gup.c 60.8 KB
Newer Older
1 2 3 4 5 6
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
7
#include <linux/memremap.h>
8 9 10 11 12
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

13
#include <linux/sched/signal.h>
14
#include <linux/rwsem.h>
15
#include <linux/hugetlb.h>
16 17 18
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
19

20
#include <asm/mmu_context.h>
21
#include <asm/pgtable.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
typedef int (*set_dirty_func_t)(struct page *page);

static void __put_user_pages_dirty(struct page **pages,
				   unsigned long npages,
				   set_dirty_func_t sdf)
{
	unsigned long index;

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);

		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key cases:
		 *
		 * 1) This code sees the page as already dirty, so it skips
		 * the call to sdf(). That could happen because
		 * clear_page_dirty_for_io() called page_mkclean(),
		 * followed by set_page_dirty(). However, now the page is
		 * going to get written back, which meets the original
		 * intention of setting it dirty, so all is well:
		 * clear_page_dirty_for_io() goes on to call
		 * TestClearPageDirty(), and write the page back.
		 *
		 * 2) This code sees the page as clean, so it calls sdf().
		 * The page stays dirty, despite being written back, so it
		 * gets written back again in the next writeback cycle.
		 * This is harmless.
		 */
		if (!PageDirty(page))
			sdf(page);

		put_user_page(page);
	}
}

/**
 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
 * compound page) dirty, if it was previously listed as clean. Then, release
 * the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 *
 * set_page_dirty(), which does not lock the page, is used here.
 * Therefore, it is the caller's responsibility to ensure that this is
 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
 *
 */
void put_user_pages_dirty(struct page **pages, unsigned long npages)
{
	__put_user_pages_dirty(pages, npages, set_page_dirty);
}
EXPORT_SYMBOL(put_user_pages_dirty);

/**
 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, make that page (or its head page, if a
 * compound page) dirty, if it was previously listed as clean. Then, release
 * the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 *
 * This is just like put_user_pages_dirty(), except that it invokes
 * set_page_dirty_lock(), instead of set_page_dirty().
 *
 */
void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
{
	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
}
EXPORT_SYMBOL(put_user_pages_dirty_lock);

/**
 * put_user_pages() - release an array of gup-pinned pages.
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
 * For each page in the @pages array, release the page using put_user_page().
 *
 * Please see the put_user_page() documentation for details.
 */
void put_user_pages(struct page **pages, unsigned long npages)
{
	unsigned long index;

	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
		put_user_page(pages[index]);
}
EXPORT_SYMBOL(put_user_pages);

136 137
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
138
{
139 140 141 142 143 144 145 146 147 148 149 150
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
		return ERR_PTR(-EFAULT);
	return NULL;
}
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

176 177 178 179 180 181
/*
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
182
	return pte_write(pte) ||
183 184 185
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}

186
static struct page *follow_page_pte(struct vm_area_struct *vma,
187 188
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
189 190 191 192 193
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
194

195
retry:
196
	if (unlikely(pmd_bad(*pmd)))
197
		return no_page_table(vma, flags);
198 199 200 201 202 203 204 205 206 207 208 209

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
210
		if (pte_none(pte))
211 212 213 214 215 216
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
217
		goto retry;
218
	}
219
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
220
		goto no_page;
221
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
222 223 224
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
225 226

	page = vm_normal_page(vma, address, pte);
227 228 229 230 231
	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
		/*
		 * Only return device mapping pages in the FOLL_GET case since
		 * they are only valid while holding the pgmap reference.
		 */
232 233
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
234 235 236 237
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			int ret;

			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
253 254
	}

255 256 257 258 259 260 261 262 263 264 265 266 267
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		int ret;
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

268 269 270 271 272 273
	if (flags & FOLL_GET) {
		if (unlikely(!try_get_page(page))) {
			page = ERR_PTR(-ENOMEM);
			goto out;
		}
	}
274 275 276 277 278 279 280 281 282 283 284
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
Eric B Munson's avatar
Eric B Munson committed
285
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
286 287 288 289
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
311
out:
312 313 314 315 316
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
317 318 319 320
		return NULL;
	return no_page_table(vma, flags);
}

321 322
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
323 324
				    unsigned int flags,
				    struct follow_page_context *ctx)
325
{
326
	pmd_t *pmd, pmdval;
327 328 329 330
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

331
	pmd = pmd_offset(pudp, address);
332 333 334 335 336 337
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
338
		return no_page_table(vma, flags);
339
	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
340 341 342 343
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
344
	}
345
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
346
		page = follow_huge_pd(vma, address,
347
				      __hugepd(pmd_val(pmdval)), flags,
348 349 350 351 352
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
353
retry:
354
	if (!pmd_present(pmdval)) {
355 356 357
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
358 359
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
360
			pmd_migration_entry_wait(mm, pmd);
361 362 363 364 365 366 367
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
		 * mmap_sem is held in read mode
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
368 369
		goto retry;
	}
370
	if (pmd_devmap(pmdval)) {
371
		ptl = pmd_lock(mm, pmd);
372
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
373 374 375 376
		spin_unlock(ptl);
		if (page)
			return page;
	}
377
	if (likely(!pmd_trans_huge(pmdval)))
378
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
379

380
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
381 382
		return no_page_table(vma, flags);

383
retry_locked:
384
	ptl = pmd_lock(mm, pmd);
385 386 387 388
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
389 390 391 392 393 394 395
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
396 397
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
398
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
399 400 401 402 403 404 405
	}
	if (flags & FOLL_SPLIT) {
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
406
			split_huge_pmd(vma, pmd, address);
407 408
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
409
		} else {
410 411 412 413
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
414
			spin_unlock(ptl);
415 416 417 418
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
419 420
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
421 422 423
		}

		return ret ? ERR_PTR(ret) :
424
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
425
	}
426 427
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
428
	ctx->page_mask = HPAGE_PMD_NR - 1;
429
	return page;
430 431
}

432 433
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
434 435
				    unsigned int flags,
				    struct follow_page_context *ctx)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
451 452 453 454 455 456 457 458
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
459 460
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
461
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
462 463 464 465 466 467 468
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

469
	return follow_pmd_mask(vma, address, pud, flags, ctx);
470 471 472 473
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
474 475
				    unsigned int flags,
				    struct follow_page_context *ctx)
476 477
{
	p4d_t *p4d;
478
	struct page *page;
479 480 481 482 483 484 485 486

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

487 488 489 490 491 492 493 494
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
495
	return follow_pud_mask(vma, address, p4d, flags, ctx);
496 497 498 499 500 501 502
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
503 504
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
505 506 507
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
508 509 510 511 512 513
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
514 515 516 517 518
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
struct page *follow_page_mask(struct vm_area_struct *vma,
			      unsigned long address, unsigned int flags,
519
			      struct follow_page_context *ctx)
520 521 522 523 524
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

525
	ctx->page_mask = 0;
526 527 528 529 530 531 532 533 534 535 536 537 538

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

539 540 541 542 543 544
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
545 546 547 548 549 550 551 552
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
553

554 555 556 557 558 559 560 561 562 563 564 565 566
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
567 568
}

569 570 571 572 573
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
574
	p4d_t *p4d;
575 576 577 578 579 580 581 582 583 584 585 586 587
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
	BUG_ON(pgd_none(*pgd));
588 589 590
	p4d = p4d_offset(pgd, address);
	BUG_ON(p4d_none(*p4d));
	pud = pud_offset(p4d, address);
591 592
	BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, address);
593
	if (!pmd_present(*pmd))
594 595 596 597 598 599 600 601 602 603 604 605 606
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
607 608 609 610 611 612 613

		/*
		 * This should never happen (a device public page in the gate
		 * area).
		 */
		if (is_device_public_page(*page))
			goto unmap;
614
	}
615 616 617 618
	if (unlikely(!try_get_page(*page))) {
		ret = -ENOMEM;
		goto unmap;
	}
619 620 621 622 623 624 625
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

626 627 628 629 630
/*
 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 */
631 632 633 634
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
		unsigned long address, unsigned int *flags, int *nonblocking)
{
	unsigned int fault_flags = 0;
635
	vm_fault_t ret;
636

Eric B Munson's avatar
Eric B Munson committed
637 638 639
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
640 641
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
642 643
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
644 645 646 647
	if (nonblocking)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
648 649 650 651
	if (*flags & FOLL_TRIED) {
		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
		fault_flags |= FAULT_FLAG_TRIED;
	}
652

653
	ret = handle_mm_fault(vma, address, fault_flags);
654
	if (ret & VM_FAULT_ERROR) {
655 656 657 658
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
659 660 661 662 663 664 665 666 667 668 669
		BUG();
	}

	if (tsk) {
		if (ret & VM_FAULT_MAJOR)
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}

	if (ret & VM_FAULT_RETRY) {
670
		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
671 672 673 674 675 676 677 678 679 680 681 682 683 684
			*nonblocking = 0;
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
685
		*flags |= FOLL_COW;
686 687 688
	return 0;
}

689 690 691
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
692 693
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
694 695 696 697

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

698 699 700
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

701
	if (write) {
702 703 704 705 706 707 708 709 710 711 712 713
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
714
			if (!is_cow_mapping(vm_flags))
715 716 717 718 719 720 721 722 723 724 725 726
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
727 728 729 730 731
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
732
		return -EFAULT;
733 734 735
	return 0;
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
/**
 * __get_user_pages() - pin user pages in memory
 * @tsk:	task_struct of target task
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
756
 * Must be called with mmap_sem held.  It may be released.  See below.
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 * or mmap_sem contention, and if waiting is needed to pin all pages,
779 780 781 782 783 784 785 786
 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 * this case.
 *
 * A caller using such a combination of @nonblocking and @gup_flags
 * must therefore hold the mmap_sem for reading only, and recognize
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
787 788 789 790 791
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
792
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
793 794 795 796
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *nonblocking)
{
797
	long ret = 0, i = 0;
798
	struct vm_area_struct *vma = NULL;
799
	struct follow_page_context ctx = { NULL };
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	if (!nr_pages)
		return 0;

	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
815 816 817 818 819 820 821 822 823 824 825 826
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
827
					goto out;
828
				ctx.page_mask = 0;
829 830
				goto next_page;
			}
831

832 833 834 835
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
836 837 838
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
839
						gup_flags, nonblocking);
840
				continue;
841
			}
842 843 844 845 846 847
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
848
		if (fatal_signal_pending(current)) {
849 850 851
			ret = -ERESTARTSYS;
			goto out;
		}
852
		cond_resched();
853 854

		page = follow_page_mask(vma, start, foll_flags, &ctx);
855 856 857 858 859 860
		if (!page) {
			ret = faultin_page(tsk, vma, start, &foll_flags,
					nonblocking);
			switch (ret) {
			case 0:
				goto retry;
861 862 863
			case -EBUSY:
				ret = 0;
				/* FALLTHRU */
864 865 866
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
867
				goto out;
868 869
			case -ENOENT:
				goto next_page;
870
			}
871
			BUG();
872 873 874 875 876 877 878
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
879 880
			ret = PTR_ERR(page);
			goto out;
881
		}
882 883 884 885
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
886
			ctx.page_mask = 0;
887 888
		}
next_page:
889 890
		if (vmas) {
			vmas[i] = vma;
891
			ctx.page_mask = 0;
892
		}
893
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
894 895 896 897 898
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
899
	} while (nr_pages);
900 901 902 903
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
904 905
}

906 907
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
908
{
909 910
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
911
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
912 913 914 915

	if (!(vm_flags & vma->vm_flags))
		return false;

916 917
	/*
	 * The architecture might have a hardware protection
918
	 * mechanism other than read/write that can deny access.
919 920 921
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
922
	 */
923
	if (!arch_vma_access_permitted(vma, write, false, foreign))
924 925
		return false;

926 927 928
	return true;
}

929 930 931 932 933 934 935
/*
 * fixup_user_fault() - manually resolve a user page fault
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
936 937
 * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
 *		does not allow retry
938 939 940 941 942 943 944 945 946 947 948
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
949
 * get_user_pages() only guarantees to update these in the struct page.
950 951 952 953 954 955
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
956 957
 * This function will not return with an unlocked mmap_sem. So it has not the
 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
958 959
 */
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
960 961
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
962 963
{
	struct vm_area_struct *vma;
964
	vm_fault_t ret, major = 0;
965 966 967

	if (unlocked)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
968

969
retry:
970 971 972 973
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

974
	if (!vma_permits_fault(vma, fault_flags))
975 976
		return -EFAULT;

977
	ret = handle_mm_fault(vma, address, fault_flags);
978
	major |= ret & VM_FAULT_MAJOR;
979
	if (ret & VM_FAULT_ERROR) {
980 981 982 983
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
984 985
		BUG();
	}
986 987 988 989 990 991 992 993 994 995 996

	if (ret & VM_FAULT_RETRY) {
		down_read(&mm->mmap_sem);
		if (!(fault_flags & FAULT_FLAG_TRIED)) {
			*unlocked = true;
			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			fault_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}

997
	if (tsk) {
998
		if (major)
999 1000 1001 1002 1003 1004
			tsk->maj_flt++;
		else
			tsk->min_flt++;
	}
	return 0;
}
1005
EXPORT_SYMBOL_GPL(fixup_user_fault);
1006

1007 1008 1009 1010 1011 1012
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
						struct mm_struct *mm,
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1013
						int *locked,
1014
						unsigned int flags)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

	if (pages)
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (!pages)
			/* If it's a prefault don't insist harder */
			return ret;

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1055 1056 1057 1058
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
			if (!pages_done)
				pages_done = ret;
			break;
		}
		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
		pages += ret;
		start += ret << PAGE_SHIFT;

		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
		 * without FAULT_FLAG_ALLOW_RETRY but with
		 * FAULT_FLAG_TRIED.
		 */
		*locked = 1;
		lock_dropped = true;
		down_read(&mm->mmap_sem);
		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
				       pages, NULL, NULL);
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
		pages++;
		start += PAGE_SIZE;
	}
1090
	if (lock_dropped && *locked) {
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
		up_read(&mm->mmap_sem);
		*locked = 0;
	}
	return pages_done;
}

/*
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
 * get_user_pages_locked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  to:
 *
 *      int locked = 1;
 *      down_read(&mm->mmap_sem);
 *      do_something()
 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 *      if (locked)
 *          up_read(&mm->mmap_sem);
 */
1122
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1123
			   unsigned int gup_flags, struct page **pages,
1124 1125
			   int *locked)
{
1126 1127 1128 1129 1130 1131 1132 1133 1134
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1135
	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1136
				       pages, NULL, locked,
1137
				       gup_flags | FOLL_TOUCH);
1138
}
1139
EXPORT_SYMBOL(get_user_pages_locked);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

/*
 * get_user_pages_unlocked() is suitable to replace the form:
 *
 *      down_read(&mm->mmap_sem);
 *      get_user_pages(tsk, mm, ..., pages, NULL);
 *      up_read(&mm->mmap_sem);
 *
 *  with:
 *
 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 *
 * It is functionally equivalent to get_user_pages_fast so
1153 1154
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1155
 */
1156
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1157
			     struct page **pages, unsigned int gup_flags)
1158
{
1159 1160 1161 1162
	struct mm_struct *mm = current->mm;
	int locked = 1;
	long ret;

1163 1164 1165 1166 1167 1168 1169 1170 1171
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1172 1173
	down_read(&mm->mmap_sem);
	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1174
				      &locked, gup_flags | FOLL_TOUCH);
1175 1176 1177
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;
1178
}
1179
EXPORT_SYMBOL(get_user_pages_unlocked);
1180

1181
/*
1182
 * get_user_pages_remote() - pin user pages in memory
1183 1184 1185 1186 1187
 * @tsk:	the task_struct to use for page fault accounting, or
 *		NULL if faults are not to be recorded.
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
1188
 * @gup_flags:	flags modifying lookup behaviour
1189 1190 1191 1192 1193
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1194 1195 1196
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno. Each page returned must be released
 * with a put_page() call when it is finished with. vmas will only
 * remain valid while mmap_sem is held.
 *
 * Must be called with mmap_sem held for read or write.
 *
 * get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
1220 1221 1222
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
1223 1224 1225 1226 1227 1228 1229 1230
 *
 * get_user_pages is typically used for fewer-copy IO operations, to get a
 * handle on the memory by some means other than accesses via the user virtual
 * addresses. The pages may be submitted for DMA to devices or accessed via
 * their kernel linear mapping (via the kmap APIs). Care should be taken to
 * use the correct cache flushing APIs.
 *
 * See also get_user_pages_fast, for performance critical applications.
1231 1232 1233 1234 1235
 *
 * get_user_pages should be phased out in favor of
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
 * should use get_user_pages because it cannot pass
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1236
 */
1237 1238
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, unsigned long nr_pages,
1239
		unsigned int gup_flags, struct page **pages,
1240
		struct vm_area_struct **vmas, int *locked)
1241
{
1242 1243 1244 1245 1246 1247 1248 1249 1250
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

1251
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1252
				       locked,
1253
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1254 1255 1256
}
EXPORT_SYMBOL(get_user_pages_remote);

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}

#ifdef CONFIG_CMA
static struct page *new_non_cma_page(struct page *page, unsigned long private)
{
	/*
	 * We want to make sure we allocate the new page from the same node
	 * as the source page.
	 */
	int nid = page_to_nid(page);
	/*
	 * Trying to allocate a page for migration. Ignore allocation
	 * failure warnings. We don't force __GFP_THISNODE here because
	 * this node here is the node where we have CMA reservation and
	 * in some case these nodes will have really less non movable
	 * allocation memory.
	 */
	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;

	if (PageHighMem(page))
		gfp_mask |= __GFP_HIGHMEM;

#ifdef CONFIG_HUGETLB_PAGE
	if (PageHuge(page)) {
		struct hstate *h = page_hstate(page);
		/*
		 * We don't want to dequeue from the pool because pool pages will
		 * mostly be from the CMA region.
		 */
		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
	}
#endif
	if (PageTransHuge(page)) {
		struct page *thp;
		/*
		 * ignore allocation failure warnings
		 */
		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;

		/*
		 * Remove the movable mask so that we don't allocate from
		 * CMA area again.
		 */
		thp_gfpmask &= ~__GFP_MOVABLE;
		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	}

	return __alloc_pages_node(nid, gfp_mask, 0);
}

1329 1330 1331 1332
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
1333
					struct page **pages,
1334 1335
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
{
	long i;
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);

check_again:
	for (i = 0; i < nr_pages; i++) {
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
		if (is_migrate_cma_page(pages[i])) {

			struct page *head = compound_head(pages[i]);

			if (PageHuge(head)) {
				isolate_huge_page(head, &cma_page_list);
			} else {
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
							    page_is_file_cache(head),
							    hpage_nr_pages(head));
				}
			}
		}
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

		if (migrate_pages(&cma_page_list, new_non_cma_page,
				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1391 1392 1393
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1394
		 */
1395 1396 1397 1398
		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
						   pages, vmas, NULL,
						   gup_flags);

1399 1400 1401 1402 1403 1404 1405 1406 1407
		if ((nr_pages > 0) && migrate_allow) {
			drain_allow = true;
			goto check_again;
		}
	}

	return nr_pages;
}
#else
1408 1409 1410 1411 1412 1413 1414
static long check_and_migrate_cma_pages(struct task_struct *tsk,
					struct mm_struct *mm,
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1415 1416 1417 1418 1419
{
	return nr_pages;
}
#endif

1420
/*
1421 1422
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1423
 */
1424 1425 1426 1427 1428 1429 1430
static long __gup_longterm_locked(struct task_struct *tsk,
				  struct mm_struct *mm,
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1431
{
1432 1433
	struct vm_area_struct **vmas_tmp = vmas;
	unsigned long flags = 0;
1434 1435
	long rc, i;

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	if (gup_flags & FOLL_LONGTERM) {
		if (!pages)
			return -EINVAL;

		if (!vmas_tmp) {
			vmas_tmp = kcalloc(nr_pages,
					   sizeof(struct vm_area_struct *),
					   GFP_KERNEL);
			if (!vmas_tmp)
				return -ENOMEM;
		}
		flags = memalloc_nocma_save();
1448 1449
	}

1450 1451
	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
				     vmas_tmp, NULL, gup_flags);
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (gup_flags & FOLL_LONGTERM) {
		memalloc_nocma_restore(flags);
		if (rc < 0)
			goto out;

		if (check_dax_vmas(vmas_tmp, rc)) {
			for (i = 0; i < rc; i++)
				put_page(pages[i]);
			rc = -EOPNOTSUPP;
			goto out;
		}

		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
						 vmas_tmp, gup_flags);
1467
	}
1468 1469

out:
1470 1471
	if (vmas_tmp != vmas)
		kfree(vmas_tmp);
1472 1473
	return rc;
}
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
						  struct mm_struct *mm,
						  unsigned long start,
						  unsigned long nr_pages,
						  struct page **pages,
						  struct vm_area_struct **vmas,
						  unsigned int flags)
{
	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
				       NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */

/*
 * This is the same as get_user_pages_remote(), just with a
 * less-flexible calling convention where we assume that the task
 * and mm being operated on are the current task's and don't allow
 * passing of a locked parameter.  We also obviously don't pass
 * FOLL_REMOTE in here.
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
	return __gup_longterm_locked(current, current->mm, start, nr_pages,
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
 * @nonblocking:
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
 * return 0 on success, negative error code on error.
 *
 * vma->vm_mm->mmap_sem must be held.
 *
 * If @nonblocking is NULL, it may be held for read or write and will
 * be unperturbed.
 *
 * If @nonblocking is non-NULL, it must held for read only and may be
 * released.  If it's released, *@nonblocking will be set to 0.
 */
long populate_vma_page_range(struct vm_area_struct *vma,
		unsigned long start, unsigned long end, int *nonblocking)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

Eric B Munson's avatar
Eric B Munson committed
1536 1537 1538
	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
				NULL, NULL, nonblocking);
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
 * mmap_sem must not be held.
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
			down_read(&mm->mmap_sem);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
		up_read(&mm->mmap_sem);
	return ret;	/* 0 or negative error code */
}

1622 1623 1624 1625 1626
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
1627
 * to be freed afterwards by put_page().
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
 * Called without mmap_sem, but after all other threads have been killed.
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
	struct vm_area_struct *vma;
	struct page *page;

	if (__get_user_pages(current, current->mm, addr, 1,
			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
			     NULL) < 1)
		return NULL;
	flush_cache_page(vma, addr, page_to_pfn(page));
	return page;
}
#endif /* CONFIG_ELF_CORE */
1650 1651

/*
1652
 * Generic Fast GUP
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1673 1674
 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1675 1676 1677 1678 1679 1680 1681 1682 1683
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1684
#ifdef CONFIG_HAVE_GENERIC_GUP
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
#ifndef gup_get_pte
/*
 * We assume that the PTE can be read atomically. If this is not the case for
 * your architecture, please provide the helper.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
#endif

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
		put_page(page);
	}
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
/*
 * Return the compund head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);
	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

1721
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1722
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1723
			 unsigned int flags, struct page **pages, int *nr)
1724
{
1725 1726
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
1727 1728 1729 1730
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
1731
		pte_t pte = gup_get_pte(ptep);
1732
		struct page *head, *page;
1733 1734 1735

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
1736
		 * path using the pte_protnone check.
1737
		 */
1738 1739 1740
		if (pte_protnone(pte))
			goto pte_unmap;

1741
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1742 1743
			goto pte_unmap;

1744
		if (pte_devmap(pte)) {
1745 1746 1747
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

1748 1749 1750 1751 1752 1753
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
				undo_dev_pagemap(nr, nr_start, pages);
				goto pte_unmap;
			}
		} else if (pte_special(pte))
1754 1755 1756 1757 1758
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

1759 1760
		head = try_get_compound_head(page, 1);
		if (!head)
1761 1762 1763
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1764
			put_page(head);
1765 1766 1767
			goto pte_unmap;
		}

1768
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1769 1770

		SetPageReferenced(page);
1771 1772 1773 1774 1775 1776 1777 1778
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
1779 1780
	if (pgmap)
		put_dev_pagemap(pgmap);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
 * __get_user_pages_fast implementation that can pin pages. Thus it's still
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1796
			 unsigned int flags, struct page **pages, int *nr)
1797 1798 1799
{
	return 0;
}
1800
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1801

1802
#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
		unsigned long end, struct page **pages, int *nr)
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
			undo_dev_pagemap(nr, nr_start, pages);
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
		get_page(page);
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
1823 1824 1825

	if (pgmap)
		put_dev_pagemap(pgmap);
1826 1827 1828
	return 1;
}

1829
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1830 1831 1832
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1833 1834 1835 1836 1837
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1838

1839 1840 1841 1842 1843
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1844 1845
}

1846
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1847 1848 1849
		unsigned long end, struct page **pages, int *nr)
{
	unsigned long fault_pfn;
1850 1851 1852 1853 1854
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
		return 0;
1855

1856 1857 1858 1859 1860
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		undo_dev_pagemap(nr, nr_start, pages);
		return 0;
	}
	return 1;
1861 1862
}
#else
1863
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1864 1865 1866 1867 1868 1869
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}

1870
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1871 1872 1873 1874 1875 1876 1877
		unsigned long end, struct page **pages, int *nr)
{
	BUILD_BUG();
	return 0;
}
#endif

1878
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1879
		unsigned long end, unsigned int flags, struct page **pages, int *nr)
1880
{
1881
	struct page *head, *page;
1882 1883
	int refs;

1884
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
1885 1886
		return 0;

1887 1888 1889
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
1890
		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1891
	}
1892

1893
	refs = 0;
1894
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1895 1896 1897 1898 1899 1900 1901
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1902 1903
	head = try_get_compound_head(pmd_page(orig), refs);
	if (!head) {
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
		*nr -= refs;
		return 0;
	}

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1915
	SetPageReferenced(head);
1916 1917 1918 1919
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1920
		unsigned long end, unsigned int flags, struct page **pages, int *nr)
1921
{
1922
	struct page *head, *page;
1923 1924
	int refs;

1925
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
1926 1927
		return 0;

1928 1929 1930
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
1931
		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1932
	}
1933

1934
	refs = 0;
1935
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1936 1937 1938 1939 1940 1941 1942
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1943 1944
	head = try_get_compound_head(pud_page(orig), refs);
	if (!head) {
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		*nr -= refs;
		return 0;
	}

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1956
	SetPageReferenced(head);
1957 1958 1959
	return 1;
}

1960
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1961
			unsigned long end, unsigned int flags,
1962 1963 1964
			struct page **pages, int *nr)
{
	int refs;
1965
	struct page *head, *page;
1966

1967
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
1968 1969
		return 0;

1970
	BUILD_BUG_ON(pgd_devmap(orig));
1971
	refs = 0;
1972
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1973 1974 1975 1976 1977 1978 1979
	do {
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

1980 1981
	head = try_get_compound_head(pgd_page(orig), refs);
	if (!head) {
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
		*nr -= refs;
		return 0;
	}

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

1993
	SetPageReferenced(head);
1994 1995 1996
	return 1;
}

1997
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1998
		unsigned int flags, struct page **pages, int *nr)
1999 2000 2001 2002 2003 2004
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
2005
		pmd_t pmd = READ_ONCE(*pmdp);
2006 2007

		next = pmd_addr_end(addr, end);
2008
		if (!pmd_present(pmd))
2009 2010
			return 0;

Yu Zhao's avatar
Yu Zhao committed
2011 2012
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2013 2014 2015 2016 2017
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2018
			if (pmd_protnone(pmd))
2019 2020
				return 0;

2021
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2022 2023 2024
				pages, nr))
				return 0;

2025 2026 2027 2028 2029 2030
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2031
					 PMD_SHIFT, next, flags, pages, nr))
2032
				return 0;
2033
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2034
			return 0;
2035 2036 2037 2038 2039
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2040
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2041
			 unsigned int flags, struct page **pages, int *nr)
2042 2043 2044 2045
{
	unsigned long next;
	pud_t *pudp;

2046
	pudp = pud_offset(&p4d, addr);
2047
	do {
2048
		pud_t pud = READ_ONCE(*pudp);
2049 2050 2051 2052

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
2053
		if (unlikely(pud_huge(pud))) {
2054
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2055 2056 2057 2058
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2059
					 PUD_SHIFT, next, flags, pages, nr))
2060
				return 0;
2061
		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2062 2063 2064 2065 2066 2067
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2068
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2069
			 unsigned int flags, struct page **pages, int *nr)
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
{
	unsigned long next;
	p4d_t *p4dp;

	p4dp = p4d_offset(&pgd, addr);
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2084
					 P4D_SHIFT, next, flags, pages, nr))
2085
				return 0;
2086
		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2087 2088 2089 2090 2091 2092
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2093
static void gup_pgd_range(unsigned long addr, unsigned long end,
2094
		unsigned int flags, struct page **pages, int *nr)
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2107
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2108 2109 2110 2111
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2112
					 PGDIR_SHIFT, next, flags, pages, nr))
2113
				return;
2114
		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2115 2116 2117 2118 2119 2120 2121 2122 2123
			return;
	} while (pgdp++, addr = next, addr != end);
}

#ifndef gup_fast_permitted
/*
 * Check if it's allowed to use __get_user_pages_fast() for the range, or
 * we need to fall back to the slow version:
 */
2124
bool gup_fast_permitted(unsigned long start, int nr_pages)
2125 2126 2127 2128 2129 2130 2131 2132 2133
{
	unsigned long len, end;

	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;
	return end >= start;
}
#endif

2134 2135
/*
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2136 2137 2138
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
2139 2140 2141 2142
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
2143
	unsigned long len, end;
2144
	unsigned long flags;
2145 2146 2147 2148 2149 2150
	int nr = 0;

	start &= PAGE_MASK;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2151
	if (unlikely(!access_ok((void __user *)start, len)))
2152 2153 2154 2155 2156 2157 2158
		return 0;

	/*
	 * Disable interrupts.  We use the nested form as we can already have
	 * interrupts disabled by get_futex_key.
	 *
	 * With interrupts disabled, we block page table pages from being
2159 2160
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
2161 2162 2163 2164 2165
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
	 */

2166
	if (gup_fast_permitted(start, nr_pages)) {
2167
		local_irq_save(flags);
2168
		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2169 2170
		local_irq_restore(flags);
	}
2171 2172 2173 2174

	return nr;
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
		down_read(&current->mm->mmap_sem);
		ret = __gup_longterm_locked(current, current->mm,
					    start, nr_pages,
					    pages, NULL, gup_flags);
		up_read(&current->mm->mmap_sem);
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2198 2199 2200 2201
/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
2202
 * @gup_flags:	flags modifying pin behaviour
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
2214 2215
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
2216
{
2217
	unsigned long addr, len, end;
2218
	int nr = 0, ret = 0;
2219 2220

	start &= PAGE_MASK;
2221 2222 2223 2224
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2225 2226 2227
	if (nr_pages <= 0)
		return 0;

2228
	if (unlikely(!access_ok((void __user *)start, len)))
2229
		return -EFAULT;
2230

2231
	if (gup_fast_permitted(start, nr_pages)) {
2232
		local_irq_disable();
2233
		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2234
		local_irq_enable();
2235 2236
		ret = nr;
	}
2237 2238 2239 2240 2241 2242

	if (nr < nr_pages) {
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

2243 2244
		ret = __gup_longterm_unlocked(start, nr_pages - nr,
					      gup_flags, pages);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}
	}

	return ret;
}

2258
#endif /* CONFIG_HAVE_GENERIC_GUP */