punch_hole path. As such, the caller
	 * must hold locks protecting against concurrent modifications of the
Matthew Wilcox's avatar
Matthew Wilcox committed
808
	 * page cache (usually fs-private i_mmap_sem for writing). Since the
809
	 * caller has seen a DAX entry for this index, we better find it
Jan Kara's avatar
Jan Kara committed
810 811
	 * at that index as well...
	 */
812 813 814 815 816
	WARN_ON_ONCE(!ret);
	return ret;
}

/*
817
 * Invalidate DAX entry if it is clean.
818 819 820 821
 */
int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
				      pgoff_t index)
{
Matthew Wilcox's avatar
Matthew Wilcox committed
822
	return __dax_invalidate_entry(mapping, index, false);
Jan Kara's avatar
Jan Kara committed
823 824
}

825
static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
826
{
827
	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
828 829 830 831
}

static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
{
832
	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
833 834 835 836 837
	void *vto, *kaddr;
	long rc;
	int id;

	id = dax_read_lock();
838 839
	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
				&kaddr, NULL);
840 841 842 843
	if (rc < 0) {
		dax_read_unlock(id);
		return rc;
	}
844 845
	vto = kmap_atomic(vmf->cow_page);
	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
846
	kunmap_atomic(vto);
847
	dax_read_unlock(id);
848 849 850
	return 0;
}

851 852 853 854 855 856 857 858 859 860 861
/*
 * MAP_SYNC on a dax mapping guarantees dirty metadata is
 * flushed on write-faults (non-cow), but not read-faults.
 */
static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
		struct vm_area_struct *vma)
{
	return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
		(iter->iomap.flags & IOMAP_F_DIRTY);
}

862 863 864 865 866 867 868
/*
 * By this point grab_mapping_entry() has ensured that we have a locked entry
 * of the appropriate size so we don't have to worry about downgrading PMDs to
 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 * already in the tree, we will skip the insertion and just dirty the PMD as
 * appropriate.
 */
869 870 871
static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
		const struct iomap_iter *iter, void *entry, pfn_t pfn,
		unsigned long flags)
872
{
873
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
874
	void *new_entry = dax_make_entry(pfn, flags);
875 876 877
	bool write = iter->flags & IOMAP_WRITE;
	bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
	bool shared = iter->iomap.flags & IOMAP_F_SHARED;
878

879
	if (dirty)
880
		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
881

882
	if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
883
		unsigned long index = xas->xa_index;
884 885
		/* we are replacing a zero page with block mapping */
		if (dax_is_pmd_entry(entry))
886
			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
887
					PG_PMD_NR, false);
888
		else /* pte entry */
889
			unmap_mapping_pages(mapping, index, 1, false);
890 891
	}

892 893
	xas_reset(xas);
	xas_lock_irq(xas);
894
	if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
895 896
		void *old;

897
		dax_disassociate_entry(entry, mapping, false);
898
		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
899
				shared);
900
		/*
Matthew Wilcox's avatar
Matthew Wilcox committed
901
		 * Only swap our new entry into the page cache if the current
902
		 * entry is a zero page or an empty entry.  If a normal PTE or
Matthew Wilcox's avatar
Matthew Wilcox committed
903
		 * PMD entry is already in the cache, we leave it alone.  This
904 905 906 907
		 * means that if we are trying to insert a PTE and the
		 * existing entry is a PMD, we will just leave the PMD in the
		 * tree and dirty it if necessary.
		 */
908
		old = dax_lock_entry(xas, new_entry);
909 910
		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
					DAX_LOCKED));
911
		entry = new_entry;
912 913
	} else {
		xas_load(xas);	/* Walk the xa_state */
914
	}
915

916
	if (dirty)
917
		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
918

919
	if (write && shared)
920 921
		xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);

922
	xas_unlock_irq(xas);
923
	return entry;
924 925
}

926 927
static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
		struct address_space *mapping, void *entry)
928
{
929
	unsigned long pfn, index, count, end;
Dan Williams's avatar
Dan Williams committed
930
	long ret = 0;
931
	struct vm_area_struct *vma;
932 933

	/*
934 935
	 * A page got tagged dirty in DAX mapping? Something is seriously
	 * wrong.
936
	 */
937
	if (WARN_ON(!xa_is_value(entry)))
938
		return -EIO;
939

940 941 942
	if (unlikely(dax_is_locked(entry))) {
		void *old_entry = entry;

943
		entry = get_unlocked_entry(xas, 0);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

		/* Entry got punched out / reallocated? */
		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
			goto put_unlocked;
		/*
		 * Entry got reallocated elsewhere? No need to writeback.
		 * We have to compare pfns as we must not bail out due to
		 * difference in lockbit or entry type.
		 */
		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
			goto put_unlocked;
		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
					dax_is_zero_entry(entry))) {
			ret = -EIO;
			goto put_unlocked;
		}

		/* Another fsync thread may have already done this entry */
		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
			goto put_unlocked;
964 965
	}

966
	/* Lock the entry to serialize with page faults */
967 968
	dax_lock_entry(xas, entry);

969 970 971 972
	/*
	 * We can clear the tag now but we have to be careful so that concurrent
	 * dax_writeback_one() calls for the same index cannot finish before we
	 * actually flush the caches. This is achieved as the calls will look
Matthew Wilcox's avatar
Matthew Wilcox committed
973 974
	 * at the entry only under the i_pages lock and once they do that
	 * they will see the entry locked and wait for it to unlock.
975
	 */
976 977
	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
	xas_unlock_irq(xas);
978

979
	/*
980 981 982
	 * If dax_writeback_mapping_range() was given a wbc->range_start
	 * in the middle of a PMD, the 'index' we use needs to be
	 * aligned to the start of the PMD.
Dan Williams's avatar
Dan Williams committed
983 984
	 * This allows us to flush for PMD_SIZE and not have to worry about
	 * partial PMD writebacks.
985
	 */
Matthew Wilcox's avatar
Matthew Wilcox committed
986
	pfn = dax_to_pfn(entry);
987 988
	count = 1UL << dax_entry_order(entry);
	index = xas->xa_index & ~(count - 1);
989 990 991 992 993 994 995 996 997
	end = index + count - 1;

	/* Walk all mappings of a given index of a file and writeprotect them */
	i_mmap_lock_read(mapping);
	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
		pfn_mkclean_range(pfn, count, index, vma);
		cond_resched();
	}
	i_mmap_unlock_read(mapping);
998

999
	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1000 1001 1002 1003 1004 1005
	/*
	 * After we have flushed the cache, we can clear the dirty tag. There
	 * cannot be new dirty data in the pfn after the flush has completed as
	 * the pfn mappings are writeprotected and fault waits for mapping
	 * entry lock.
	 */
1006 1007 1008 1009
	xas_reset(xas);
	xas_lock_irq(xas);
	xas_store(xas, entry);
	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1010
	dax_wake_entry(xas, entry, WAKE_NEXT);
1011

1012
	trace_dax_writeback_one(mapping->host, index, count);
1013 1014
	return ret;

1015
 put_unlocked:
1016
	put_unlocked_entry(xas, entry, WAKE_NEXT);
1017 1018 1019 1020 1021 1022 1023 1024
	return ret;
}

/*
 * Flush the mapping to the persistent domain within the byte range of [start,
 * end]. This is required by data integrity operations to ensure file data is
 * on persistent storage prior to completion of the operation.
 */
1025
int dax_writeback_mapping_range(struct address_space *mapping,
1026
		struct dax_device *dax_dev, struct writeback_control *wbc)
1027
{
1028
	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1029
	struct inode *inode = mapping->host;
1030 1031 1032 1033
	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
	void *entry;
	int ret = 0;
	unsigned int scanned = 0;
1034 1035 1036 1037

	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
		return -EIO;

1038
	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1039 1040
		return 0;

1041
	trace_dax_writeback_range(inode, xas.xa_index, end_index);
1042

1043
	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1044

1045 1046 1047 1048 1049
	xas_lock_irq(&xas);
	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
		if (ret < 0) {
			mapping_set_error(mapping, ret);
1050 1051
			break;
		}
1052 1053 1054 1055 1056 1057 1058
		if (++scanned % XA_CHECK_SCHED)
			continue;

		xas_pause(&xas);
		xas_unlock_irq(&xas);
		cond_resched();
		xas_lock_irq(&xas);
1059
	}
1060 1061 1062
	xas_unlock_irq(&xas);
	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
	return ret;
1063 1064 1065
}
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);

1066 1067
static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
		size_t size, void **kaddr, pfn_t *pfnp)
1068
{
1069
	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1070
	int id, rc = 0;
1071
	long length;
1072

1073
	id = dax_read_lock();
1074
	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1075
				   DAX_ACCESS, kaddr, pfnp);
1076 1077 1078
	if (length < 0) {
		rc = length;
		goto out;
1079
	}
1080 1081
	if (!pfnp)
		goto out_check_addr;
1082 1083 1084 1085 1086 1087 1088 1089 1090
	rc = -EINVAL;
	if (PFN_PHYS(length) < size)
		goto out;
	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
		goto out;
	/* For larger pages we need devmap */
	if (length > 1 && !pfn_t_devmap(*pfnp))
		goto out;
	rc = 0;
1091 1092 1093 1094 1095 1096

out_check_addr:
	if (!kaddr)
		goto out;
	if (!*kaddr)
		rc = -EFAULT;
1097
out:
1098
	dax_read_unlock(id);
1099
	return rc;
1100 1101
}

1102
/**
1103 1104
 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
 * by copying the data before and after the range to be written.
1105 1106 1107 1108 1109 1110 1111 1112
 * @pos:	address to do copy from.
 * @length:	size of copy operation.
 * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
 * @srcmap:	iomap srcmap
 * @daddr:	destination address to copy to.
 *
 * This can be called from two places. Either during DAX write fault (page
 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1113
 * write operation, dax_iomap_iter() might call this to do the copy of either
1114
 * start or end unaligned address. In the latter case the rest of the copy of
1115 1116 1117
 * aligned ranges is taken care by dax_iomap_iter() itself.
 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
 * area to make sure no old data remains.
1118
 */
1119
static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1120 1121 1122 1123 1124 1125
		const struct iomap *srcmap, void *daddr)
{
	loff_t head_off = pos & (align_size - 1);
	size_t size = ALIGN(head_off + length, align_size);
	loff_t end = pos + length;
	loff_t pg_end = round_up(end, align_size);
1126
	/* copy_all is usually in page fault case */
1127
	bool copy_all = head_off == 0 && end == pg_end;
1128 1129 1130
	/* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
	bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
			 srcmap->type == IOMAP_UNWRITTEN;
1131 1132 1133
	void *saddr = 0;
	int ret = 0;

1134 1135 1136
	if (!zero_edge) {
		ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
		if (ret)
1137
			return dax_mem2blk_err(ret);
1138
	}
1139 1140

	if (copy_all) {
1141 1142 1143 1144 1145
		if (zero_edge)
			memset(daddr, 0, size);
		else
			ret = copy_mc_to_kernel(daddr, saddr, length);
		goto out;
1146 1147 1148 1149
	}

	/* Copy the head part of the range */
	if (head_off) {
1150 1151 1152 1153 1154 1155 1156
		if (zero_edge)
			memset(daddr, 0, head_off);
		else {
			ret = copy_mc_to_kernel(daddr, saddr, head_off);
			if (ret)
				return -EIO;
		}
1157 1158 1159 1160 1161 1162 1163
	}

	/* Copy the tail part of the range */
	if (end < pg_end) {
		loff_t tail_off = head_off + length;
		loff_t tail_len = pg_end - end;

1164 1165 1166 1167 1168 1169 1170 1171
		if (zero_edge)
			memset(daddr + tail_off, 0, tail_len);
		else {
			ret = copy_mc_to_kernel(daddr + tail_off,
						saddr + tail_off, tail_len);
			if (ret)
				return -EIO;
		}
1172
	}
1173 1174 1175 1176
out:
	if (zero_edge)
		dax_flush(srcmap->dax_dev, daddr, size);
	return ret ? -EIO : 0;
1177 1178
}

1179
/*
1180 1181 1182 1183 1184
 * The user has performed a load from a hole in the file.  Allocating a new
 * page in the file would cause excessive storage usage for workloads with
 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
 * If this page is ever written to we will re-fault and change the mapping to
 * point to real DAX storage instead.
1185
 */
1186 1187
static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
		const struct iomap_iter *iter, void **entry)
1188
{
1189
	struct inode *inode = iter->inode;
1190
	unsigned long vaddr = vmf->address;
1191 1192
	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
	vm_fault_t ret;
1193

1194
	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1195

1196
	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1197 1198 1199 1200
	trace_dax_load_hole(inode, vmf, ret);
	return ret;
}

1201 1202
#ifdef CONFIG_FS_DAX_PMD
static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1203
		const struct iomap_iter *iter, void **entry)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
{
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
	unsigned long pmd_addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
	struct inode *inode = mapping->host;
	pgtable_t pgtable = NULL;
	struct page *zero_page;
	spinlock_t *ptl;
	pmd_t pmd_entry;
	pfn_t pfn;

	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);

	if (unlikely(!zero_page))
		goto fallback;

	pfn = page_to_pfn_t(zero_page);
1221 1222
	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
				  DAX_PMD | DAX_ZERO_PAGE);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (!pmd_none(*(vmf->pmd))) {
		spin_unlock(ptl);
		goto fallback;
	}

	if (pgtable) {
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		mm_inc_nr_ptes(vma->vm_mm);
	}
	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
	pmd_entry = pmd_mkhuge(pmd_entry);
	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
	spin_unlock(ptl);
	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
	return VM_FAULT_NOPAGE;

fallback:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
	return VM_FAULT_FALLBACK;
}
#else
static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1255
		const struct iomap_iter *iter, void **entry)
1256 1257 1258 1259 1260
{
	return VM_FAULT_FALLBACK;
}
#endif /* CONFIG_FS_DAX_PMD */

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
static s64 dax_unshare_iter(struct iomap_iter *iter)
{
	struct iomap *iomap = &iter->iomap;
	const struct iomap *srcmap = iomap_iter_srcmap(iter);
	loff_t pos = iter->pos;
	loff_t length = iomap_length(iter);
	int id = 0;
	s64 ret = 0;
	void *daddr = NULL, *saddr = NULL;

	/* don't bother with blocks that are not shared to start with */
	if (!(iomap->flags & IOMAP_F_SHARED))
		return length;

	id = dax_read_lock();
	ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
	if (ret < 0)
		goto out_unlock;

1280 1281 1282 1283 1284 1285 1286 1287
	/* zero the distance if srcmap is HOLE or UNWRITTEN */
	if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
		memset(daddr, 0, length);
		dax_flush(iomap->dax_dev, daddr, length);
		ret = length;
		goto out_unlock;
	}

1288 1289 1290 1291
	ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
	if (ret < 0)
		goto out_unlock;

1292 1293 1294
	if (copy_mc_to_kernel(daddr, saddr, length) == 0)
		ret = length;
	else
1295 1296 1297 1298
		ret = -EIO;

out_unlock:
	dax_read_unlock(id);
1299
	return dax_mem2blk_err(ret);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
}

int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
		const struct iomap_ops *ops)
{
	struct iomap_iter iter = {
		.inode		= inode,
		.pos		= pos,
		.len		= len,
		.flags		= IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
	};
	int ret;

	while ((ret = iomap_iter(&iter, ops)) > 0)
		iter.processed = dax_unshare_iter(&iter);
	return ret;
}
EXPORT_SYMBOL_GPL(dax_file_unshare);

1319
static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1320
{
1321 1322 1323 1324
	const struct iomap *iomap = &iter->iomap;
	const struct iomap *srcmap = iomap_iter_srcmap(iter);
	unsigned offset = offset_in_page(pos);
	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1325 1326 1327
	void *kaddr;
	long ret;

1328 1329 1330
	ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
				NULL);
	if (ret < 0)
1331 1332
		return dax_mem2blk_err(ret);

1333
	memset(kaddr + offset, 0, size);
1334 1335 1336 1337
	if (iomap->flags & IOMAP_F_SHARED)
		ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
					    kaddr);
	else
1338
		dax_flush(iomap->dax_dev, kaddr + offset, size);
1339 1340 1341
	return ret;
}

1342
static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1343
{
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	const struct iomap *iomap = &iter->iomap;
	const struct iomap *srcmap = iomap_iter_srcmap(iter);
	loff_t pos = iter->pos;
	u64 length = iomap_length(iter);
	s64 written = 0;

	/* already zeroed?  we're done. */
	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
		return length;

1354 1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * invalidate the pages whose sharing state is to be changed
	 * because of CoW.
	 */
	if (iomap->flags & IOMAP_F_SHARED)
		invalidate_inode_pages2_range(iter->inode->i_mapping,
					      pos >> PAGE_SHIFT,
					      (pos + length - 1) >> PAGE_SHIFT);

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	do {
		unsigned offset = offset_in_page(pos);
		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
		long rc;
		int id;

		id = dax_read_lock();
		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
		else
1374
			rc = dax_memzero(iter, pos, size);
1375
		dax_read_unlock(id);
1376

1377 1378 1379 1380 1381 1382
		if (rc < 0)
			return rc;
		pos += size;
		length -= size;
		written += size;
	} while (length > 0);
1383

1384 1385
	if (did_zero)
		*did_zero = true;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	return written;
}

int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
		const struct iomap_ops *ops)
{
	struct iomap_iter iter = {
		.inode		= inode,
		.pos		= pos,
		.len		= len,
1396
		.flags		= IOMAP_DAX | IOMAP_ZERO,
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	};
	int ret;

	while ((ret = iomap_iter(&iter, ops)) > 0)
		iter.processed = dax_zero_iter(&iter, did_zero);
	return ret;
}
EXPORT_SYMBOL_GPL(dax_zero_range);

int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
		const struct iomap_ops *ops)
{
	unsigned int blocksize = i_blocksize(inode);
	unsigned int off = pos & (blocksize - 1);

	/* Block boundary? Nothing to do */
	if (!off)
		return 0;
	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1416
}
1417
EXPORT_SYMBOL_GPL(dax_truncate_page);
1418

1419 1420
static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
		struct iov_iter *iter)
1421
{
1422
	const struct iomap *iomap = &iomi->iomap;
1423
	const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1424 1425
	loff_t length = iomap_length(iomi);
	loff_t pos = iomi->pos;
1426
	struct dax_device *dax_dev = iomap->dax_dev;
1427
	loff_t end = pos + length, done = 0;
1428
	bool write = iov_iter_rw(iter) == WRITE;
1429
	bool cow = write && iomap->flags & IOMAP_F_SHARED;
1430
	ssize_t ret = 0;
1431
	size_t xfer;
1432
	int id;
1433

1434
	if (!write) {
1435
		end = min(end, i_size_read(iomi->inode));
1436 1437 1438 1439 1440 1441 1442
		if (pos >= end)
			return 0;

		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
			return iov_iter_zero(min(length, end - pos), iter);
	}

1443 1444 1445 1446 1447 1448
	/*
	 * In DAX mode, enforce either pure overwrites of written extents, or
	 * writes to unwritten extents as part of a copy-on-write operation.
	 */
	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
			!(iomap->flags & IOMAP_F_SHARED)))
1449 1450
		return -EIO;

1451 1452 1453 1454 1455
	/*
	 * Write can allocate block for an area which has a hole page mapped
	 * into page tables. We have to tear down these mappings so that data
	 * written by write(2) is visible in mmap.
	 */
1456
	if (iomap->flags & IOMAP_F_NEW || cow) {
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		/*
		 * Filesystem allows CoW on non-shared extents. The src extents
		 * may have been mmapped with dirty mark before. To be able to
		 * invalidate its dax entries, we need to clear the dirty mark
		 * in advance.
		 */
		if (cow)
			__dax_clear_dirty_range(iomi->inode->i_mapping,
						pos >> PAGE_SHIFT,
						(end - 1) >> PAGE_SHIFT);
1467
		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1468 1469 1470 1471
					      pos >> PAGE_SHIFT,
					      (end - 1) >> PAGE_SHIFT);
	}

1472
	id = dax_read_lock();
1473 1474
	while (pos < end) {
		unsigned offset = pos & (PAGE_SIZE - 1);
1475
		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1476
		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1477
		ssize_t map_len;
1478
		bool recovery = false;
1479
		void *kaddr;
1480

1481 1482 1483 1484 1485
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

1486
		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1487
				DAX_ACCESS, &kaddr, NULL);
1488
		if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
1489 1490 1491 1492 1493 1494
			map_len = dax_direct_access(dax_dev, pgoff,
					PHYS_PFN(size), DAX_RECOVERY_WRITE,
					&kaddr, NULL);
			if (map_len > 0)
				recovery = true;
		}
1495
		if (map_len < 0) {
1496
			ret = dax_mem2blk_err(map_len);
1497 1498 1499
			break;
		}

1500
		if (cow) {
1501 1502
			ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
						    srcmap, kaddr);
1503 1504 1505 1506
			if (ret)
				break;
		}

1507 1508
		map_len = PFN_PHYS(map_len);
		kaddr += offset;
1509 1510 1511 1512
		map_len -= offset;
		if (map_len > end - pos)
			map_len = end - pos;

1513 1514 1515
		if (recovery)
			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
					map_len, iter);
1516
		else if (write)
1517
			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1518
					map_len, iter);
1519
		else
1520
			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1521
					map_len, iter);
1522

1523 1524 1525 1526 1527 1528 1529 1530
		pos += xfer;
		length -= xfer;
		done += xfer;

		if (xfer == 0)
			ret = -EFAULT;
		if (xfer < map_len)
			break;
1531
	}
1532
	dax_read_unlock(id);
1533 1534 1535 1536 1537

	return done ? done : ret;
}

/**
1538
 * dax_iomap_rw - Perform I/O to a DAX file
1539 1540 1541 1542 1543 1544 1545 1546 1547
 * @iocb:	The control block for this I/O
 * @iter:	The addresses to do I/O from or to
 * @ops:	iomap ops passed from the file system
 *
 * This function performs read and write operations to directly mapped
 * persistent memory.  The callers needs to take care of read/write exclusion
 * and evicting any page cache pages in the region under I/O.
 */
ssize_t
1548
dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1549
		const struct iomap_ops *ops)
1550
{
1551 1552 1553 1554
	struct iomap_iter iomi = {
		.inode		= iocb->ki_filp->f_mapping->host,
		.pos		= iocb->ki_pos,
		.len		= iov_iter_count(iter),
1555
		.flags		= IOMAP_DAX,
1556 1557 1558
	};
	loff_t done = 0;
	int ret;
1559

1560 1561 1562
	if (!iomi.len)
		return 0;

1563
	if (iov_iter_rw(iter) == WRITE) {
1564 1565
		lockdep_assert_held_write(&iomi.inode->i_rwsem);
		iomi.flags |= IOMAP_WRITE;
1566
	} else {
1567
		lockdep_assert_held(&iomi.inode->i_rwsem);
1568
	}
1569

1570
	if (iocb->ki_flags & IOCB_NOWAIT)
1571
		iomi.flags |= IOMAP_NOWAIT;
1572

1573 1574
	while ((ret = iomap_iter(&iomi, ops)) > 0)
		iomi.processed = dax_iomap_iter(&iomi, iter);
1575

1576 1577
	done = iomi.pos - iocb->ki_pos;
	iocb->ki_pos = iomi.pos;
1578 1579
	return done ? done : ret;
}
1580
EXPORT_SYMBOL_GPL(dax_iomap_rw);
1581

1582
static vm_fault_t dax_fault_return(int error)
1583 1584 1585
{
	if (error == 0)
		return VM_FAULT_NOPAGE;
1586
	return vmf_error(error);
1587 1588
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/*
 * When handling a synchronous page fault and the inode need a fsync, we can
 * insert the PTE/PMD into page tables only after that fsync happened. Skip
 * insertion for now and return the pfn so that caller can insert it after the
 * fsync is done.
 */
static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
{
	if (WARN_ON_ONCE(!pfnp))
		return VM_FAULT_SIGBUS;
	*pfnp = pfn;
	return VM_FAULT_NEEDDSYNC;
}

1603 1604
static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
		const struct iomap_iter *iter)
1605 1606 1607 1608
{
	vm_fault_t ret;
	int error = 0;

1609
	switch (iter->iomap.type) {
1610 1611
	case IOMAP_HOLE:
	case IOMAP_UNWRITTEN:
1612
		clear_user_highpage(vmf->cow_page, vmf->address);
1613 1614
		break;
	case IOMAP_MAPPED:
1615
		error = copy_cow_page_dax(vmf, iter);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		break;
	default:
		WARN_ON_ONCE(1);
		error = -EIO;
		break;
	}

	if (error)
		return dax_fault_return(error);

	__SetPageUptodate(vmf->cow_page);
	ret = finish_fault(vmf);
	if (!ret)
		return VM_FAULT_DONE_COW;
	return ret;
}

1633
/**
1634
 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1635
 * @vmf:	vm fault instance
1636
 * @iter:	iomap iter
1637 1638 1639 1640 1641
 * @pfnp:	pfn to be returned
 * @xas:	the dax mapping tree of a file
 * @entry:	an unlocked dax entry to be inserted
 * @pmd:	distinguish whether it is a pmd fault
 */
1642 1643 1644
static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
		const struct iomap_iter *iter, pfn_t *pfnp,
		struct xa_state *xas, void **entry, bool pmd)
1645
{
1646
	const struct iomap *iomap = &iter->iomap;
1647
	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1648 1649
	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1650
	bool write = iter->flags & IOMAP_WRITE;
1651 1652 1653
	unsigned long entry_flags = pmd ? DAX_PMD : 0;
	int err = 0;
	pfn_t pfn;
1654
	void *kaddr;
1655

1656 1657 1658
	if (!pmd && vmf->cow_page)
		return dax_fault_cow_page(vmf, iter);

1659 1660 1661 1662
	/* if we are reading UNWRITTEN and HOLE, return a hole. */
	if (!write &&
	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
		if (!pmd)
1663 1664
			return dax_load_hole(xas, vmf, iter, entry);
		return dax_pmd_load_hole(xas, vmf, iter, entry);
1665 1666
	}

1667
	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1668 1669 1670 1671
		WARN_ON_ONCE(1);
		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
	}

1672
	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1673 1674 1675
	if (err)
		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);

1676
	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1677

1678 1679
	if (write && iomap->flags & IOMAP_F_SHARED) {
		err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1680 1681 1682
		if (err)
			return dax_fault_return(err);
	}
1683

1684
	if (dax_fault_is_synchronous(iter, vmf->vma))
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
		return dax_fault_synchronous_pfnp(pfnp, pfn);

	/* insert PMD pfn */
	if (pmd)
		return vmf_insert_pfn_pmd(vmf, pfn, write);

	/* insert PTE pfn */
	if (write)
		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
}

1697
static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1698
			       int *iomap_errp, const struct iomap_ops *ops)
1699
{
1700
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1701
	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1702 1703 1704 1705
	struct iomap_iter iter = {
		.inode		= mapping->host,
		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
		.len		= PAGE_SIZE,
1706
		.flags		= IOMAP_DAX | IOMAP_FAULT,
1707
	};
1708
	vm_fault_t ret = 0;
1709
	void *entry;
1710
	int error;
1711

1712
	trace_dax_pte_fault(iter.inode, vmf, ret);
1713 1714 1715 1716 1717
	/*
	 * Check whether offset isn't beyond end of file now. Caller is supposed
	 * to hold locks serializing us with truncate / punch hole so this is
	 * a reliable test.
	 */
1718
	if (iter.pos >= i_size_read(iter.inode)) {
1719
		ret = VM_FAULT_SIGBUS;
1720 1721
		goto out;
	}
1722

1723 1724
	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
		iter.flags |= IOMAP_WRITE;
1725

1726 1727 1728
	entry = grab_mapping_entry(&xas, mapping, 0);
	if (xa_is_internal(entry)) {
		ret = xa_to_internal(entry);
1729 1730 1731
		goto out;
	}

1732 1733 1734 1735 1736 1737 1738
	/*
	 * It is possible, particularly with mixed reads & writes to private
	 * mappings, that we have raced with a PMD fault that overlaps with
	 * the PTE we need to set up.  If so just return and the fault will be
	 * retried.
	 */
	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1739
		ret = VM_FAULT_NOPAGE;
1740 1741 1742
		goto unlock_entry;
	}

1743 1744 1745 1746
	while ((error = iomap_iter(&iter, ops)) > 0) {
		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
			iter.processed = -EIO;	/* fs corruption? */
			continue;
1747 1748
		}

1749 1750 1751
		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
		if (ret != VM_FAULT_SIGBUS &&
		    (iter.iomap.flags & IOMAP_F_NEW)) {
1752
			count_vm_event(PGMAJFAULT);
1753 1754
			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
			ret |= VM_FAULT_MAJOR;
1755
		}
1756

1757 1758
		if (!(ret & VM_FAULT_ERROR))
			iter.processed = PAGE_SIZE;
1759 1760
	}

1761 1762 1763 1764
	if (iomap_errp)
		*iomap_errp = error;
	if (!ret && error)
		ret = dax_fault_return(error);
1765

1766
unlock_entry:
1767
	dax_unlock_entry(&xas, entry);
1768
out:
1769 1770
	trace_dax_pte_fault_done(iter.inode, vmf, ret);
	return ret;
1771
}
1772 1773

#ifdef CONFIG_FS_DAX_PMD
1774 1775
static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
		pgoff_t max_pgoff)
1776
{
1777
	unsigned long pmd_addr = vmf->address & PMD_MASK;
1778
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1779

1780 1781 1782 1783 1784 1785 1786 1787 1788
	/*
	 * Make sure that the faulting address's PMD offset (color) matches
	 * the PMD offset from the start of the file.  This is necessary so
	 * that a PMD range in the page table overlaps exactly with a PMD
	 * range in the page cache.
	 */
	if ((vmf->pgoff & PG_PMD_COLOUR) !=
	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
		return true;
1789

1790 1791 1792
	/* Fall back to PTEs if we're going to COW */
	if (write && !(vmf->vma->vm_flags & VM_SHARED))
		return true;
1793

1794 1795 1796 1797 1798
	/* If the PMD would extend outside the VMA */
	if (pmd_addr < vmf->vma->vm_start)
		return true;
	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
		return true;
1799

1800 1801 1802
	/* If the PMD would extend beyond the file size */
	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
		return true;
1803

1804
	return false;
1805 1806
}

1807
static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1808
			       const struct iomap_ops *ops)
1809
{
1810
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1811
	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1812 1813 1814
	struct iomap_iter iter = {
		.inode		= mapping->host,
		.len		= PMD_SIZE,
1815
		.flags		= IOMAP_DAX | IOMAP_FAULT,
1816
	};
1817
	vm_fault_t ret = VM_FAULT_FALLBACK;
1818
	pgoff_t max_pgoff;
1819 1820
	void *entry;

1821 1822
	if (vmf->flags & FAULT_FLAG_WRITE)
		iter.flags |= IOMAP_WRITE;
1823

1824 1825 1826 1827 1828
	/*
	 * Check whether offset isn't beyond end of file now. Caller is
	 * supposed to hold locks serializing us with truncate / punch hole so
	 * this is a reliable test.
	 */
1829
	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1830

1831
	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1832

1833
	if (xas.xa_index >= max_pgoff) {
1834
		ret = VM_FAULT_SIGBUS;
1835 1836
		goto out;
	}
1837

1838
	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1839 1840
		goto fallback;

1841
	/*
1842 1843 1844 1845
	 * grab_mapping_entry() will make sure we get an empty PMD entry,
	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
	 * entry is already in the array, for instance), it will return
	 * VM_FAULT_FALLBACK.
1846
	 */
1847
	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1848
	if (xa_is_internal(entry)) {
1849
		ret = xa_to_internal(entry);
1850
		goto fallback;
1851
	}
1852

1853 1854 1855 1856 1857 1858 1859 1860
	/*
	 * It is possible, particularly with mixed reads & writes to private
	 * mappings, that we have raced with a PTE fault that overlaps with
	 * the PMD we need to set up.  If so just return and the fault will be
	 * retried.
	 */
	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
			!pmd_devmap(*vmf->pmd)) {
1861
		ret = 0;
1862 1863 1864
		goto unlock_entry;
	}

1865
	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1866
	while (iomap_iter(&iter, ops) > 0) {
1867 1868
		if (iomap_length(&iter) < PMD_SIZE)
			continue; /* actually breaks out of the loop */
1869

1870 1871 1872
		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
		if (ret != VM_FAULT_FALLBACK)
			iter.processed = PMD_SIZE;
1873 1874
	}

1875
unlock_entry:
1876
	dax_unlock_entry(&xas, entry);
1877 1878
fallback:
	if (ret == VM_FAULT_FALLBACK) {
1879
		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1880 1881
		count_vm_event(THP_FAULT_FALLBACK);
	}
1882
out:
1883
	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1884
	return ret;
1885
}
1886
#else
1887
static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1888
			       const struct iomap_ops *ops)
1889 1890 1891
{
	return VM_FAULT_FALLBACK;
}
1892
#endif /* CONFIG_FS_DAX_PMD */
1893 1894 1895 1896

/**
 * dax_iomap_fault - handle a page fault on a DAX file
 * @vmf: The description of the fault
1897
 * @order: Order of the page to fault in
1898
 * @pfnp: PFN to insert for synchronous faults if fsync is required
1899
 * @iomap_errp: Storage for detailed error code in case of error
1900
 * @ops: Iomap ops passed from the file system
1901 1902 1903 1904 1905 1906
 *
 * When a page fault occurs, filesystems may call this helper in
 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
 * has done all the necessary locking for page fault to proceed
 * successfully.
 */
1907
vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order,
1908
		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1909
{
1910
	if (order == 0)
1911
		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1912
	else if (order == PMD_ORDER)
1913
		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1914
	else
1915 1916 1917
		return VM_FAULT_FALLBACK;
}
EXPORT_SYMBOL_GPL(dax_iomap_fault);
1918

Matthew Wilcox's avatar
Matthew Wilcox committed
1919
/*
1920 1921 1922
 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
 * @vmf: The description of the fault
 * @pfn: PFN to insert
1923
 * @order: Order of entry to insert.
1924
 *
Matthew Wilcox's avatar
Matthew Wilcox committed
1925 1926
 * This function inserts a writeable PTE or PMD entry into the page tables
 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1927
 */
1928 1929
static vm_fault_t
dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1930 1931
{
	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1932 1933
	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
	void *entry;
1934
	vm_fault_t ret;
1935

1936
	xas_lock_irq(&xas);
1937
	entry = get_unlocked_entry(&xas, order);
1938
	/* Did we race with someone splitting entry or so? */
1939 1940
	if (!entry || dax_is_conflict(entry) ||
	    (order == 0 && !dax_is_pte_entry(entry))) {
1941
		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1942
		xas_unlock_irq(&xas);
1943 1944 1945 1946
		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
						      VM_FAULT_NOPAGE);
		return VM_FAULT_NOPAGE;
	}
1947 1948 1949 1950
	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
	dax_lock_entry(&xas, entry);
	xas_unlock_irq(&xas);
	if (order == 0)
1951
		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1952
#ifdef CONFIG_FS_DAX_PMD
1953
	else if (order == PMD_ORDER)
1954
		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1955
#endif
1956
	else
1957
		ret = VM_FAULT_FALLBACK;
1958
	dax_unlock_entry(&xas, entry);
1959 1960
	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
	return ret;
1961 1962 1963 1964 1965
}

/**
 * dax_finish_sync_fault - finish synchronous page fault
 * @vmf: The description of the fault
1966
 * @order: Order of entry to be inserted
1967 1968 1969 1970 1971 1972
 * @pfn: PFN to insert
 *
 * This function ensures that the file range touched by the page fault is
 * stored persistently on the media and handles inserting of appropriate page
 * table entry.
 */
1973 1974
vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order,
		pfn_t pfn)
1975 1976 1977
{
	int err;
	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1978
	size_t len = PAGE_SIZE << order;
1979 1980 1981 1982

	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
	if (err)
		return VM_FAULT_SIGBUS;
1983
	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1984 1985
}
EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
		struct iomap_iter *it_dest, u64 len, bool *same)
{
	const struct iomap *smap = &it_src->iomap;
	const struct iomap *dmap = &it_dest->iomap;
	loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
	void *saddr, *daddr;
	int id, ret;

	len = min(len, min(smap->length, dmap->length));

	if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
		*same = true;
		return len;
	}

	if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
		*same = false;
		return 0;
	}

	id = dax_read_lock();
	ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
				      &saddr, NULL);
	if (ret < 0)
		goto out_unlock;

	ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
				      &daddr, NULL);
	if (ret < 0)
		goto out_unlock;

	*same = !memcmp(saddr, daddr, len);
	if (!*same)
		len = 0;
	dax_read_unlock(id);
	return len;

out_unlock:
	dax_read_unlock(id);
	return -EIO;
}

int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
		struct inode *dst, loff_t dstoff, loff_t len, bool *same,
		const struct iomap_ops *ops)
{
	struct iomap_iter src_iter = {
		.inode		= src,
		.pos		= srcoff,
		.len		= len,
		.flags		= IOMAP_DAX,
	};
	struct iomap_iter dst_iter = {
		.inode		= dst,
		.pos		= dstoff,
		.len		= len,
		.flags		= IOMAP_DAX,
	};
2046
	int ret, compared = 0;
2047

2048 2049
	while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
	       (ret = iomap_iter(&dst_iter, ops)) > 0) {
2050 2051
		compared = dax_range_compare_iter(&src_iter, &dst_iter,
				min(src_iter.len, dst_iter.len), same);
2052 2053 2054
		if (compared < 0)
			return ret;
		src_iter.processed = dst_iter.processed = compared;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	}
	return ret;
}

int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
			      struct file *file_out, loff_t pos_out,
			      loff_t *len, unsigned int remap_flags,
			      const struct iomap_ops *ops)
{
	return __generic_remap_file_range_prep(file_in, pos_in, file_out,
					       pos_out, len, remap_flags, ops);
}
EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);