stab.c 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * PowerPC64 Segment Translation Support.
 *
 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
 *    Copyright (c) 2001 Dave Engebretsen
 * 
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/config.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
17 18
#include <asm/paca.h>
#include <asm/naca.h>
19 20
#include <asm/pmc.h>

21 22 23 24
int make_ste(unsigned long stab, 
	     unsigned long esid, unsigned long vsid);
void make_slbe(unsigned long esid, unsigned long vsid,
	       int large);
25
extern struct naca_struct *naca;
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

/*
 * Build an entry for the base kernel segment and put it into
 * the segment table or SLB.  All other segment table or SLB
 * entries are faulted in.
 */
void stab_initialize(unsigned long stab)
{
	unsigned long esid, vsid; 

	esid = GET_ESID(KERNELBASE);
	vsid = get_kernel_vsid(esid << SID_SHIFT); 

	if (!__is_processor(PV_POWER4)) {
                __asm__ __volatile__("isync; slbia; isync":::"memory");
		make_ste(stab, esid, vsid);
	} else {
                /* Invalidate the entire SLB & all the ERATS */
                __asm__ __volatile__("isync" : : : "memory");
#ifndef CONFIG_PPC_ISERIES
                __asm__ __volatile__("slbmte  %0,%0"
                                      : : "r" (0) : "memory");
                __asm__ __volatile__("isync; slbia; isync":::"memory");
		make_slbe(esid, vsid, 0);
#else
                __asm__ __volatile__("isync; slbia; isync":::"memory");
#endif
        }
}

/*
 * Create a segment table entry for the given esid/vsid pair.
 */ 
59
int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
{
	unsigned long entry, group, old_esid, castout_entry, i;
	unsigned int global_entry;
	STE *ste, *castout_ste;

	/* Search the primary group first. */
	global_entry = (esid & 0x1f) << 3;
	ste = (STE *)(stab | ((esid & 0x1f) << 7)); 

	/*
	 * Find an empty entry, if one exists.
	 */
	for(group = 0; group < 2; group++) {
		for(entry = 0; entry < 8; entry++, ste++) {
			if(!(ste->dw0.dw0.v)) {
				ste->dw1.dw1.vsid = vsid;
				/* Order VSID updte */
				__asm__ __volatile__ ("eieio" : : : "memory");
				ste->dw0.dw0.esid = esid;
				ste->dw0.dw0.v  = 1;
				ste->dw0.dw0.kp = 1;
				/* Order update     */
				__asm__ __volatile__ ("sync" : : : "memory"); 

				return(global_entry | entry);
			}
		}
		/* Now search the secondary group. */
		global_entry = ((~esid) & 0x1f) << 3;
		ste = (STE *)(stab | (((~esid) & 0x1f) << 7)); 
	}

	/*
	 * Could not find empty entry, pick one with a round robin selection.
	 * Search all entries in the two groups.  Note that the first time
	 * we get here, we start with entry 1 so the initializer
	 * can be common with the SLB castout code.
	 */

	/* This assumes we never castout when initializing the stab. */
	PMC_SW_PROCESSOR(stab_capacity_castouts); 

	castout_entry = get_paca()->xStab_data.next_round_robin;
	for(i = 0; i < 16; i++) {
		if(castout_entry < 8) {
			global_entry = (esid & 0x1f) << 3;
			ste = (STE *)(stab | ((esid & 0x1f) << 7)); 
			castout_ste = ste + castout_entry;
		} else {
			global_entry = ((~esid) & 0x1f) << 3;
			ste = (STE *)(stab | (((~esid) & 0x1f) << 7)); 
			castout_ste = ste + (castout_entry - 8);
		}

		if((((castout_ste->dw0.dw0.esid) >> 32) == 0) ||
		   (((castout_ste->dw0.dw0.esid) & 0xffffffff) > 0)) {
			/* Found an entry to castout.  It is either a user */
			/* region, or a secondary kernel segment.          */
			break;
		}

		castout_entry = (castout_entry + 1) & 0xf;
	}

	get_paca()->xStab_data.next_round_robin = (castout_entry + 1) & 0xf;

	/* Modify the old entry to the new value. */

	/* Force previous translations to complete. DRENG */
	__asm__ __volatile__ ("isync" : : : "memory" );

	castout_ste->dw0.dw0.v = 0;
	__asm__ __volatile__ ("sync" : : : "memory" );    /* Order update */
	castout_ste->dw1.dw1.vsid = vsid;
	__asm__ __volatile__ ("eieio" : : : "memory" );   /* Order update */
	old_esid = castout_ste->dw0.dw0.esid;
	castout_ste->dw0.dw0.esid = esid;
	castout_ste->dw0.dw0.v  = 1;
	castout_ste->dw0.dw0.kp = 1;
	__asm__ __volatile__ ("slbie  %0" : : "r" (old_esid << SID_SHIFT)); 
	/* Ensure completion of slbie */
	__asm__ __volatile__ ("sync" : : : "memory" );  

	return(global_entry | (castout_entry & 0x7));
}

/*
 * Create a segment buffer entry for the given esid/vsid pair.
148 149
 */
void make_slbe(unsigned long esid, unsigned long vsid, int large)
150
{
151
	int kernel_segment = 0;
152 153 154 155 156 157 158 159 160
	unsigned long entry, castout_entry;
	union {
		unsigned long word0;
		slb_dword0    data;
	} esid_data;
	union {
		unsigned long word0;
		slb_dword1    data;
	} vsid_data;
161 162 163 164

	if (REGION_ID(esid << SID_SHIFT) >= KERNEL_REGION_ID)
		kernel_segment = 1;

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	/*
	 * Find an empty entry, if one exists.
	 */
	for(entry = 0; entry < naca->slb_size; entry++) {
		__asm__ __volatile__("slbmfee  %0,%1" 
				     : "=r" (esid_data) : "r" (entry)); 
		if(!esid_data.data.v) {
			/* 
			 * Write the new SLB entry.
			 */
			vsid_data.word0 = 0;
			vsid_data.data.vsid = vsid;
			vsid_data.data.kp = 1;
			if (large)
				vsid_data.data.l = 1;
180 181
			if (kernel_segment)
				vsid_data.data.c = 1;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

			esid_data.word0 = 0;
			esid_data.data.esid = esid;
			esid_data.data.v = 1;
			esid_data.data.index = entry;

			/* slbie not needed as no previous mapping existed. */
			/* Order update  */
			__asm__ __volatile__ ("isync" : : : "memory");
			__asm__ __volatile__ ("slbmte  %0,%1" 
					      : : "r" (vsid_data), 
					      "r" (esid_data)); 
			/* Order update  */
			__asm__ __volatile__ ("isync" : : : "memory");
			return;
		}
	}
	
	/*
	 * Could not find empty entry, pick one with a round robin selection.
	 */

	PMC_SW_PROCESSOR(stab_capacity_castouts); 

	castout_entry = get_paca()->xStab_data.next_round_robin;
	entry = castout_entry; 
	castout_entry++; 
209
	if (castout_entry >= naca->slb_size)
210 211 212 213 214 215 216 217 218 219 220 221 222
		castout_entry = 1; 
	get_paca()->xStab_data.next_round_robin = castout_entry;

	/* slbie not needed as the previous mapping is still valid. */
	
	/* 
	 * Write the new SLB entry.
	 */
	vsid_data.word0 = 0;
	vsid_data.data.vsid = vsid;
	vsid_data.data.kp = 1;
	if (large)
		vsid_data.data.l = 1;
223 224
	if (kernel_segment)
		vsid_data.data.c = 1;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	
	esid_data.word0 = 0;
	esid_data.data.esid = esid;
	esid_data.data.v = 1;
	esid_data.data.index = entry;
	
	__asm__ __volatile__ ("isync" : : : "memory");   /* Order update */
	__asm__ __volatile__ ("slbmte  %0,%1" 
			      : : "r" (vsid_data), "r" (esid_data)); 
	__asm__ __volatile__ ("isync" : : : "memory" );   /* Order update */
}

/*
 * Allocate a segment table entry for the given ea.
 */
int ste_allocate ( unsigned long ea, 
		   unsigned long trap) 
{
	unsigned long vsid, esid;
	int kernel_segment = 0;

	PMC_SW_PROCESSOR(stab_faults); 

	/* Check for invalid effective addresses. */
	if (!IS_VALID_EA(ea)) {
		return 1;
	}
	
	/* Kernel or user address? */
	if (REGION_ID(ea) >= KERNEL_REGION_ID) {
		kernel_segment = 1;
		vsid = get_kernel_vsid( ea );
	} else {
		struct mm_struct *mm = current->mm;
		if ( mm ) {
			vsid = get_vsid(mm->context, ea );
		} else {
			return 1;
		}
	}

	esid = GET_ESID(ea);
	if (trap == 0x380 || trap == 0x480) {
#ifndef CONFIG_PPC_ISERIES
		if (REGION_ID(ea) == KERNEL_REGION_ID)
			make_slbe(esid, vsid, 1); 
		else
#endif
			make_slbe(esid, vsid, 0); 
	} else {
		unsigned char top_entry, stab_entry, *segments; 

		stab_entry = make_ste(get_paca()->xStab_data.virt, esid, vsid);
		PMC_SW_PROCESSOR_A(stab_entry_use, stab_entry & 0xf); 

		segments = get_paca()->xSegments;		
		top_entry = segments[0];
		if(!kernel_segment && top_entry < (STAB_CACHE_SIZE - 1)) {
			top_entry++;
			segments[top_entry] = stab_entry;
			if(top_entry == STAB_CACHE_SIZE - 1) top_entry = 0xff;
			segments[0] = top_entry;
		}
	}
	
	return(0); 
}
 
/* 
 * Flush all entries from the segment table of the current processor.
 * Kernel and Bolted entries are not removed as we cannot tolerate 
 * faults on those addresses.
 */

#define STAB_PRESSURE 0

301
void flush_stab(struct task_struct *tsk, struct mm_struct *mm)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
{
	STE *stab = (STE *) get_paca()->xStab_data.virt;
	unsigned char *segments = get_paca()->xSegments;
	unsigned long flags, i;

	if(!__is_processor(PV_POWER4)) {
		unsigned long entry;
		STE *ste;

		/* Force previous translations to complete. DRENG */
		__asm__ __volatile__ ("isync" : : : "memory");

		__save_and_cli(flags);
		if(segments[0] != 0xff && !STAB_PRESSURE) {
			for(i = 1; i <= segments[0]; i++) {
				ste = stab + segments[i]; 
				ste->dw0.dw0.v = 0;
				PMC_SW_PROCESSOR(stab_invalidations); 
			}
		} else {
			/* Invalidate all entries. */
                        ste = stab;

		        /* Never flush the first entry. */ 
		        ste += 1;
			for(entry = 1;
			    entry < (PAGE_SIZE / sizeof(STE)); 
			    entry++, ste++) {
				unsigned long ea;
				ea = ste->dw0.dw0.esid << SID_SHIFT;
				if (STAB_PRESSURE || ea < KERNELBASE) {
					ste->dw0.dw0.v = 0;
					PMC_SW_PROCESSOR(stab_invalidations); 
				}
			}
		}

		*((unsigned long *)segments) = 0;
		__restore_flags(flags);

		/* Invalidate the SLB. */
		/* Force invals to complete. */
		__asm__ __volatile__ ("sync" : : : "memory");  
		/* Flush the SLB.            */
		__asm__ __volatile__ ("slbia" : : : "memory"); 
		/* Force flush to complete.  */
		__asm__ __volatile__ ("sync" : : : "memory");  
	} else {
350 351
/* XXX The commented out code will only work for 32 bit tasks */
#if 1
352 353 354 355
		unsigned long flags;
		__save_and_cli(flags);
		__asm__ __volatile__("isync; slbia; isync":::"memory");
		__restore_flags(flags);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
#else
		union {
			unsigned long word0;
			slb_dword0 data;
		} esid_data;
		unsigned long esid;

		__asm__ __volatile__("isync" : : : "memory");
		for (esid = 0; esid < 16; esid++) {
			esid_data.word0 = 0;
			esid_data.data.esid = esid;
			__asm__ __volatile__("slbie %0" : : "r" (esid_data));
		}
		__asm__ __volatile__("isync" : : : "memory");
#endif

		PMC_SW_PROCESSOR(stab_invalidations);

		if (test_tsk_thread_flag(tsk, TIF_32BIT)) {
			unsigned long esid, vsid;

			for (esid = 0; esid < 16; esid++) {
				vsid = get_vsid(mm->context, esid << SID_SHIFT);
				make_slbe(esid, vsid, 0);
			}
		} else {
			unsigned long pc = KSTK_EIP(tsk);
			unsigned long stack = KSTK_ESP(tsk);
			unsigned long pc_segment = pc & ~SID_MASK;
			unsigned long stack_segment = stack & ~SID_MASK;
			unsigned long vsid;

			if (pc) {
				if (REGION_ID(pc) >= KERNEL_REGION_ID)
					BUG();
				vsid = get_vsid(mm->context, pc);
				make_slbe(GET_ESID(pc), vsid, 0);
			}

			if (stack && (pc_segment != stack_segment)) {
				if (REGION_ID(stack) >= KERNEL_REGION_ID)
					BUG();
				vsid = get_vsid(mm->context, stack);
				make_slbe(GET_ESID(stack), vsid, 0);
			}
		}
402 403
	}
}