rmi_driver.c 30.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2011-2016 Synaptics Incorporated
 * Copyright (c) 2011 Unixphere
 *
 * This driver provides the core support for a single RMI4-based device.
 *
 * The RMI4 specification can be found here (URL split for line length):
 *
 * http://www.synaptics.com/sites/default/files/
 *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 */

#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/fs.h>
20
#include <linux/irq.h>
21 22 23
#include <linux/kconfig.h>
#include <linux/pm.h>
#include <linux/slab.h>
24
#include <linux/of.h>
25 26 27 28 29 30 31 32 33 34 35 36 37
#include <uapi/linux/input.h>
#include <linux/rmi.h>
#include "rmi_bus.h"
#include "rmi_driver.h"

#define HAS_NONSTANDARD_PDT_MASK 0x40
#define RMI4_MAX_PAGE 0xff
#define RMI4_PAGE_SIZE 0x100
#define RMI4_PAGE_MASK 0xFF00

#define RMI_DEVICE_RESET_CMD	0x01
#define DEFAULT_RESET_DELAY_MS	100

38
void rmi_free_function_list(struct rmi_device *rmi_dev)
39 40 41 42
{
	struct rmi_function *fn, *tmp;
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);

43 44
	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");

45 46 47 48 49 50 51 52 53
	mutex_lock(&data->irq_mutex);

	devm_kfree(&rmi_dev->dev, data->irq_memory);
	data->irq_memory = NULL;
	data->irq_status = NULL;
	data->fn_irq_bits = NULL;
	data->current_irq_mask = NULL;
	data->new_irq_mask = NULL;

54
	data->f01_container = NULL;
55
	data->f34_container = NULL;
56 57 58 59 60 61 62

	/* Doing it in the reverse order so F01 will be removed last */
	list_for_each_entry_safe_reverse(fn, tmp,
					 &data->function_list, node) {
		list_del(&fn->node);
		rmi_unregister_function(fn);
	}
63 64

	mutex_unlock(&data->irq_mutex);
65
}
66
EXPORT_SYMBOL_GPL(rmi_free_function_list);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

static int reset_one_function(struct rmi_function *fn)
{
	struct rmi_function_handler *fh;
	int retval = 0;

	if (!fn || !fn->dev.driver)
		return 0;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->reset) {
		retval = fh->reset(fn);
		if (retval < 0)
			dev_err(&fn->dev, "Reset failed with code %d.\n",
				retval);
	}

	return retval;
}

static int configure_one_function(struct rmi_function *fn)
{
	struct rmi_function_handler *fh;
	int retval = 0;

	if (!fn || !fn->dev.driver)
		return 0;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->config) {
		retval = fh->config(fn);
		if (retval < 0)
			dev_err(&fn->dev, "Config failed with code %d.\n",
				retval);
	}

	return retval;
}

static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;
	int retval;

	list_for_each_entry(entry, &data->function_list, node) {
		retval = reset_one_function(entry);
		if (retval < 0)
			return retval;
	}

	return 0;
}

static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;
	int retval;

	list_for_each_entry(entry, &data->function_list, node) {
		retval = configure_one_function(entry);
		if (retval < 0)
			return retval;
	}

	return 0;
}

static void process_one_interrupt(struct rmi_driver_data *data,
				  struct rmi_function *fn)
{
	struct rmi_function_handler *fh;

	if (!fn || !fn->dev.driver)
		return;

	fh = to_rmi_function_handler(fn->dev.driver);
145
	if (fh->attention) {
146 147 148 149 150 151 152
		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
				data->irq_count);
		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
			fh->attention(fn, data->fn_irq_bits);
	}
}

153
static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
154 155 156 157 158 159 160 161 162
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct device *dev = &rmi_dev->dev;
	struct rmi_function *entry;
	int error;

	if (!data)
		return 0;

163 164 165 166 167 168
	mutex_lock(&data->irq_mutex);
	if (!data->irq_status || !data->f01_container) {
		mutex_unlock(&data->irq_mutex);
		return 0;
	}

169 170 171 172 173 174
	if (!rmi_dev->xport->attn_data) {
		error = rmi_read_block(rmi_dev,
				data->f01_container->fd.data_base_addr + 1,
				data->irq_status, data->num_of_irq_regs);
		if (error < 0) {
			dev_err(dev, "Failed to read irqs, code=%d\n", error);
175
			mutex_unlock(&data->irq_mutex);
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
			return error;
		}
	}

	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
	       data->irq_count);

	/*
	 * It would be nice to be able to use irq_chip to handle these
	 * nested IRQs.  Unfortunately, most of the current customers for
	 * this driver are using older kernels (3.0.x) that don't support
	 * the features required for that.  Once they've shifted to more
	 * recent kernels (say, 3.3 and higher), this should be switched to
	 * use irq_chip.
	 */
	list_for_each_entry(entry, &data->function_list, node)
192
		process_one_interrupt(data, entry);
193 194 195 196

	if (data->input)
		input_sync(data->input);

197 198
	mutex_unlock(&data->irq_mutex);

199 200
	return 0;
}
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
{
	struct rmi_device *rmi_dev = dev_id;
	int ret;

	ret = rmi_process_interrupt_requests(rmi_dev);
	if (ret)
		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
			"Failed to process interrupt request: %d\n", ret);

	return IRQ_HANDLED;
}

static int rmi_irq_init(struct rmi_device *rmi_dev)
{
	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
218
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	int irq_flags = irq_get_trigger_type(pdata->irq);
	int ret;

	if (!irq_flags)
		irq_flags = IRQF_TRIGGER_LOW;

	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
					dev_name(rmi_dev->xport->dev),
					rmi_dev);
	if (ret < 0) {
		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
			pdata->irq);

		return ret;
	}

236 237
	data->enabled = true;

238 239
	return 0;
}
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

static int suspend_one_function(struct rmi_function *fn)
{
	struct rmi_function_handler *fh;
	int retval = 0;

	if (!fn || !fn->dev.driver)
		return 0;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->suspend) {
		retval = fh->suspend(fn);
		if (retval < 0)
			dev_err(&fn->dev, "Suspend failed with code %d.\n",
				retval);
	}

	return retval;
}

static int rmi_suspend_functions(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;
	int retval;

266 267
	mutex_lock(&data->irq_mutex);

268 269
	list_for_each_entry(entry, &data->function_list, node) {
		retval = suspend_one_function(entry);
270 271
		if (retval < 0) {
			mutex_unlock(&data->irq_mutex);
272
			return retval;
273
		}
274 275
	}

276 277
	mutex_unlock(&data->irq_mutex);

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	return 0;
}

static int resume_one_function(struct rmi_function *fn)
{
	struct rmi_function_handler *fh;
	int retval = 0;

	if (!fn || !fn->dev.driver)
		return 0;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->resume) {
		retval = fh->resume(fn);
		if (retval < 0)
			dev_err(&fn->dev, "Resume failed with code %d.\n",
				retval);
	}

	return retval;
}

static int rmi_resume_functions(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;
	int retval;

306 307
	mutex_lock(&data->irq_mutex);

308 309
	list_for_each_entry(entry, &data->function_list, node) {
		retval = resume_one_function(entry);
310 311
		if (retval < 0) {
			mutex_unlock(&data->irq_mutex);
312
			return retval;
313
		}
314 315
	}

316 317
	mutex_unlock(&data->irq_mutex);

318 319 320
	return 0;
}

321
int rmi_enable_sensor(struct rmi_device *rmi_dev)
322 323 324 325 326 327 328 329 330
{
	int retval = 0;

	retval = rmi_driver_process_config_requests(rmi_dev);
	if (retval < 0)
		return retval;

	return rmi_process_interrupt_requests(rmi_dev);
}
331
EXPORT_SYMBOL_GPL(rmi_enable_sensor);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

/**
 * rmi_driver_set_input_params - set input device id and other data.
 *
 * @rmi_dev: Pointer to an RMI device
 * @input: Pointer to input device
 *
 */
static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
				struct input_dev *input)
{
	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
	input->id.vendor  = SYNAPTICS_VENDOR_ID;
	input->id.bustype = BUS_RMI;
	return 0;
}

static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
				struct input_dev *input)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	char *device_name = rmi_f01_get_product_ID(data->f01_container);
	char *name;

	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
			      "Synaptics %s", device_name);
	if (!name)
		return;

	input->name = name;
}

static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
				   unsigned long *mask)
{
	int error = 0;
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct device *dev = &rmi_dev->dev;

	mutex_lock(&data->irq_mutex);
	bitmap_or(data->new_irq_mask,
		  data->current_irq_mask, mask, data->irq_count);

	error = rmi_write_block(rmi_dev,
			data->f01_container->fd.control_base_addr + 1,
			data->new_irq_mask, data->num_of_irq_regs);
	if (error < 0) {
		dev_err(dev, "%s: Failed to change enabled interrupts!",
							__func__);
		goto error_unlock;
	}
	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
		    data->num_of_irq_regs);

error_unlock:
	mutex_unlock(&data->irq_mutex);
	return error;
}

static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
				     unsigned long *mask)
{
	int error = 0;
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct device *dev = &rmi_dev->dev;

	mutex_lock(&data->irq_mutex);
	bitmap_andnot(data->new_irq_mask,
		  data->current_irq_mask, mask, data->irq_count);

	error = rmi_write_block(rmi_dev,
			data->f01_container->fd.control_base_addr + 1,
			data->new_irq_mask, data->num_of_irq_regs);
	if (error < 0) {
		dev_err(dev, "%s: Failed to change enabled interrupts!",
							__func__);
		goto error_unlock;
	}
	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
		    data->num_of_irq_regs);

error_unlock:
	mutex_unlock(&data->irq_mutex);
	return error;
}

static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	int error;

	/*
	 * Can get called before the driver is fully ready to deal with
	 * this situation.
	 */
	if (!data || !data->f01_container) {
		dev_warn(&rmi_dev->dev,
			 "Not ready to handle reset yet!\n");
		return 0;
	}

	error = rmi_read_block(rmi_dev,
			       data->f01_container->fd.control_base_addr + 1,
			       data->current_irq_mask, data->num_of_irq_regs);
	if (error < 0) {
		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
			__func__);
		return error;
	}

	error = rmi_driver_process_reset_requests(rmi_dev);
	if (error < 0)
		return error;

	error = rmi_driver_process_config_requests(rmi_dev);
	if (error < 0)
		return error;

	return 0;
}

int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry,
			u16 pdt_address)
{
	u8 buf[RMI_PDT_ENTRY_SIZE];
	int error;

	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
	if (error) {
		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
				pdt_address, error);
		return error;
	}

	entry->page_start = pdt_address & RMI4_PAGE_MASK;
	entry->query_base_addr = buf[0];
	entry->command_base_addr = buf[1];
	entry->control_base_addr = buf[2];
	entry->data_base_addr = buf[3];
	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
	entry->function_number = buf[5];

	return 0;
}
EXPORT_SYMBOL_GPL(rmi_read_pdt_entry);

static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
				      struct rmi_function_descriptor *fd)
{
	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
	fd->function_number = pdt->function_number;
	fd->interrupt_source_count = pdt->interrupt_source_count;
	fd->function_version = pdt->function_version;
}

#define RMI_SCAN_CONTINUE	0
#define RMI_SCAN_DONE		1

static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
			     int page,
496
			     int *empty_pages,
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
			     void *ctx,
			     int (*callback)(struct rmi_device *rmi_dev,
					     void *ctx,
					     const struct pdt_entry *entry))
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct pdt_entry pdt_entry;
	u16 page_start = RMI4_PAGE_SIZE * page;
	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
	u16 addr;
	int error;
	int retval;

	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
		if (error)
			return error;

		if (RMI4_END_OF_PDT(pdt_entry.function_number))
			break;

		retval = callback(rmi_dev, ctx, &pdt_entry);
		if (retval != RMI_SCAN_CONTINUE)
			return retval;
	}

524 525 526 527 528 529 530 531 532 533
	/*
	 * Count number of empty PDT pages. If a gap of two pages
	 * or more is found, stop scanning.
	 */
	if (addr == pdt_start)
		++*empty_pages;
	else
		*empty_pages = 0;

	return (data->f01_bootloader_mode || *empty_pages >= 2) ?
534 535 536
					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
}

537 538 539
int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
		 int (*callback)(struct rmi_device *rmi_dev,
		 void *ctx, const struct pdt_entry *entry))
540 541
{
	int page;
542
	int empty_pages = 0;
543 544 545
	int retval = RMI_SCAN_DONE;

	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
546 547
		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
					   ctx, callback);
548 549 550 551 552 553
		if (retval != RMI_SCAN_CONTINUE)
			break;
	}

	return retval < 0 ? retval : 0;
}
554
EXPORT_SYMBOL_GPL(rmi_scan_pdt);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

int rmi_read_register_desc(struct rmi_device *d, u16 addr,
				struct rmi_register_descriptor *rdesc)
{
	int ret;
	u8 size_presence_reg;
	u8 buf[35];
	int presense_offset = 1;
	u8 *struct_buf;
	int reg;
	int offset = 0;
	int map_offset = 0;
	int i;
	int b;

	/*
	 * The first register of the register descriptor is the size of
	 * the register descriptor's presense register.
	 */
	ret = rmi_read(d, addr, &size_presence_reg);
	if (ret)
		return ret;
	++addr;

	if (size_presence_reg < 0 || size_presence_reg > 35)
		return -EIO;

	memset(buf, 0, sizeof(buf));

	/*
	 * The presence register contains the size of the register structure
	 * and a bitmap which identified which packet registers are present
	 * for this particular register type (ie query, control, or data).
	 */
	ret = rmi_read_block(d, addr, buf, size_presence_reg);
	if (ret)
		return ret;
	++addr;

	if (buf[0] == 0) {
		presense_offset = 3;
		rdesc->struct_size = buf[1] | (buf[2] << 8);
	} else {
		rdesc->struct_size = buf[0];
	}

	for (i = presense_offset; i < size_presence_reg; i++) {
		for (b = 0; b < 8; b++) {
			if (buf[i] & (0x1 << b))
				bitmap_set(rdesc->presense_map, map_offset, 1);
			++map_offset;
		}
	}

	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
						RMI_REG_DESC_PRESENSE_BITS);

	rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
				sizeof(struct rmi_register_desc_item),
				GFP_KERNEL);
	if (!rdesc->registers)
		return -ENOMEM;

	/*
	 * Allocate a temporary buffer to hold the register structure.
	 * I'm not using devm_kzalloc here since it will not be retained
	 * after exiting this function
	 */
	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
	if (!struct_buf)
		return -ENOMEM;

	/*
	 * The register structure contains information about every packet
	 * register of this type. This includes the size of the packet
	 * register and a bitmap of all subpackets contained in the packet
	 * register.
	 */
	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
	if (ret)
		goto free_struct_buff;

	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
	for (i = 0; i < rdesc->num_registers; i++) {
		struct rmi_register_desc_item *item = &rdesc->registers[i];
		int reg_size = struct_buf[offset];

		++offset;
		if (reg_size == 0) {
			reg_size = struct_buf[offset] |
					(struct_buf[offset + 1] << 8);
			offset += 2;
		}

		if (reg_size == 0) {
			reg_size = struct_buf[offset] |
					(struct_buf[offset + 1] << 8) |
					(struct_buf[offset + 2] << 16) |
					(struct_buf[offset + 3] << 24);
			offset += 4;
		}

		item->reg = reg;
		item->reg_size = reg_size;

660 661
		map_offset = 0;

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		do {
			for (b = 0; b < 7; b++) {
				if (struct_buf[offset] & (0x1 << b))
					bitmap_set(item->subpacket_map,
						map_offset, 1);
				++map_offset;
			}
		} while (struct_buf[offset++] & 0x80);

		item->num_subpackets = bitmap_weight(item->subpacket_map,
						RMI_REG_DESC_SUBPACKET_BITS);

		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
			item->reg, item->reg_size, item->num_subpackets);

		reg = find_next_bit(rdesc->presense_map,
				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
	}

free_struct_buff:
	kfree(struct_buf);
	return ret;
}
EXPORT_SYMBOL_GPL(rmi_read_register_desc);

const struct rmi_register_desc_item *rmi_get_register_desc_item(
				struct rmi_register_descriptor *rdesc, u16 reg)
{
	const struct rmi_register_desc_item *item;
	int i;

	for (i = 0; i < rdesc->num_registers; i++) {
		item = &rdesc->registers[i];
		if (item->reg == reg)
			return item;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(rmi_get_register_desc_item);

size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
{
	const struct rmi_register_desc_item *item;
	int i;
	size_t size = 0;

	for (i = 0; i < rdesc->num_registers; i++) {
		item = &rdesc->registers[i];
		size += item->reg_size;
	}
	return size;
}
EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size);

/* Compute the register offset relative to the base address */
int rmi_register_desc_calc_reg_offset(
		struct rmi_register_descriptor *rdesc, u16 reg)
{
	const struct rmi_register_desc_item *item;
	int offset = 0;
	int i;

	for (i = 0; i < rdesc->num_registers; i++) {
		item = &rdesc->registers[i];
		if (item->reg == reg)
			return offset;
		++offset;
	}
	return -1;
}
EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset);

bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
	u8 subpacket)
{
	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
				subpacket) == subpacket;
}

/* Indicates that flash programming is enabled (bootloader mode). */
#define RMI_F01_STATUS_BOOTLOADER(status)	(!!((status) & 0x40))

/*
 * Given the PDT entry for F01, read the device status register to determine
 * if we're stuck in bootloader mode or not.
 *
 */
static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
				     const struct pdt_entry *pdt)
{
	int error;
	u8 device_status;

	error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start,
			 &device_status);
	if (error) {
		dev_err(&rmi_dev->dev,
			"Failed to read device status: %d.\n", error);
		return error;
	}

	return RMI_F01_STATUS_BOOTLOADER(device_status);
}

static int rmi_count_irqs(struct rmi_device *rmi_dev,
			 void *ctx, const struct pdt_entry *pdt)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	int *irq_count = ctx;

	*irq_count += pdt->interrupt_source_count;
775
	if (pdt->function_number == 0x01)
776 777 778 779 780 781
		data->f01_bootloader_mode =
			rmi_check_bootloader_mode(rmi_dev, pdt);

	return RMI_SCAN_CONTINUE;
}

782 783
int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
		      const struct pdt_entry *pdt)
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
{
	int error;

	if (pdt->function_number == 0x01) {
		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
		const struct rmi_device_platform_data *pdata =
				rmi_get_platform_data(rmi_dev);

		if (rmi_dev->xport->ops->reset) {
			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
								cmd_addr);
			if (error)
				return error;

			return RMI_SCAN_DONE;
		}

802
		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
		if (error) {
			dev_err(&rmi_dev->dev,
				"Initial reset failed. Code = %d.\n", error);
			return error;
		}

		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);

		return RMI_SCAN_DONE;
	}

	/* F01 should always be on page 0. If we don't find it there, fail. */
	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
}
818
EXPORT_SYMBOL_GPL(rmi_initial_reset);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

static int rmi_create_function(struct rmi_device *rmi_dev,
			       void *ctx, const struct pdt_entry *pdt)
{
	struct device *dev = &rmi_dev->dev;
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	int *current_irq_count = ctx;
	struct rmi_function *fn;
	int i;
	int error;

	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
			pdt->function_number);

	fn = kzalloc(sizeof(struct rmi_function) +
			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
		     GFP_KERNEL);
	if (!fn) {
		dev_err(dev, "Failed to allocate memory for F%02X\n",
			pdt->function_number);
		return -ENOMEM;
	}

	INIT_LIST_HEAD(&fn->node);
	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);

	fn->rmi_dev = rmi_dev;

	fn->num_of_irqs = pdt->interrupt_source_count;
	fn->irq_pos = *current_irq_count;
	*current_irq_count += fn->num_of_irqs;

	for (i = 0; i < fn->num_of_irqs; i++)
		set_bit(fn->irq_pos + i, fn->irq_mask);

	error = rmi_register_function(fn);
	if (error)
		goto err_put_fn;

	if (pdt->function_number == 0x01)
		data->f01_container = fn;
860 861
	else if (pdt->function_number == 0x34)
		data->f34_container = fn;
862 863 864 865 866 867 868 869 870 871

	list_add_tail(&fn->node, &data->function_list);

	return RMI_SCAN_CONTINUE;

err_put_fn:
	put_device(&fn->dev);
	return error;
}

872
void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
873
{
874
	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
875
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
876
	int irq = pdata->irq;
877 878
	int irq_flags;
	int retval;
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	mutex_lock(&data->enabled_mutex);

	if (data->enabled)
		goto out;

	enable_irq(irq);
	data->enabled = true;
	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
		retval = disable_irq_wake(irq);
		if (!retval)
			dev_warn(&rmi_dev->dev,
				 "Failed to disable irq for wake: %d\n",
				 retval);
	}

	/*
	 * Call rmi_process_interrupt_requests() after enabling irq,
	 * otherwise we may lose interrupt on edge-triggered systems.
	 */
	irq_flags = irq_get_trigger_type(pdata->irq);
	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
		rmi_process_interrupt_requests(rmi_dev);

out:
	mutex_unlock(&data->enabled_mutex);
}

void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
{
	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	int irq = pdata->irq;
	int retval;

	mutex_lock(&data->enabled_mutex);

	if (!data->enabled)
		goto out;
918

919
	data->enabled = false;
920 921 922 923 924 925 926 927
	disable_irq(irq);
	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
		retval = enable_irq_wake(irq);
		if (!retval)
			dev_warn(&rmi_dev->dev,
				 "Failed to enable irq for wake: %d\n",
				 retval);
	}
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942

out:
	mutex_unlock(&data->enabled_mutex);
}

int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
{
	int retval;

	retval = rmi_suspend_functions(rmi_dev);
	if (retval)
		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
			retval);

	rmi_disable_irq(rmi_dev, enable_wake);
943 944 945 946
	return retval;
}
EXPORT_SYMBOL_GPL(rmi_driver_suspend);

947
int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
948 949 950
{
	int retval;

951
	rmi_enable_irq(rmi_dev, clear_wake);
952

953 954 955 956 957 958 959 960 961 962 963 964
	retval = rmi_resume_functions(rmi_dev);
	if (retval)
		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
			retval);

	return retval;
}
EXPORT_SYMBOL_GPL(rmi_driver_resume);

static int rmi_driver_remove(struct device *dev)
{
	struct rmi_device *rmi_dev = to_rmi_device(dev);
965

966
	rmi_disable_irq(rmi_dev, false);
967

968
	rmi_f34_remove_sysfs(rmi_dev);
969 970 971 972 973
	rmi_free_function_list(rmi_dev);

	return 0;
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
#ifdef CONFIG_OF
static int rmi_driver_of_probe(struct device *dev,
				struct rmi_device_platform_data *pdata)
{
	int retval;

	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
					"syna,reset-delay-ms", 1);
	if (retval)
		return retval;

	return 0;
}
#else
static inline int rmi_driver_of_probe(struct device *dev,
					struct rmi_device_platform_data *pdata)
{
	return -ENODEV;
}
#endif

995
int rmi_probe_interrupts(struct rmi_driver_data *data)
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
{
	struct rmi_device *rmi_dev = data->rmi_dev;
	struct device *dev = &rmi_dev->dev;
	int irq_count;
	size_t size;
	int retval;

	/*
	 * We need to count the IRQs and allocate their storage before scanning
	 * the PDT and creating the function entries, because adding a new
	 * function can trigger events that result in the IRQ related storage
	 * being accessed.
	 */
	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
	irq_count = 0;
	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
	if (retval < 0) {
		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
		return retval;
	}
1016 1017 1018 1019

	if (data->f01_bootloader_mode)
		dev_warn(&rmi_dev->dev, "Device in bootloader mode.\n");

1020 1021 1022 1023
	data->irq_count = irq_count;
	data->num_of_irq_regs = (data->irq_count + 7) / 8;

	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1024 1025
	data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
	if (!data->irq_memory) {
1026 1027 1028 1029
		dev_err(dev, "Failed to allocate memory for irq masks.\n");
		return retval;
	}

1030 1031 1032 1033
	data->irq_status	= data->irq_memory + size * 0;
	data->fn_irq_bits	= data->irq_memory + size * 1;
	data->current_irq_mask	= data->irq_memory + size * 2;
	data->new_irq_mask	= data->irq_memory + size * 3;
1034 1035 1036

	return retval;
}
1037
EXPORT_SYMBOL_GPL(rmi_probe_interrupts);
1038

1039
int rmi_init_functions(struct rmi_driver_data *data)
1040 1041 1042 1043 1044 1045
{
	struct rmi_device *rmi_dev = data->rmi_dev;
	struct device *dev = &rmi_dev->dev;
	int irq_count;
	int retval;

1046 1047
	mutex_lock(&data->irq_mutex);

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	irq_count = 0;
	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
	if (retval < 0) {
		dev_err(dev, "Function creation failed with code %d.\n",
			retval);
		goto err_destroy_functions;
	}

	if (!data->f01_container) {
		dev_err(dev, "Missing F01 container!\n");
		retval = -EINVAL;
		goto err_destroy_functions;
	}

	retval = rmi_read_block(rmi_dev,
				data->f01_container->fd.control_base_addr + 1,
				data->current_irq_mask, data->num_of_irq_regs);
	if (retval < 0) {
		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
			__func__);
		goto err_destroy_functions;
	}

1072 1073
	mutex_unlock(&data->irq_mutex);

1074 1075 1076 1077
	return 0;

err_destroy_functions:
	rmi_free_function_list(rmi_dev);
1078
	mutex_unlock(&data->irq_mutex);
1079 1080
	return retval;
}
1081
EXPORT_SYMBOL_GPL(rmi_init_functions);
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static int rmi_driver_probe(struct device *dev)
{
	struct rmi_driver *rmi_driver;
	struct rmi_driver_data *data;
	struct rmi_device_platform_data *pdata;
	struct rmi_device *rmi_dev;
	int retval;

	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
			__func__);

	if (!rmi_is_physical_device(dev)) {
		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
		return -ENODEV;
	}

	rmi_dev = to_rmi_device(dev);
	rmi_driver = to_rmi_driver(dev->driver);
	rmi_dev->driver = rmi_driver;

	pdata = rmi_get_platform_data(rmi_dev);

1105 1106 1107 1108 1109 1110
	if (rmi_dev->xport->dev->of_node) {
		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
		if (retval)
			return retval;
	}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	INIT_LIST_HEAD(&data->function_list);
	data->rmi_dev = rmi_dev;
	dev_set_drvdata(&rmi_dev->dev, data);

	/*
	 * Right before a warm boot, the sensor might be in some unusual state,
	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
	 * or configuration update.  In order to clear the sensor to a known
	 * state and/or apply any updates, we issue a initial reset to clear any
	 * previous settings and force it into normal operation.
	 *
	 * We have to do this before actually building the PDT because
	 * the reflash updates (if any) might cause various registers to move
	 * around.
	 *
	 * For a number of reasons, this initial reset may fail to return
	 * within the specified time, but we'll still be able to bring up the
	 * driver normally after that failure.  This occurs most commonly in
	 * a cold boot situation (where then firmware takes longer to come up
	 * than from a warm boot) and the reset_delay_ms in the platform data
	 * has been set too short to accommodate that.  Since the sensor will
	 * eventually come up and be usable, we don't want to just fail here
	 * and leave the customer's device unusable.  So we warn them, and
	 * continue processing.
	 */
	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
	if (retval < 0)
		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");

	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
	if (retval < 0) {
		/*
		 * we'll print out a warning and continue since
		 * failure to get the PDT properties is not a cause to fail
		 */
		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
			 PDT_PROPERTIES_LOCATION, retval);
	}

	mutex_init(&data->irq_mutex);
1155
	mutex_init(&data->enabled_mutex);
1156

1157 1158
	retval = rmi_probe_interrupts(data);
	if (retval)
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		goto err;

	if (rmi_dev->xport->input) {
		/*
		 * The transport driver already has an input device.
		 * In some cases it is preferable to reuse the transport
		 * devices input device instead of creating a new one here.
		 * One example is some HID touchpads report "pass-through"
		 * button events are not reported by rmi registers.
		 */
		data->input = rmi_dev->xport->input;
	} else {
		data->input = devm_input_allocate_device(dev);
		if (!data->input) {
			dev_err(dev, "%s: Failed to allocate input device.\n",
				__func__);
			retval = -ENOMEM;
1176
			goto err;
1177 1178 1179 1180 1181 1182
		}
		rmi_driver_set_input_params(rmi_dev, data->input);
		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
						"%s/input0", dev_name(dev));
	}

1183 1184 1185
	retval = rmi_init_functions(data);
	if (retval)
		goto err;
1186

1187 1188 1189 1190
	retval = rmi_f34_create_sysfs(rmi_dev);
	if (retval)
		goto err;

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (data->input) {
		rmi_driver_set_input_name(rmi_dev, data->input);
		if (!rmi_dev->xport->input) {
			if (input_register_device(data->input)) {
				dev_err(dev, "%s: Failed to register input device.\n",
					__func__);
				goto err_destroy_functions;
			}
		}
	}

1202 1203 1204 1205
	retval = rmi_irq_init(rmi_dev);
	if (retval < 0)
		goto err_destroy_functions;

1206 1207
	if (data->f01_container->dev.driver)
		/* Driver already bound, so enable ATTN now. */
1208
		return rmi_enable_sensor(rmi_dev);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	return 0;

err_destroy_functions:
	rmi_free_function_list(rmi_dev);
err:
	return retval < 0 ? retval : 0;
}

static struct rmi_driver rmi_physical_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= "rmi4_physical",
		.bus	= &rmi_bus_type,
		.probe = rmi_driver_probe,
		.remove = rmi_driver_remove,
	},
	.reset_handler = rmi_driver_reset_handler,
	.clear_irq_bits = rmi_driver_clear_irq_bits,
	.set_irq_bits = rmi_driver_set_irq_bits,
	.set_input_params = rmi_driver_set_input_params,
};

bool rmi_is_physical_driver(struct device_driver *drv)
{
	return drv == &rmi_physical_driver.driver;
}

int __init rmi_register_physical_driver(void)
{
	int error;

	error = driver_register(&rmi_physical_driver.driver);
	if (error) {
		pr_err("%s: driver register failed, code=%d.\n", __func__,
		       error);
		return error;
	}

	return 0;
}

void __exit rmi_unregister_physical_driver(void)
{
	driver_unregister(&rmi_physical_driver.driver);
}