x86.c 164 KB
Newer Older
1 2 3 4 5 6
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
Ben-Ami Yassour's avatar
Ben-Ami Yassour committed
7 8
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
9
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 11 12 13
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
Ben-Ami Yassour's avatar
Ben-Ami Yassour committed
14 15
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
16 17 18 19 20 21
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

22
#include <linux/kvm_host.h>
23
#include "irq.h"
24
#include "mmu.h"
Sheng Yang's avatar
Sheng Yang committed
25
#include "i8254.h"
26
#include "tss.h"
27
#include "kvm_cache_regs.h"
28
#include "x86.h"
29
#include "cpuid.h"
30

31
#include <linux/clocksource.h>
Ben-Ami Yassour's avatar
Ben-Ami Yassour committed
32
#include <linux/interrupt.h>
33 34 35
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
36
#include <linux/module.h>
37
#include <linux/mman.h>
38
#include <linux/highmem.h>
39
#include <linux/iommu.h>
40
#include <linux/intel-iommu.h>
41
#include <linux/cpufreq.h>
42
#include <linux/user-return-notifier.h>
43
#include <linux/srcu.h>
44
#include <linux/slab.h>
45
#include <linux/perf_event.h>
46
#include <linux/uaccess.h>
47
#include <linux/hash.h>
48
#include <linux/pci.h>
Avi Kivity's avatar
Avi Kivity committed
49
#include <trace/events/kvm.h>
Xiao Guangrong's avatar
Xiao Guangrong committed
50

51 52
#define CREATE_TRACE_POINTS
#include "trace.h"
53

54
#include <asm/debugreg.h>
55
#include <asm/msr.h>
56
#include <asm/desc.h>
Sheng Yang's avatar
Sheng Yang committed
57
#include <asm/mtrr.h>
Huang Ying's avatar
Huang Ying committed
58
#include <asm/mce.h>
59
#include <asm/i387.h>
Sheng Yang's avatar
Sheng Yang committed
60
#include <asm/xcr.h>
61
#include <asm/pvclock.h>
62
#include <asm/div64.h>
63

64
#define MAX_IO_MSRS 256
Huang Ying's avatar
Huang Ying committed
65
#define KVM_MAX_MCE_BANKS 32
66
#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
Huang Ying's avatar
Huang Ying committed
67

68 69 70
#define emul_to_vcpu(ctxt) \
	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)

71 72 73 74 75
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
76 77
static
u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78
#else
79
static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80
#endif
81

82 83
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84

85
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
Avi Kivity's avatar
Avi Kivity committed
86
static void process_nmi(struct kvm_vcpu *vcpu);
87

88
struct kvm_x86_ops *kvm_x86_ops;
89
EXPORT_SYMBOL_GPL(kvm_x86_ops);
90

91 92
static bool ignore_msrs = 0;
module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
93

94 95 96 97 98
bool kvm_has_tsc_control;
EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
u32  kvm_max_guest_tsc_khz;
EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);

99 100 101 102
/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
static u32 tsc_tolerance_ppm = 250;
module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);

103 104 105 106
#define KVM_NR_SHARED_MSRS 16

struct kvm_shared_msrs_global {
	int nr;
107
	u32 msrs[KVM_NR_SHARED_MSRS];
108 109 110 111 112
};

struct kvm_shared_msrs {
	struct user_return_notifier urn;
	bool registered;
113 114 115 116
	struct kvm_shared_msr_values {
		u64 host;
		u64 curr;
	} values[KVM_NR_SHARED_MSRS];
117 118 119 120 121
};

static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);

122
struct kvm_stats_debugfs_item debugfs_entries[] = {
123 124 125 126 127 128 129 130 131
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
132
	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
133 134
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
135
	{ "hypercalls", VCPU_STAT(hypercalls) },
136 137 138 139 140 141 142
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143
	{ "irq_injections", VCPU_STAT(irq_injections) },
144
	{ "nmi_injections", VCPU_STAT(nmi_injections) },
145 146 147 148 149 150
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
151
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152
	{ "mmu_unsync", VM_STAT(mmu_unsync) },
153
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154
	{ "largepages", VM_STAT(lpages) },
155 156 157
	{ NULL }
};

158 159
u64 __read_mostly host_xcr0;

160 161
int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);

162 163 164 165 166 167 168
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
{
	int i;
	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
		vcpu->arch.apf.gfns[i] = ~0;
}

169 170 171 172 173
static void kvm_on_user_return(struct user_return_notifier *urn)
{
	unsigned slot;
	struct kvm_shared_msrs *locals
		= container_of(urn, struct kvm_shared_msrs, urn);
174
	struct kvm_shared_msr_values *values;
175 176

	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
177 178 179 180
		values = &locals->values[slot];
		if (values->host != values->curr) {
			wrmsrl(shared_msrs_global.msrs[slot], values->host);
			values->curr = values->host;
181 182 183 184 185 186
		}
	}
	locals->registered = false;
	user_return_notifier_unregister(urn);
}

187
static void shared_msr_update(unsigned slot, u32 msr)
188
{
189
	struct kvm_shared_msrs *smsr;
190 191
	u64 value;

192 193 194 195 196 197 198 199 200 201 202 203 204 205
	smsr = &__get_cpu_var(shared_msrs);
	/* only read, and nobody should modify it at this time,
	 * so don't need lock */
	if (slot >= shared_msrs_global.nr) {
		printk(KERN_ERR "kvm: invalid MSR slot!");
		return;
	}
	rdmsrl_safe(msr, &value);
	smsr->values[slot].host = value;
	smsr->values[slot].curr = value;
}

void kvm_define_shared_msr(unsigned slot, u32 msr)
{
206 207
	if (slot >= shared_msrs_global.nr)
		shared_msrs_global.nr = slot + 1;
208 209 210
	shared_msrs_global.msrs[slot] = msr;
	/* we need ensured the shared_msr_global have been updated */
	smp_wmb();
211 212 213 214 215 216 217 218
}
EXPORT_SYMBOL_GPL(kvm_define_shared_msr);

static void kvm_shared_msr_cpu_online(void)
{
	unsigned i;

	for (i = 0; i < shared_msrs_global.nr; ++i)
219
		shared_msr_update(i, shared_msrs_global.msrs[i]);
220 221
}

222
void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
223 224 225
{
	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);

226
	if (((value ^ smsr->values[slot].curr) & mask) == 0)
227
		return;
228 229
	smsr->values[slot].curr = value;
	wrmsrl(shared_msrs_global.msrs[slot], value);
230 231 232 233 234 235 236 237
	if (!smsr->registered) {
		smsr->urn.on_user_return = kvm_on_user_return;
		user_return_notifier_register(&smsr->urn);
		smsr->registered = true;
	}
}
EXPORT_SYMBOL_GPL(kvm_set_shared_msr);

238 239 240 241 242 243 244 245
static void drop_user_return_notifiers(void *ignore)
{
	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);

	if (smsr->registered)
		kvm_on_user_return(&smsr->urn);
}

246 247 248
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
249
		return vcpu->arch.apic_base;
250
	else
251
		return vcpu->arch.apic_base;
252 253 254 255 256 257 258 259 260
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
261
		vcpu->arch.apic_base = data;
262 263 264
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
#define EXCPT_BENIGN		0
#define EXCPT_CONTRIBUTORY	1
#define EXCPT_PF		2

static int exception_class(int vector)
{
	switch (vector) {
	case PF_VECTOR:
		return EXCPT_PF;
	case DE_VECTOR:
	case TS_VECTOR:
	case NP_VECTOR:
	case SS_VECTOR:
	case GP_VECTOR:
		return EXCPT_CONTRIBUTORY;
	default:
		break;
	}
	return EXCPT_BENIGN;
}

static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
287 288
		unsigned nr, bool has_error, u32 error_code,
		bool reinject)
289 290 291 292
{
	u32 prev_nr;
	int class1, class2;

293 294
	kvm_make_request(KVM_REQ_EVENT, vcpu);

295 296 297 298 299 300
	if (!vcpu->arch.exception.pending) {
	queue:
		vcpu->arch.exception.pending = true;
		vcpu->arch.exception.has_error_code = has_error;
		vcpu->arch.exception.nr = nr;
		vcpu->arch.exception.error_code = error_code;
301
		vcpu->arch.exception.reinject = reinject;
302 303 304 305 306 307 308
		return;
	}

	/* to check exception */
	prev_nr = vcpu->arch.exception.nr;
	if (prev_nr == DF_VECTOR) {
		/* triple fault -> shutdown */
309
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		return;
	}
	class1 = exception_class(prev_nr);
	class2 = exception_class(nr);
	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
		/* generate double fault per SDM Table 5-5 */
		vcpu->arch.exception.pending = true;
		vcpu->arch.exception.has_error_code = true;
		vcpu->arch.exception.nr = DF_VECTOR;
		vcpu->arch.exception.error_code = 0;
	} else
		/* replace previous exception with a new one in a hope
		   that instruction re-execution will regenerate lost
		   exception */
		goto queue;
}

328 329
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
330
	kvm_multiple_exception(vcpu, nr, false, 0, false);
331 332 333
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

334 335 336 337 338 339
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
	kvm_multiple_exception(vcpu, nr, false, 0, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception);

340
void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
341
{
342 343 344 345 346 347
	if (err)
		kvm_inject_gp(vcpu, 0);
	else
		kvm_x86_ops->skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
348

349
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
350 351
{
	++vcpu->stat.pf_guest;
352 353
	vcpu->arch.cr2 = fault->address;
	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
354
}
Nadav Har'El's avatar
Nadav Har'El committed
355
EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
356

357
void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
358
{
359 360
	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
361
	else
362
		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
363 364
}

365 366
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
Avi Kivity's avatar
Avi Kivity committed
367 368
	atomic_inc(&vcpu->arch.nmi_queued);
	kvm_make_request(KVM_REQ_NMI, vcpu);
369 370 371
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);

372 373
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
374
	kvm_multiple_exception(vcpu, nr, true, error_code, false);
375 376 377
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

378 379 380 381 382 383
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
	kvm_multiple_exception(vcpu, nr, true, error_code, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);

384 385 386 387 388
/*
 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 * a #GP and return false.
 */
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
389
{
390 391 392 393
	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
		return true;
	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
	return false;
394
}
395
EXPORT_SYMBOL_GPL(kvm_require_cpl);
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
/*
 * This function will be used to read from the physical memory of the currently
 * running guest. The difference to kvm_read_guest_page is that this function
 * can read from guest physical or from the guest's guest physical memory.
 */
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gfn_t ngfn, void *data, int offset, int len,
			    u32 access)
{
	gfn_t real_gfn;
	gpa_t ngpa;

	ngpa     = gfn_to_gpa(ngfn);
	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
	if (real_gfn == UNMAPPED_GVA)
		return -EFAULT;

	real_gfn = gpa_to_gfn(real_gfn);

	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);

420 421 422 423 424 425 426
int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
			       void *data, int offset, int len, u32 access)
{
	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
				       data, offset, len, access);
}

427 428 429
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
430
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
431 432 433 434 435
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
436
	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
437

438 439 440
	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
				      offset * sizeof(u64), sizeof(pdpte),
				      PFERR_USER_MASK|PFERR_WRITE_MASK);
441 442 443 444 445
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
446
		if (is_present_gpte(pdpte[i]) &&
447
		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
448 449 450 451 452 453
			ret = 0;
			goto out;
		}
	}
	ret = 1;

454
	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
Avi Kivity's avatar
Avi Kivity committed
455 456 457 458
	__set_bit(VCPU_EXREG_PDPTR,
		  (unsigned long *)&vcpu->arch.regs_avail);
	__set_bit(VCPU_EXREG_PDPTR,
		  (unsigned long *)&vcpu->arch.regs_dirty);
459 460 461 462
out:

	return ret;
}
463
EXPORT_SYMBOL_GPL(load_pdptrs);
464

465 466
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
467
	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
468
	bool changed = true;
469 470
	int offset;
	gfn_t gfn;
471 472 473 474 475
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

Avi Kivity's avatar
Avi Kivity committed
476 477 478 479
	if (!test_bit(VCPU_EXREG_PDPTR,
		      (unsigned long *)&vcpu->arch.regs_avail))
		return true;

480 481
	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
482 483
	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
				       PFERR_USER_MASK | PFERR_WRITE_MASK);
484 485
	if (r < 0)
		goto out;
486
	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
487 488 489 490 491
out:

	return changed;
}

492
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
493
{
494 495 496 497
	unsigned long old_cr0 = kvm_read_cr0(vcpu);
	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
				    X86_CR0_CD | X86_CR0_NW;

498 499
	cr0 |= X86_CR0_ET;

500
#ifdef CONFIG_X86_64
501 502
	if (cr0 & 0xffffffff00000000UL)
		return 1;
503 504 505
#endif

	cr0 &= ~CR0_RESERVED_BITS;
506

507 508
	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
		return 1;
509

510 511
	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
		return 1;
512 513 514

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
515
		if ((vcpu->arch.efer & EFER_LME)) {
516 517
			int cs_db, cs_l;

518 519
			if (!is_pae(vcpu))
				return 1;
520
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
521 522
			if (cs_l)
				return 1;
523 524
		} else
#endif
525
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
526
						 kvm_read_cr3(vcpu)))
527
			return 1;
528 529 530 531
	}

	kvm_x86_ops->set_cr0(vcpu, cr0);

532
	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
533
		kvm_clear_async_pf_completion_queue(vcpu);
534 535
		kvm_async_pf_hash_reset(vcpu);
	}
536

537 538
	if ((cr0 ^ old_cr0) & update_bits)
		kvm_mmu_reset_context(vcpu);
539 540
	return 0;
}
541
EXPORT_SYMBOL_GPL(kvm_set_cr0);
542

543
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
544
{
545
	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
546
}
547
EXPORT_SYMBOL_GPL(kvm_lmsw);
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
{
	u64 xcr0;

	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
	if (index != XCR_XFEATURE_ENABLED_MASK)
		return 1;
	xcr0 = xcr;
	if (kvm_x86_ops->get_cpl(vcpu) != 0)
		return 1;
	if (!(xcr0 & XSTATE_FP))
		return 1;
	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
		return 1;
	if (xcr0 & ~host_xcr0)
		return 1;
	vcpu->arch.xcr0 = xcr0;
	vcpu->guest_xcr0_loaded = 0;
	return 0;
}

int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
{
	if (__kvm_set_xcr(vcpu, index, xcr)) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_xcr);

580
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
581
{
582
	unsigned long old_cr4 = kvm_read_cr4(vcpu);
583 584
	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
				   X86_CR4_PAE | X86_CR4_SMEP;
585 586
	if (cr4 & CR4_RESERVED_BITS)
		return 1;
587

588 589 590
	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
		return 1;

591 592 593
	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
		return 1;

594 595 596
	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
		return 1;

597
	if (is_long_mode(vcpu)) {
598 599
		if (!(cr4 & X86_CR4_PAE))
			return 1;
600 601
	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
		   && ((cr4 ^ old_cr4) & pdptr_bits)
602 603
		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
				   kvm_read_cr3(vcpu)))
604 605
		return 1;

606
	if (kvm_x86_ops->set_cr4(vcpu, cr4))
607
		return 1;
608

609 610
	if ((cr4 ^ old_cr4) & pdptr_bits)
		kvm_mmu_reset_context(vcpu);
611

612
	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
613
		kvm_update_cpuid(vcpu);
614

615 616
	return 0;
}
617
EXPORT_SYMBOL_GPL(kvm_set_cr4);
618

619
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
620
{
621
	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
622
		kvm_mmu_sync_roots(vcpu);
623
		kvm_mmu_flush_tlb(vcpu);
624
		return 0;
625 626
	}

627
	if (is_long_mode(vcpu)) {
628 629
		if (cr3 & CR3_L_MODE_RESERVED_BITS)
			return 1;
630 631
	} else {
		if (is_pae(vcpu)) {
632 633
			if (cr3 & CR3_PAE_RESERVED_BITS)
				return 1;
634 635
			if (is_paging(vcpu) &&
			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
636
				return 1;
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
654 655
		return 1;
	vcpu->arch.cr3 = cr3;
656
	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
657 658 659
	vcpu->arch.mmu.new_cr3(vcpu);
	return 0;
}
660
EXPORT_SYMBOL_GPL(kvm_set_cr3);
661

Andre Przywara's avatar
Andre Przywara committed
662
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
663
{
664 665
	if (cr8 & CR8_RESERVED_BITS)
		return 1;
666 667 668
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
669
		vcpu->arch.cr8 = cr8;
670 671
	return 0;
}
672
EXPORT_SYMBOL_GPL(kvm_set_cr8);
673

674
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
675 676 677 678
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
679
		return vcpu->arch.cr8;
680
}
681
EXPORT_SYMBOL_GPL(kvm_get_cr8);
682

683
static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
684 685 686 687 688 689 690 691
{
	switch (dr) {
	case 0 ... 3:
		vcpu->arch.db[dr] = val;
		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
			vcpu->arch.eff_db[dr] = val;
		break;
	case 4:
692 693
		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
			return 1; /* #UD */
694 695
		/* fall through */
	case 6:
696 697
		if (val & 0xffffffff00000000ULL)
			return -1; /* #GP */
698 699 700
		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
		break;
	case 5:
701 702
		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
			return 1; /* #UD */
703 704
		/* fall through */
	default: /* 7 */
705 706
		if (val & 0xffffffff00000000ULL)
			return -1; /* #GP */
707 708 709 710 711 712 713 714 715 716
		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
		}
		break;
	}

	return 0;
}
717 718 719 720 721 722 723 724 725 726 727 728 729

int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
{
	int res;

	res = __kvm_set_dr(vcpu, dr, val);
	if (res > 0)
		kvm_queue_exception(vcpu, UD_VECTOR);
	else if (res < 0)
		kvm_inject_gp(vcpu, 0);

	return res;
}
730 731
EXPORT_SYMBOL_GPL(kvm_set_dr);

732
static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
733 734 735 736 737 738
{
	switch (dr) {
	case 0 ... 3:
		*val = vcpu->arch.db[dr];
		break;
	case 4:
739
		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
740 741 742 743 744 745
			return 1;
		/* fall through */
	case 6:
		*val = vcpu->arch.dr6;
		break;
	case 5:
746
		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747 748 749 750 751 752 753 754 755
			return 1;
		/* fall through */
	default: /* 7 */
		*val = vcpu->arch.dr7;
		break;
	}

	return 0;
}
756 757 758 759 760 761 762 763 764

int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
{
	if (_kvm_get_dr(vcpu, dr, val)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}
	return 0;
}
765 766
EXPORT_SYMBOL_GPL(kvm_get_dr);

Avi Kivity's avatar
Avi Kivity committed
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
bool kvm_rdpmc(struct kvm_vcpu *vcpu)
{
	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	u64 data;
	int err;

	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
	if (err)
		return err;
	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
	return err;
}
EXPORT_SYMBOL_GPL(kvm_rdpmc);

782 783 784 785 786
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
787 788
 * capabilities of the host cpu. This capabilities test skips MSRs that are
 * kvm-specific. Those are put in the beginning of the list.
789
 */
790

791
#define KVM_SAVE_MSRS_BEGIN	9
792
static u32 msrs_to_save[] = {
793
	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
794
	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
795
	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
796
	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
797
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
Brian Gerst's avatar
Brian Gerst committed
798
	MSR_STAR,
799 800 801
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
802
	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
803 804 805 806 807
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
808
	MSR_IA32_TSCDEADLINE,
809
	MSR_IA32_MISC_ENABLE,
810 811
	MSR_IA32_MCG_STATUS,
	MSR_IA32_MCG_CTL,
812 813
};

814
static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
815
{
816 817
	u64 old_efer = vcpu->arch.efer;

818 819
	if (efer & efer_reserved_bits)
		return 1;
820 821

	if (is_paging(vcpu)
822 823
	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
		return 1;
824

Alexander Graf's avatar
Alexander Graf committed
825 826 827 828
	if (efer & EFER_FFXSR) {
		struct kvm_cpuid_entry2 *feat;

		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
829 830
		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
			return 1;
Alexander Graf's avatar
Alexander Graf committed
831 832
	}

833 834 835 836
	if (efer & EFER_SVME) {
		struct kvm_cpuid_entry2 *feat;

		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
837 838
		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
			return 1;
839 840
	}

841
	efer &= ~EFER_LMA;
842
	efer |= vcpu->arch.efer & EFER_LMA;
843

844 845
	kvm_x86_ops->set_efer(vcpu, efer);

846
	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
847

848 849 850 851
	/* Update reserved bits */
	if ((efer ^ old_efer) & EFER_NX)
		kvm_mmu_reset_context(vcpu);

852
	return 0;
853 854
}

855 856 857 858 859 860 861
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


862 863 864 865 866 867 868 869 870 871
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

872 873 874 875 876 877 878 879
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

880 881
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
882 883
	int version;
	int r;
884
	struct pvclock_wall_clock wc;
885
	struct timespec boot;
886 887 888 889

	if (!wall_clock)
		return;

890 891 892 893 894 895 896 897
	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
	if (r)
		return;

	if (version & 1)
		++version;  /* first time write, random junk */

	++version;
898 899 900

	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

901 902
	/*
	 * The guest calculates current wall clock time by adding
903
	 * system time (updated by kvm_guest_time_update below) to the
904 905 906
	 * wall clock specified here.  guest system time equals host
	 * system time for us, thus we must fill in host boot time here.
	 */
907
	getboottime(&boot);
908 909 910 911

	wc.sec = boot.tv_sec;
	wc.nsec = boot.tv_nsec;
	wc.version = version;
912 913 914 915 916 917 918

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}

919 920 921 922 923 924 925 926 927 928 929 930
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
	uint32_t quotient, remainder;

	/* Don't try to replace with do_div(), this one calculates
	 * "(dividend << 32) / divisor" */
	__asm__ ( "divl %4"
		  : "=a" (quotient), "=d" (remainder)
		  : "0" (0), "1" (dividend), "r" (divisor) );
	return quotient;
}

931 932
static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
			       s8 *pshift, u32 *pmultiplier)
933
{
934
	uint64_t scaled64;
935 936 937 938
	int32_t  shift = 0;
	uint64_t tps64;
	uint32_t tps32;

939 940
	tps64 = base_khz * 1000LL;
	scaled64 = scaled_khz * 1000LL;
941
	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
942 943 944 945 946
		tps64 >>= 1;
		shift--;
	}

	tps32 = (uint32_t)tps64;
947 948
	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
949 950 951
			scaled64 >>= 1;
		else
			tps32 <<= 1;
952 953 954
		shift++;
	}

955 956
	*pshift = shift;
	*pmultiplier = div_frac(scaled64, tps32);
957

958 959
	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
960 961
}

962 963 964 965 966 967 968 969
static inline u64 get_kernel_ns(void)
{
	struct timespec ts;

	WARN_ON(preemptible());
	ktime_get_ts(&ts);
	monotonic_to_bootbased(&ts);
	return timespec_to_ns(&ts);
970 971
}

972
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
Zachary Amsden's avatar
Zachary Amsden committed
973
unsigned long max_tsc_khz;
974

975
static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
976
{
977 978
	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
				   vcpu->arch.virtual_tsc_shift);
979 980
}

981
static u32 adjust_tsc_khz(u32 khz, s32 ppm)
982
{
983 984 985
	u64 v = (u64)khz * (1000000 + ppm);
	do_div(v, 1000000);
	return v;
986 987
}

988
static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
989
{
990 991
	u32 thresh_lo, thresh_hi;
	int use_scaling = 0;
992

Zachary Amsden's avatar
Zachary Amsden committed
993 994
	/* Compute a scale to convert nanoseconds in TSC cycles */
	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			   &vcpu->arch.virtual_tsc_shift,
			   &vcpu->arch.virtual_tsc_mult);
	vcpu->arch.virtual_tsc_khz = this_tsc_khz;

	/*
	 * Compute the variation in TSC rate which is acceptable
	 * within the range of tolerance and decide if the
	 * rate being applied is within that bounds of the hardware
	 * rate.  If so, no scaling or compensation need be done.
	 */
	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
		use_scaling = 1;
	}
	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
Zachary Amsden's avatar
Zachary Amsden committed
1012 1013 1014 1015
}

static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
{
1016
	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1017 1018
				      vcpu->arch.virtual_tsc_mult,
				      vcpu->arch.virtual_tsc_shift);
1019
	tsc += vcpu->arch.this_tsc_write;
Zachary Amsden's avatar
Zachary Amsden committed
1020 1021 1022
	return tsc;
}

1023 1024 1025
void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
{
	struct kvm *kvm = vcpu->kvm;
1026
	u64 offset, ns, elapsed;
1027
	unsigned long flags;
1028
	s64 nsdiff;
1029

1030
	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1031
	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1032
	ns = get_kernel_ns();
1033
	elapsed = ns - kvm->arch.last_tsc_nsec;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

	/* n.b - signed multiplication and division required */
	nsdiff = data - kvm->arch.last_tsc_write;
#ifdef CONFIG_X86_64
	nsdiff = (nsdiff * 1000) / vcpu->arch.virtual_tsc_khz;
#else
	/* do_div() only does unsigned */
	asm("idivl %2; xor %%edx, %%edx"
	    : "=A"(nsdiff)
	    : "A"(nsdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
#endif
	nsdiff -= elapsed;
	if (nsdiff < 0)
		nsdiff = -nsdiff;
1048 1049

	/*
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	 * Special case: TSC write with a small delta (1 second) of virtual
	 * cycle time against real time is interpreted as an attempt to
	 * synchronize the CPU.
         *
	 * For a reliable TSC, we can match TSC offsets, and for an unstable
	 * TSC, we add elapsed time in this computation.  We could let the
	 * compensation code attempt to catch up if we fall behind, but
	 * it's better to try to match offsets from the beginning.
         */
	if (nsdiff < NSEC_PER_SEC &&
	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1061
		if (!check_tsc_unstable()) {
1062
			offset = kvm->arch.cur_tsc_offset;
1063 1064
			pr_debug("kvm: matched tsc offset for %llu\n", data);
		} else {
1065
			u64 delta = nsec_to_cycles(vcpu, elapsed);
1066 1067
			data += delta;
			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1068
			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1069
		}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	} else {
		/*
		 * We split periods of matched TSC writes into generations.
		 * For each generation, we track the original measured
		 * nanosecond time, offset, and write, so if TSCs are in
		 * sync, we can match exact offset, and if not, we can match
		 * exact software computaion in compute_guest_tsc()
		 *
		 * These values are tracked in kvm->arch.cur_xxx variables.
		 */
		kvm->arch.cur_tsc_generation++;
		kvm->arch.cur_tsc_nsec = ns;
		kvm->arch.cur_tsc_write = data;
		kvm->arch.cur_tsc_offset = offset;
		pr_debug("kvm: new tsc generation %u, clock %llu\n",
			 kvm->arch.cur_tsc_generation, data);
1086
	}
1087 1088 1089 1090 1091

	/*
	 * We also track th most recent recorded KHZ, write and time to
	 * allow the matching interval to be extended at each write.
	 */
1092 1093
	kvm->arch.last_tsc_nsec = ns;
	kvm->arch.last_tsc_write = data;
1094
	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1095 1096 1097

	/* Reset of TSC must disable overshoot protection below */
	vcpu->arch.hv_clock.tsc_timestamp = 0;
1098
	vcpu->arch.last_guest_tsc = data;
1099 1100 1101 1102 1103 1104 1105 1106

	/* Keep track of which generation this VCPU has synchronized to */
	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;

	kvm_x86_ops->write_tsc_offset(vcpu, offset);
	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1107
}
1108

1109 1110
EXPORT_SYMBOL_GPL(kvm_write_tsc);

1111
static int kvm_guest_time_update(struct kvm_vcpu *v)
1112 1113 1114 1115
{
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;
1116
	unsigned long this_tsc_khz;
1117 1118
	s64 kernel_ns, max_kernel_ns;
	u64 tsc_timestamp;
1119 1120 1121

	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
Nadav Har'El's avatar
Nadav Har'El committed
1122
	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1123
	kernel_ns = get_kernel_ns();
1124
	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1125
	if (unlikely(this_tsc_khz == 0)) {
Zachary Amsden's avatar
Zachary Amsden committed
1126
		local_irq_restore(flags);
1127
		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1128 1129
		return 1;
	}
1130

Zachary Amsden's avatar
Zachary Amsden committed
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	/*
	 * We may have to catch up the TSC to match elapsed wall clock
	 * time for two reasons, even if kvmclock is used.
	 *   1) CPU could have been running below the maximum TSC rate
	 *   2) Broken TSC compensation resets the base at each VCPU
	 *      entry to avoid unknown leaps of TSC even when running
	 *      again on the same CPU.  This may cause apparent elapsed
	 *      time to disappear, and the guest to stand still or run
	 *	very slowly.
	 */
	if (vcpu->tsc_catchup) {
		u64 tsc = compute_guest_tsc(v, kernel_ns);
		if (tsc > tsc_timestamp) {
1144
			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
Zachary Amsden's avatar
Zachary Amsden committed
1145 1146
			tsc_timestamp = tsc;
		}
1147 1148
	}

1149 1150
	local_irq_restore(flags);

Zachary Amsden's avatar
Zachary Amsden committed
1151 1152
	if (!vcpu->time_page)
		return 0;
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * Time as measured by the TSC may go backwards when resetting the base
	 * tsc_timestamp.  The reason for this is that the TSC resolution is
	 * higher than the resolution of the other clock scales.  Thus, many
	 * possible measurments of the TSC correspond to one measurement of any
	 * other clock, and so a spread of values is possible.  This is not a
	 * problem for the computation of the nanosecond clock; with TSC rates
	 * around 1GHZ, there can only be a few cycles which correspond to one
	 * nanosecond value, and any path through this code will inevitably
	 * take longer than that.  However, with the kernel_ns value itself,
	 * the precision may be much lower, down to HZ granularity.  If the
	 * first sampling of TSC against kernel_ns ends in the low part of the
	 * range, and the second in the high end of the range, we can get:
	 *
	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
	 *
	 * As the sampling errors potentially range in the thousands of cycles,
	 * it is possible such a time value has already been observed by the
	 * guest.  To protect against this, we must compute the system time as
	 * observed by the guest and ensure the new system time is greater.
	 */
	max_kernel_ns = 0;
1176
	if (vcpu->hv_clock.tsc_timestamp) {
1177 1178 1179 1180 1181 1182 1183
		max_kernel_ns = vcpu->last_guest_tsc -
				vcpu->hv_clock.tsc_timestamp;
		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
				    vcpu->hv_clock.tsc_to_system_mul,
				    vcpu->hv_clock.tsc_shift);
		max_kernel_ns += vcpu->last_kernel_ns;
	}
1184

Zachary Amsden's avatar
Zachary Amsden committed
1185
	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1186 1187 1188
		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
				   &vcpu->hv_clock.tsc_shift,
				   &vcpu->hv_clock.tsc_to_system_mul);
Zachary Amsden's avatar
Zachary Amsden committed
1189
		vcpu->hw_tsc_khz = this_tsc_khz;
1190 1191
	}

1192 1193 1194
	if (max_kernel_ns > kernel_ns)
		kernel_ns = max_kernel_ns;

1195
	/* With all the info we got, fill in the values */
1196
	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1197
	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1198
	vcpu->last_kernel_ns = kernel_ns;
Zachary Amsden's avatar
Zachary Amsden committed
1199
	vcpu->last_guest_tsc = tsc_timestamp;
1200 1201
	vcpu->hv_clock.flags = 0;

1202 1203 1204
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
1205
	 * state, we just increase by 2 at the end.
1206
	 */
1207
	vcpu->hv_clock.version += 2;
1208 1209 1210 1211

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1212
	       sizeof(vcpu->hv_clock));
1213 1214 1215 1216

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1217
	return 0;
1218 1219
}

Avi Kivity's avatar
Avi Kivity committed
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static bool msr_mtrr_valid(unsigned msr)
{
	switch (msr) {
	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
	case MSR_MTRRfix64K_00000:
	case MSR_MTRRfix16K_80000:
	case MSR_MTRRfix16K_A0000:
	case MSR_MTRRfix4K_C0000:
	case MSR_MTRRfix4K_C8000:
	case MSR_MTRRfix4K_D0000:
	case MSR_MTRRfix4K_D8000:
	case MSR_MTRRfix4K_E0000:
	case MSR_MTRRfix4K_E8000:
	case MSR_MTRRfix4K_F0000:
	case MSR_MTRRfix4K_F8000:
	case MSR_MTRRdefType:
	case MSR_IA32_CR_PAT:
		return true;
	case 0x2f8:
		return true;
	}
	return false;
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
static bool valid_pat_type(unsigned t)
{
	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
}

static bool valid_mtrr_type(unsigned t)
{
	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
}

static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	int i;

	if (!msr_mtrr_valid(msr))
		return false;

	if (msr == MSR_IA32_CR_PAT) {
		for (i = 0; i < 8; i++)
			if (!valid_pat_type((data >> (i * 8)) & 0xff))
				return false;
		return true;
	} else if (msr == MSR_MTRRdefType) {
		if (data & ~0xcff)
			return false;
		return valid_mtrr_type(data & 0xff);
	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
		for (i = 0; i < 8 ; i++)
			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
				return false;
		return true;
	}

	/* variable MTRRs */
	return valid_mtrr_type(data & 0xff);
}

Avi Kivity's avatar
Avi Kivity committed
1281 1282
static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
Sheng Yang's avatar
Sheng Yang committed
1283 1284
	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;

1285
	if (!mtrr_valid(vcpu, msr, data))
Avi Kivity's avatar
Avi Kivity committed
1286 1287
		return 1;

Sheng Yang's avatar
Sheng Yang committed
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	if (msr == MSR_MTRRdefType) {
		vcpu->arch.mtrr_state.def_type = data;
		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
	} else if (msr == MSR_MTRRfix64K_00000)
		p[0] = data;
	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
		p[1 + msr - MSR_MTRRfix16K_80000] = data;
	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
	else if (msr == MSR_IA32_CR_PAT)
		vcpu->arch.pat = data;
	else {	/* Variable MTRRs */
		int idx, is_mtrr_mask;
		u64 *pt;

		idx = (msr - 0x200) / 2;
		is_mtrr_mask = msr - 0x200 - 2 * idx;
		if (!is_mtrr_mask)
			pt =
			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
		else
			pt =
			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
		*pt = data;
	}

	kvm_mmu_reset_context(vcpu);
Avi Kivity's avatar
Avi Kivity committed
1315 1316
	return 0;
}
1317

Huang Ying's avatar
Huang Ying committed
1318
static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1319
{
Huang Ying's avatar
Huang Ying committed
1320 1321 1322
	u64 mcg_cap = vcpu->arch.mcg_cap;
	unsigned bank_num = mcg_cap & 0xff;

1323 1324
	switch (msr) {
	case MSR_IA32_MCG_STATUS:
Huang Ying's avatar
Huang Ying committed
1325
		vcpu->arch.mcg_status = data;
1326
		break;
1327
	case MSR_IA32_MCG_CTL:
Huang Ying's avatar
Huang Ying committed
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		if (!(mcg_cap & MCG_CTL_P))
			return 1;
		if (data != 0 && data != ~(u64)0)
			return -1;
		vcpu->arch.mcg_ctl = data;
		break;
	default:
		if (msr >= MSR_IA32_MC0_CTL &&
		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
			u32 offset = msr - MSR_IA32_MC0_CTL;
1338 1339 1340 1341 1342
			/* only 0 or all 1s can be written to IA32_MCi_CTL
			 * some Linux kernels though clear bit 10 in bank 4 to
			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
			 * this to avoid an uncatched #GP in the guest
			 */
Huang Ying's avatar
Huang Ying committed
1343
			if ((offset & 0x3) == 0 &&
1344
			    data != 0 && (data | (1 << 10)) != ~(u64)0)
Huang Ying's avatar
Huang Ying committed
1345 1346 1347 1348 1349 1350 1351 1352 1353
				return -1;
			vcpu->arch.mce_banks[offset] = data;
			break;
		}
		return 1;
	}
	return 0;
}

Ed Swierk's avatar
Ed Swierk committed
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
{
	struct kvm *kvm = vcpu->kvm;
	int lm = is_long_mode(vcpu);
	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
		: kvm->arch.xen_hvm_config.blob_size_32;
	u32 page_num = data & ~PAGE_MASK;
	u64 page_addr = data & PAGE_MASK;
	u8 *page;
	int r;

	r = -E2BIG;
	if (page_num >= blob_size)
		goto out;
	r = -ENOMEM;
1371 1372 1373
	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
	if (IS_ERR(page)) {
		r = PTR_ERR(page);
Ed Swierk's avatar
Ed Swierk committed
1374
		goto out;
1375
	}
Ed Swierk's avatar
Ed Swierk committed
1376 1377 1378 1379 1380 1381 1382 1383 1384
	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
		goto out_free;
	r = 0;
out_free:
	kfree(page);
out:
	return r;
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
{
	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
}

static bool kvm_hv_msr_partition_wide(u32 msr)
{
	bool r = false;
	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
	case HV_X64_MSR_HYPERCALL:
		r = true;
		break;
	}

	return r;
}

static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	struct kvm *kvm = vcpu->kvm;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		kvm->arch.hv_guest_os_id = data;
		/* setting guest os id to zero disables hypercall page */
		if (!kvm->arch.hv_guest_os_id)
			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
		break;
	case HV_X64_MSR_HYPERCALL: {
		u64 gfn;
		unsigned long addr;
		u8 instructions[4];

		/* if guest os id is not set hypercall should remain disabled */
		if (!kvm->arch.hv_guest_os_id)
			break;
		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
			kvm->arch.hv_hypercall = data;
			break;
		}
		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
		addr = gfn_to_hva(kvm, gfn);
		if (kvm_is_error_hva(addr))
			return 1;
		kvm_x86_ops->patch_hypercall(vcpu, instructions);
		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1432
		if (__copy_to_user((void __user *)addr, instructions, 4))
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
			return 1;
		kvm->arch.hv_hypercall = data;
		break;
	}
	default:
		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
			  "data 0x%llx\n", msr, data);
		return 1;
	}
	return 0;
}

static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
1447 1448 1449
	switch (msr) {
	case HV_X64_MSR_APIC_ASSIST_PAGE: {
		unsigned long addr;
1450

1451 1452 1453 1454 1455 1456 1457 1458
		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
			vcpu->arch.hv_vapic = data;
			break;
		}
		addr = gfn_to_hva(vcpu->kvm, data >>
				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
		if (kvm_is_error_hva(addr))
			return 1;
1459
		if (__clear_user((void __user *)addr, PAGE_SIZE))
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
			return 1;
		vcpu->arch.hv_vapic = data;
		break;
	}
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
	default:
		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
			  "data 0x%llx\n", msr, data);
		return 1;
	}

	return 0;
1477 1478
}

1479 1480 1481 1482
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
{
	gpa_t gpa = data & ~0x3f;

1483 1484
	/* Bits 2:5 are resrved, Should be zero */
	if (data & 0x3c)
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		return 1;

	vcpu->arch.apf.msr_val = data;

	if (!(data & KVM_ASYNC_PF_ENABLED)) {
		kvm_clear_async_pf_completion_queue(vcpu);
		kvm_async_pf_hash_reset(vcpu);
		return 0;
	}

	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
		return 1;

1498
	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1499 1500 1501 1502
	kvm_async_pf_wakeup_all(vcpu);
	return 0;
}

1503 1504 1505 1506 1507 1508 1509 1510
static void kvmclock_reset(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.time_page) {
		kvm_release_page_dirty(vcpu->arch.time_page);
		vcpu->arch.time_page = NULL;
	}
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static void accumulate_steal_time(struct kvm_vcpu *vcpu)
{
	u64 delta;

	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
		return;

	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
	vcpu->arch.st.last_steal = current->sched_info.run_delay;
	vcpu->arch.st.accum_steal = delta;
}

static void record_steal_time(struct kvm_vcpu *vcpu)
{
	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
		return;

	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
		return;

	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
	vcpu->arch.st.steal.version += 2;
	vcpu->arch.st.accum_steal = 0;

	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
}

1540 1541
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
1542 1543
	bool pr = false;

1544 1545
	switch (msr) {
	case MSR_EFER:
1546
		return set_efer(vcpu, data);
1547 1548
	case MSR_K7_HWCR:
		data &= ~(u64)0x40;	/* ignore flush filter disable */
1549
		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1550 1551 1552 1553 1554
		if (data != 0) {
			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
				data);
			return 1;
		}
1555
		break;
1556 1557 1558 1559 1560 1561
	case MSR_FAM10H_MMIO_CONF_BASE:
		if (data != 0) {
			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
				"0x%llx\n", data);
			return 1;
		}
1562
		break;
1563
	case MSR_AMD64_NB_CFG:
1564
		break;
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	case MSR_IA32_DEBUGCTLMSR:
		if (!data) {
			/* We support the non-activated case already */
			break;
		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
			/* Values other than LBR and BTF are vendor-specific,
			   thus reserved and should throw a #GP */
			return 1;
		}
		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
			__func__, data);
		break;
1577 1578
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
1579
	case MSR_VM_HSAVE_PA:
1580
	case MSR_AMD64_PATCH_LOADER:
1581
		break;
Avi Kivity's avatar
Avi Kivity committed
1582 1583
	case 0x200 ... 0x2ff:
		return set_msr_mtrr(vcpu, msr, data);
1584 1585 1586
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
1587 1588
	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
		return kvm_x2apic_msr_write(vcpu, msr, data);
1589 1590 1591
	case MSR_IA32_TSCDEADLINE:
		kvm_set_lapic_tscdeadline_msr(vcpu, data);
		break;
1592
	case MSR_IA32_MISC_ENABLE:
1593
		vcpu->arch.ia32_misc_enable_msr = data;
1594
		break;
1595
	case MSR_KVM_WALL_CLOCK_NEW:
1596 1597 1598 1599
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
1600
	case MSR_KVM_SYSTEM_TIME_NEW:
1601
	case MSR_KVM_SYSTEM_TIME: {
1602
		kvmclock_reset(vcpu);
1603 1604

		vcpu->arch.time = data;
Zachary Amsden's avatar
Zachary Amsden committed
1605
		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}
		break;
	}
1623 1624 1625 1626
	case MSR_KVM_ASYNC_PF_EN:
		if (kvm_pv_enable_async_pf(vcpu, data))
			return 1;
		break;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	case MSR_KVM_STEAL_TIME:

		if (unlikely(!sched_info_on()))
			return 1;

		if (data & KVM_STEAL_RESERVED_MASK)
			return 1;

		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
							data & KVM_STEAL_VALID_BITS))
			return 1;

		vcpu->arch.st.msr_val = data;

		if (!(data & KVM_MSR_ENABLED))
			break;

		vcpu->arch.st.last_steal = current->sched_info.run_delay;

		preempt_disable();
		accumulate_steal_time(vcpu);
		preempt_enable();

		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);

		break;

Huang Ying's avatar
Huang Ying committed
1654 1655 1656 1657
	case MSR_IA32_MCG_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
		return set_msr_mce(vcpu, msr, data);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

	/* Performance counters are not protected by a CPUID bit,
	 * so we should check all of them in the generic path for the sake of
	 * cross vendor migration.
	 * Writing a zero into the event select MSRs disables them,
	 * which we perfectly emulate ;-). Any other value should be at least
	 * reported, some guests depend on them.
	 */
	case MSR_K7_EVNTSEL0:
	case MSR_K7_EVNTSEL1:
	case MSR_K7_EVNTSEL2:
	case MSR_K7_EVNTSEL3:
		if (data != 0)
			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
				"0x%x data 0x%llx\n", msr, data);
		break;
	/* at least RHEL 4 unconditionally writes to the perfctr registers,
	 * so we ignore writes to make it happy.
	 */
	case MSR_K7_PERFCTR0:
	case MSR_K7_PERFCTR1:
	case MSR_K7_PERFCTR2:
	case MSR_K7_PERFCTR3:
		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
			"0x%x data 0x%llx\n", msr, data);
		break;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	case MSR_P6_PERFCTR0:
	case MSR_P6_PERFCTR1:
		pr = true;
	case MSR_P6_EVNTSEL0:
	case MSR_P6_EVNTSEL1:
		if (kvm_pmu_msr(vcpu, msr))
			return kvm_pmu_set_msr(vcpu, msr, data);

		if (pr || data != 0)
			pr_unimpl(vcpu, "disabled perfctr wrmsr: "
				"0x%x data 0x%llx\n", msr, data);
		break;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	case MSR_K7_CLK_CTL:
		/*
		 * Ignore all writes to this no longer documented MSR.
		 * Writes are only relevant for old K7 processors,
		 * all pre-dating SVM, but a recommended workaround from
		 * AMD for these chips. It is possible to speicify the
		 * affected processor models on the command line, hence
		 * the need to ignore the workaround.
		 */
		break;
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
		if (kvm_hv_msr_partition_wide(msr)) {
			int r;
			mutex_lock(&vcpu->kvm->lock);
			r = set_msr_hyperv_pw(vcpu, msr, data);
			mutex_unlock(&vcpu->kvm->lock);
			return r;
		} else
			return set_msr_hyperv(vcpu, msr, data);
		break;
1716 1717 1718 1719 1720 1721
	case MSR_IA32_BBL_CR_CTL3:
		/* Drop writes to this legacy MSR -- see rdmsr
		 * counterpart for further detail.
		 */
		pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
		break;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	case MSR_AMD64_OSVW_ID_LENGTH:
		if (!guest_cpuid_has_osvw(vcpu))
			return 1;
		vcpu->arch.osvw.length = data;
		break;
	case MSR_AMD64_OSVW_STATUS:
		if (!guest_cpuid_has_osvw(vcpu))
			return 1;
		vcpu->arch.osvw.status = data;
		break;
1732
	default:
Ed Swierk's avatar
Ed Swierk committed
1733 1734
		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
			return xen_hvm_config(vcpu, data);
1735 1736
		if (kvm_pmu_msr(vcpu, msr))
			return kvm_pmu_set_msr(vcpu, msr, data);
1737 1738 1739 1740 1741 1742 1743 1744 1745
		if (!ignore_msrs) {
			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
				msr, data);
			return 1;
		} else {
			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
				msr, data);
			break;
		}
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

Avi Kivity's avatar
Avi Kivity committed
1762 1763
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
Sheng Yang's avatar
Sheng Yang committed
1764 1765
	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;

Avi Kivity's avatar
Avi Kivity committed
1766 1767 1768
	if (!msr_mtrr_valid(msr))
		return 1;

Sheng Yang's avatar
Sheng Yang committed
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (msr == MSR_MTRRdefType)
		*pdata = vcpu->arch.mtrr_state.def_type +
			 (vcpu->arch.mtrr_state.enabled << 10);
	else if (msr == MSR_MTRRfix64K_00000)
		*pdata = p[0];
	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
	else if (msr == MSR_IA32_CR_PAT)
		*pdata = vcpu->arch.pat;
	else {	/* Variable MTRRs */
		int idx, is_mtrr_mask;
		u64 *pt;

		idx = (msr - 0x200) / 2;
		is_mtrr_mask = msr - 0x200 - 2 * idx;
		if (!is_mtrr_mask)
			pt =
			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
		else
			pt =
			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
		*pdata = *pt;
	}

Avi Kivity's avatar
Avi Kivity committed
1795 1796 1797
	return 0;
}

Huang Ying's avatar
Huang Ying committed
1798
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1799 1800
{
	u64 data;
Huang Ying's avatar
Huang Ying committed
1801 1802
	u64 mcg_cap = vcpu->arch.mcg_cap;
	unsigned bank_num = mcg_cap & 0xff;
1803 1804 1805 1806

	switch (msr) {
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
Huang Ying's avatar
Huang Ying committed
1807 1808
		data = 0;
		break;
1809
	case MSR_IA32_MCG_CAP:
Huang Ying's avatar
Huang Ying committed
1810 1811
		data = vcpu->arch.mcg_cap;
		break;
1812
	case MSR_IA32_MCG_CTL:
Huang Ying's avatar
Huang Ying committed
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		if (!(mcg_cap & MCG_CTL_P))
			return 1;
		data = vcpu->arch.mcg_ctl;
		break;
	case MSR_IA32_MCG_STATUS:
		data = vcpu->arch.mcg_status;
		break;
	default:
		if (msr >= MSR_IA32_MC0_CTL &&
		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
			u32 offset = msr - MSR_IA32_MC0_CTL;
			data = vcpu->arch.mce_banks[offset];
			break;
		}
		return 1;
	}
	*pdata = data;
	return 0;
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data = 0;
	struct kvm *kvm = vcpu->kvm;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		data = kvm->arch.hv_guest_os_id;
		break;
	case HV_X64_MSR_HYPERCALL:
		data = kvm->arch.hv_hypercall;
		break;
	default:
		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}

	*pdata = data;
	return 0;
}

static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data = 0;

	switch (msr) {
	case HV_X64_MSR_VP_INDEX: {
		int r;
		struct kvm_vcpu *v;
		kvm_for_each_vcpu(r, v, vcpu->kvm)
			if (v == vcpu)
				data = r;
		break;
	}
1867 1868 1869 1870 1871 1872
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1873
	case HV_X64_MSR_APIC_ASSIST_PAGE:
1874 1875
		data = vcpu->arch.hv_vapic;
		break;
1876 1877 1878 1879 1880 1881 1882 1883
	default:
		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}

Huang Ying's avatar
Huang Ying committed
1884 1885 1886 1887 1888 1889
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case MSR_IA32_PLATFORM_ID:
1890
	case MSR_IA32_EBL_CR_POWERON:
1891 1892 1893 1894 1895
	case MSR_IA32_DEBUGCTLMSR:
	case MSR_IA32_LASTBRANCHFROMIP:
	case MSR_IA32_LASTBRANCHTOIP:
	case MSR_IA32_LASTINTFROMIP:
	case MSR_IA32_LASTINTTOIP:
1896 1897
	case MSR_K8_SYSCFG:
	case MSR_K7_HWCR:
1898
	case MSR_VM_HSAVE_PA:
1899
	case MSR_K7_EVNTSEL0:
1900
	case MSR_K7_PERFCTR0:
1901
	case MSR_K8_INT_PENDING_MSG:
1902
	case MSR_AMD64_NB_CFG:
1903
	case MSR_FAM10H_MMIO_CONF_BASE:
1904 1905
		data = 0;
		break;
1906 1907 1908 1909 1910 1911 1912 1913
	case MSR_P6_PERFCTR0:
	case MSR_P6_PERFCTR1:
	case MSR_P6_EVNTSEL0:
	case MSR_P6_EVNTSEL1:
		if (kvm_pmu_msr(vcpu, msr))
			return kvm_pmu_get_msr(vcpu, msr, pdata);
		data = 0;
		break;
1914 1915 1916
	case MSR_IA32_UCODE_REV:
		data = 0x100000000ULL;
		break;
Avi Kivity's avatar
Avi Kivity committed
1917 1918 1919 1920 1921
	case MSR_MTRRcap:
		data = 0x500 | KVM_NR_VAR_MTRR;
		break;
	case 0x200 ... 0x2ff:
		return get_msr_mtrr(vcpu, msr, pdata);
1922 1923 1924
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		/*
		 * MSR_EBC_FREQUENCY_ID
		 * Conservative value valid for even the basic CPU models.
		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
		 * and 266MHz for model 3, or 4. Set Core Clock
		 * Frequency to System Bus Frequency Ratio to 1 (bits
		 * 31:24) even though these are only valid for CPU
		 * models > 2, however guests may end up dividing or
		 * multiplying by zero otherwise.
		 */
	case MSR_EBC_FREQUENCY_ID:
		data = 1 << 24;
		break;
1939 1940 1941
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
1942 1943 1944
	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
		return kvm_x2apic_msr_read(vcpu, msr, pdata);
		break;
1945 1946 1947
	case MSR_IA32_TSCDEADLINE:
		data = kvm_get_lapic_tscdeadline_msr(vcpu);
		break;
1948
	case MSR_IA32_MISC_ENABLE:
1949
		data = vcpu->arch.ia32_misc_enable_msr;
1950
		break;
1951 1952 1953 1954 1955 1956
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
1957
	case MSR_EFER:
1958
		data = vcpu->arch.efer;
1959
		break;
1960
	case MSR_KVM_WALL_CLOCK:
1961
	case MSR_KVM_WALL_CLOCK_NEW:
1962 1963 1964
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
1965
	case MSR_KVM_SYSTEM_TIME_NEW:
1966 1967
		data = vcpu->arch.time;
		break;
1968 1969 1970
	case MSR_KVM_ASYNC_PF_EN:
		data = vcpu->arch.apf.msr_val;
		break;
1971 1972 1973
	case MSR_KVM_STEAL_TIME:
		data = vcpu->arch.st.msr_val;
		break;
Huang Ying's avatar
Huang Ying committed
1974 1975 1976 1977 1978 1979 1980
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MCG_CAP:
	case MSR_IA32_MCG_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
		return get_msr_mce(vcpu, msr, pdata);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	case MSR_K7_CLK_CTL:
		/*
		 * Provide expected ramp-up count for K7. All other
		 * are set to zero, indicating minimum divisors for
		 * every field.
		 *
		 * This prevents guest kernels on AMD host with CPU
		 * type 6, model 8 and higher from exploding due to
		 * the rdmsr failing.
		 */
		data = 0x20000000;
		break;
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
		if (kvm_hv_msr_partition_wide(msr)) {
			int r;
			mutex_lock(&vcpu->kvm->lock);
			r = get_msr_hyperv_pw(vcpu, msr, pdata);
			mutex_unlock(&vcpu->kvm->lock);
			return r;
		} else
			return get_msr_hyperv(vcpu, msr, pdata);
		break;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	case MSR_IA32_BBL_CR_CTL3:
		/* This legacy MSR exists but isn't fully documented in current
		 * silicon.  It is however accessed by winxp in very narrow
		 * scenarios where it sets bit #19, itself documented as
		 * a "reserved" bit.  Best effort attempt to source coherent
		 * read data here should the balance of the register be
		 * interpreted by the guest:
		 *
		 * L2 cache control register 3: 64GB range, 256KB size,
		 * enabled, latency 0x1, configured
		 */
		data = 0xbe702111;
		break;
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	case MSR_AMD64_OSVW_ID_LENGTH:
		if (!guest_cpuid_has_osvw(vcpu))
			return 1;
		data = vcpu->arch.osvw.length;
		break;
	case MSR_AMD64_OSVW_STATUS:
		if (!guest_cpuid_has_osvw(vcpu))
			return 1;
		data = vcpu->arch.osvw.status;
		break;
2026
	default:
2027 2028
		if (kvm_pmu_msr(vcpu, msr))
			return kvm_pmu_get_msr(vcpu, msr, pdata);
2029 2030 2031 2032 2033 2034 2035 2036
		if (!ignore_msrs) {
			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
			return 1;
		} else {
			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
			data = 0;
		}
		break;
2037 2038 2039 2040 2041 2042
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
2053
	int i, idx;
2054

2055
	idx = srcu_read_lock(&vcpu->kvm->srcu);
2056 2057 2058
	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;
2059
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2088 2089 2090
	entries = memdup_user(user_msrs->entries, size);
	if (IS_ERR(entries)) {
		r = PTR_ERR(entries);
2091
		goto out;
2092
	}
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
2105
	kfree(entries);
2106 2107 2108 2109
out:
	return r;
}

2110 2111 2112 2113 2114 2115 2116 2117 2118
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_SET_TSS_ADDR:
2119
	case KVM_CAP_EXT_CPUID:
2120
	case KVM_CAP_CLOCKSOURCE:
Sheng Yang's avatar
Sheng Yang committed
2121
	case KVM_CAP_PIT:
2122
	case KVM_CAP_NOP_IO_DELAY:
2123
	case KVM_CAP_MP_STATE:
2124
	case KVM_CAP_SYNC_MMU:
2125
	case KVM_CAP_USER_NMI:
2126
	case KVM_CAP_REINJECT_CONTROL:
2127
	case KVM_CAP_IRQ_INJECT_STATUS:
2128
	case KVM_CAP_ASSIGN_DEV_IRQ:
Gregory Haskins's avatar
Gregory Haskins committed
2129
	case KVM_CAP_IRQFD:
Gregory Haskins's avatar
Gregory Haskins committed
2130
	case KVM_CAP_IOEVENTFD:
2131
	case KVM_CAP_PIT2:
2132
	case KVM_CAP_PIT_STATE2:
2133
	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
Ed Swierk's avatar
Ed Swierk committed
2134
	case KVM_CAP_XEN_HVM:
2135
	case KVM_CAP_ADJUST_CLOCK:
2136
	case KVM_CAP_VCPU_EVENTS:
2137
	case KVM_CAP_HYPERV:
2138
	case KVM_CAP_HYPERV_VAPIC:
2139
	case KVM_CAP_HYPERV_SPIN:
2140
	case KVM_CAP_PCI_SEGMENT:
2141
	case KVM_CAP_DEBUGREGS:
2142
	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2143
	case KVM_CAP_XSAVE:
2144
	case KVM_CAP_ASYNC_PF:
2145
	case KVM_CAP_GET_TSC_KHZ:
2146 2147
		r = 1;
		break;
2148 2149 2150
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
2151 2152 2153
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
2154
	case KVM_CAP_NR_VCPUS:
2155 2156 2157
		r = KVM_SOFT_MAX_VCPUS;
		break;
	case KVM_CAP_MAX_VCPUS:
2158 2159
		r = KVM_MAX_VCPUS;
		break;
2160 2161 2162
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
2163 2164
	case KVM_CAP_PV_MMU:	/* obsolete */
		r = 0;
2165
		break;
2166
	case KVM_CAP_IOMMU:
2167
		r = iommu_present(&pci_bus_type);
2168
		break;
Huang Ying's avatar
Huang Ying committed
2169 2170 2171
	case KVM_CAP_MCE:
		r = KVM_MAX_MCE_BANKS;
		break;
2172 2173 2174
	case KVM_CAP_XCRS:
		r = cpu_has_xsave;
		break;
2175 2176 2177
	case KVM_CAP_TSC_CONTROL:
		r = kvm_has_tsc_control;
		break;
2178 2179 2180
	case KVM_CAP_TSC_DEADLINE_TIMER:
		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
		break;
2181 2182 2183 2184 2185 2186 2187 2188
	default:
		r = 0;
		break;
	}
	return r;

}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
Jan Kiszka's avatar
Jan Kiszka committed
2209
		if (n < msr_list.nmsrs)
2210 2211 2212 2213 2214
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
Jan Kiszka's avatar
Jan Kiszka committed
2215
		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2216 2217 2218 2219 2220 2221
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
2222 2223 2224 2225 2226 2227 2228 2229
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2230
						      cpuid_arg->entries);
2231 2232 2233 2234 2235 2236 2237 2238 2239
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
Huang Ying's avatar
Huang Ying committed
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
		u64 mce_cap;

		mce_cap = KVM_MCE_CAP_SUPPORTED;
		r = -EFAULT;
		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
			goto out;
		r = 0;
		break;
	}
2250 2251 2252 2253 2254 2255 2256
	default:
		r = -EINVAL;
	}
out:
	return r;
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
static void wbinvd_ipi(void *garbage)
{
	wbinvd();
}

static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
	return vcpu->kvm->arch.iommu_domain &&
		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
}

2268 2269
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
2270 2271 2272 2273 2274 2275 2276 2277 2278
	/* Address WBINVD may be executed by guest */
	if (need_emulate_wbinvd(vcpu)) {
		if (kvm_x86_ops->has_wbinvd_exit())
			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
			smp_call_function_single(vcpu->cpu,
					wbinvd_ipi, NULL, 1);
	}

2279
	kvm_x86_ops->vcpu_load(vcpu, cpu);
2280 2281 2282 2283 2284 2285 2286 2287

	/* Apply any externally detected TSC adjustments (due to suspend) */
	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
		vcpu->arch.tsc_offset_adjustment = 0;
		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
	}

2288
	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2289 2290
		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
				native_read_tsc() - vcpu->arch.last_host_tsc;
Zachary Amsden's avatar
Zachary Amsden committed
2291 2292
		if (tsc_delta < 0)
			mark_tsc_unstable("KVM discovered backwards TSC");
Zachary Amsden's avatar
Zachary Amsden committed
2293
		if (check_tsc_unstable()) {
2294 2295 2296
			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
						vcpu->arch.last_guest_tsc);
			kvm_x86_ops->write_tsc_offset(vcpu, offset);
Zachary Amsden's avatar
Zachary Amsden committed
2297 2298
			vcpu->arch.tsc_catchup = 1;
		}
2299
		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
Zachary Amsden's avatar
Zachary Amsden committed
2300 2301
		if (vcpu->cpu != cpu)
			kvm_migrate_timers(vcpu);
Zachary Amsden's avatar
Zachary Amsden committed
2302
		vcpu->cpu = cpu;
2303
	}
2304 2305 2306

	accumulate_steal_time(vcpu);
	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2307 2308 2309 2310
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
2311
	kvm_x86_ops->vcpu_put(vcpu);
2312
	kvm_put_guest_fpu(vcpu);
2313
	vcpu->arch.last_host_tsc = native_read_tsc();
2314 2315 2316 2317 2318
}

static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
2319
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2320 2321 2322 2323 2324 2325 2326

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
2327
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2328
	kvm_apic_post_state_restore(vcpu);
2329
	update_cr8_intercept(vcpu);
2330 2331 2332 2333

	return 0;
}

2334 2335 2336 2337 2338 2339 2340 2341
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;

2342
	kvm_queue_interrupt(vcpu, irq->irq, false);
2343
	kvm_make_request(KVM_REQ_EVENT, vcpu);
2344 2345 2346 2347

	return 0;
}

2348 2349 2350 2351 2352 2353 2354
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
{
	kvm_inject_nmi(vcpu);

	return 0;
}

2355 2356 2357 2358 2359 2360 2361 2362 2363
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

Huang Ying's avatar
Huang Ying committed
2364 2365 2366 2367 2368 2369 2370
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
					u64 mcg_cap)
{
	int r;
	unsigned bank_num = mcg_cap & 0xff, bank;

	r = -EINVAL;
2371
	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
Huang Ying's avatar
Huang Ying committed
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
		goto out;
	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
		goto out;
	r = 0;
	vcpu->arch.mcg_cap = mcg_cap;
	/* Init IA32_MCG_CTL to all 1s */
	if (mcg_cap & MCG_CTL_P)
		vcpu->arch.mcg_ctl = ~(u64)0;
	/* Init IA32_MCi_CTL to all 1s */
	for (bank = 0; bank < bank_num; bank++)
		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
out:
	return r;
}

static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
				      struct kvm_x86_mce *mce)
{
	u64 mcg_cap = vcpu->arch.mcg_cap;
	unsigned bank_num = mcg_cap & 0xff;
	u64 *banks = vcpu->arch.mce_banks;

	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
		return -EINVAL;
	/*
	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
	 * reporting is disabled
	 */
	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
	    vcpu->arch.mcg_ctl != ~(u64)0)
		return 0;
	banks += 4 * mce->bank;
	/*
	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
	 * reporting is disabled for the bank
	 */
	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
		return 0;
	if (mce->status & MCI_STATUS_UC) {
		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2412
		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2413
			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
Huang Ying's avatar
Huang Ying committed
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
			return 0;
		}
		if (banks[1] & MCI_STATUS_VAL)
			mce->status |= MCI_STATUS_OVER;
		banks[2] = mce->addr;
		banks[3] = mce->misc;
		vcpu->arch.mcg_status = mce->mcg_status;
		banks[1] = mce->status;
		kvm_queue_exception(vcpu, MC_VECTOR);
	} else if (!(banks[1] & MCI_STATUS_VAL)
		   || !(banks[1] & MCI_STATUS_UC)) {
		if (banks[1] & MCI_STATUS_VAL)
			mce->status |= MCI_STATUS_OVER;
		banks[2] = mce->addr;
		banks[3] = mce->misc;
		banks[1] = mce->status;
	} else
		banks[1] |= MCI_STATUS_OVER;
	return 0;
}

2435 2436 2437
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
					       struct kvm_vcpu_events *events)
{
Avi Kivity's avatar
Avi Kivity committed
2438
	process_nmi(vcpu);
2439 2440 2441
	events->exception.injected =
		vcpu->arch.exception.pending &&
		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2442 2443
	events->exception.nr = vcpu->arch.exception.nr;
	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2444
	events->exception.pad = 0;
2445 2446
	events->exception.error_code = vcpu->arch.exception.error_code;

2447 2448
	events->interrupt.injected =
		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2449
	events->interrupt.nr = vcpu->arch.interrupt.nr;
2450
	events->interrupt.soft = 0;
2451 2452 2453
	events->interrupt.shadow =
		kvm_x86_ops->get_interrupt_shadow(vcpu,
			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2454 2455

	events->nmi.injected = vcpu->arch.nmi_injected;
Avi Kivity's avatar
Avi Kivity committed
2456
	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2457
	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2458
	events->nmi.pad = 0;
2459 2460 2461

	events->sipi_vector = vcpu->arch.sipi_vector;

2462
	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2463 2464
			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
			 | KVM_VCPUEVENT_VALID_SHADOW);
2465
	memset(&events->reserved, 0, sizeof(events->reserved));
2466 2467 2468 2469 2470
}

static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
					      struct kvm_vcpu_events *events)
{
2471
	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2472 2473
			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
			      | KVM_VCPUEVENT_VALID_SHADOW))
2474 2475
		return -EINVAL;

Avi Kivity's avatar
Avi Kivity committed
2476
	process_nmi(vcpu);
2477 2478 2479 2480 2481 2482 2483 2484
	vcpu->arch.exception.pending = events->exception.injected;
	vcpu->arch.exception.nr = events->exception.nr;
	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
	vcpu->arch.exception.error_code = events->exception.error_code;

	vcpu->arch.interrupt.pending = events->interrupt.injected;
	vcpu->arch.interrupt.nr = events->interrupt.nr;
	vcpu->arch.interrupt.soft = events->interrupt.soft;
2485 2486 2487
	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
		kvm_x86_ops->set_interrupt_shadow(vcpu,
						  events->interrupt.shadow);
2488 2489

	vcpu->arch.nmi_injected = events->nmi.injected;
2490 2491
	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
		vcpu->arch.nmi_pending = events->nmi.pending;
2492 2493
	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);

2494 2495
	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
		vcpu->arch.sipi_vector = events->sipi_vector;
2496

2497 2498
	kvm_make_request(KVM_REQ_EVENT, vcpu);

2499 2500 2501
	return 0;
}

2502 2503 2504 2505 2506 2507 2508
static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
					     struct kvm_debugregs *dbgregs)
{
	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
	dbgregs->dr6 = vcpu->arch.dr6;
	dbgregs->dr7 = vcpu->arch.dr7;
	dbgregs->flags = 0;
2509
	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
}

static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
					    struct kvm_debugregs *dbgregs)
{
	if (dbgregs->flags)
		return -EINVAL;

	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
	vcpu->arch.dr6 = dbgregs->dr6;
	vcpu->arch.dr7 = dbgregs->dr7;

	return 0;
}

2525 2526 2527 2528 2529 2530
static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
					 struct kvm_xsave *guest_xsave)
{
	if (cpu_has_xsave)
		memcpy(guest_xsave->region,
			&vcpu->arch.guest_fpu.state->xsave,
2531
			xstate_size);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	else {
		memcpy(guest_xsave->region,
			&vcpu->arch.guest_fpu.state->fxsave,
			sizeof(struct i387_fxsave_struct));
		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
			XSTATE_FPSSE;
	}
}

static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
					struct kvm_xsave *guest_xsave)
{
	u64 xstate_bv =
		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];

	if (cpu_has_xsave)
		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2549
			guest_xsave->region, xstate_size);
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	else {
		if (xstate_bv & ~XSTATE_FPSSE)
			return -EINVAL;
		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
			guest_xsave->region, sizeof(struct i387_fxsave_struct));
	}
	return 0;
}

static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
					struct kvm_xcrs *guest_xcrs)
{
	if (!cpu_has_xsave) {
		guest_xcrs->nr_xcrs = 0;
		return;
	}

	guest_xcrs->nr_xcrs = 1;
	guest_xcrs->flags = 0;
	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
}

static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
				       struct kvm_xcrs *guest_xcrs)
{
	int i, r = 0;

	if (!cpu_has_xsave)
		return -EINVAL;

	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
		return -EINVAL;

	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
		/* Only support XCR0 currently */
		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
				guest_xcrs->xcrs[0].value);
			break;
		}
	if (r)
		r = -EINVAL;
	return r;
}

2596 2597 2598 2599 2600 2601
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;
2602 2603 2604 2605 2606 2607 2608 2609
	union {
		struct kvm_lapic_state *lapic;
		struct kvm_xsave *xsave;
		struct kvm_xcrs *xcrs;
		void *buffer;
	} u;

	u.buffer = NULL;
2610 2611
	switch (ioctl) {
	case KVM_GET_LAPIC: {
2612 2613 2614
		r = -EINVAL;
		if (!vcpu->arch.apic)
			goto out;
2615
		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2616

2617
		r = -ENOMEM;
2618
		if (!u.lapic)
2619
			goto out;
2620
		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2621 2622 2623
		if (r)
			goto out;
		r = -EFAULT;
2624
		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2625 2626 2627 2628 2629
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
2630 2631 2632
		r = -EINVAL;
		if (!vcpu->arch.apic)
			goto out;
2633 2634 2635
		u.lapic = memdup_user(argp, sizeof(*u.lapic));
		if (IS_ERR(u.lapic)) {
			r = PTR_ERR(u.lapic);
2636
			goto out;
2637 2638
		}

2639
		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2640 2641 2642 2643 2644
		if (r)
			goto out;
		r = 0;
		break;
	}
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
2657 2658 2659 2660 2661 2662 2663
	case KVM_NMI: {
		r = kvm_vcpu_ioctl_nmi(vcpu);
		if (r)
			goto out;
		r = 0;
		break;
	}
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
2676 2677 2678 2679 2680 2681 2682 2683
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2684
					      cpuid_arg->entries);
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2697
					      cpuid_arg->entries);
2698 2699 2700 2701 2702 2703 2704 2705
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
2706 2707 2708 2709 2710 2711
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
Avi Kivity's avatar
Avi Kivity committed
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
Huang Ying's avatar
Huang Ying committed
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	case KVM_X86_SETUP_MCE: {
		u64 mcg_cap;

		r = -EFAULT;
		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
			goto out;
		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
		break;
	}
	case KVM_X86_SET_MCE: {
		struct kvm_x86_mce mce;

		r = -EFAULT;
		if (copy_from_user(&mce, argp, sizeof mce))
			goto out;
		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
		break;
	}
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);

		r = -EFAULT;
		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
			break;
		r = 0;
		break;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		r = -EFAULT;
		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
			break;

		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
		break;
	}
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	case KVM_GET_DEBUGREGS: {
		struct kvm_debugregs dbgregs;

		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);

		r = -EFAULT;
		if (copy_to_user(argp, &dbgregs,
				 sizeof(struct kvm_debugregs)))
			break;
		r = 0;
		break;
	}
	case KVM_SET_DEBUGREGS: {
		struct kvm_debugregs dbgregs;

		r = -EFAULT;
		if (copy_from_user(&dbgregs, argp,
				   sizeof(struct kvm_debugregs)))
			break;

		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
		break;
	}
2802
	case KVM_GET_XSAVE: {
2803
		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2804
		r = -ENOMEM;
2805
		if (!u.xsave)
2806 2807
			break;

2808
		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2809 2810

		r = -EFAULT;
2811
		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2812 2813 2814 2815 2816
			break;
		r = 0;
		break;
	}
	case KVM_SET_XSAVE: {
2817 2818 2819 2820 2821
		u.xsave = memdup_user(argp, sizeof(*u.xsave));
		if (IS_ERR(u.xsave)) {
			r = PTR_ERR(u.xsave);
			goto out;
		}
2822

2823
		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2824 2825 2826
		break;
	}
	case KVM_GET_XCRS: {
2827
		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2828
		r = -ENOMEM;
2829
		if (!u.xcrs)
2830 2831
			break;

2832
		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2833 2834

		r = -EFAULT;
2835
		if (copy_to_user(argp, u.xcrs,
2836 2837 2838 2839 2840 2841
				 sizeof(struct kvm_xcrs)))
			break;
		r = 0;
		break;
	}
	case KVM_SET_XCRS: {
2842 2843 2844 2845 2846
		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
		if (IS_ERR(u.xcrs)) {
			r = PTR_ERR(u.xcrs);
			goto out;
		}
2847

2848
		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2849 2850
		break;
	}
2851 2852 2853 2854 2855 2856 2857 2858 2859
	case KVM_SET_TSC_KHZ: {
		u32 user_tsc_khz;

		r = -EINVAL;
		user_tsc_khz = (u32)arg;

		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
			goto out;

2860 2861 2862 2863
		if (user_tsc_khz == 0)
			user_tsc_khz = tsc_khz;

		kvm_set_tsc_khz(vcpu, user_tsc_khz);
2864 2865 2866 2867 2868

		r = 0;
		goto out;
	}
	case KVM_GET_TSC_KHZ: {
2869
		r = vcpu->arch.virtual_tsc_khz;
2870 2871
		goto out;
	}
2872 2873 2874 2875
	default:
		r = -EINVAL;
	}
out:
2876
	kfree(u.buffer);
2877 2878 2879
	return r;
}

2880 2881 2882 2883 2884
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

2895 2896 2897 2898 2899 2900 2901
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
					      u64 ident_addr)
{
	kvm->arch.ept_identity_map_addr = ident_addr;
	return 0;
}

2902 2903 2904 2905 2906 2907
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

2908
	mutex_lock(&kvm->slots_lock);
2909
	spin_lock(&kvm->mmu_lock);
2910 2911

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2912
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2913

2914
	spin_unlock(&kvm->mmu_lock);
2915
	mutex_unlock(&kvm->slots_lock);
2916 2917 2918 2919 2920
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
2921
	return kvm->arch.n_max_mmu_pages;
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
2941
		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
2957
		spin_lock(&pic_irqchip(kvm)->lock);
2958 2959 2960
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
2961
		spin_unlock(&pic_irqchip(kvm)->lock);
2962 2963
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
2964
		spin_lock(&pic_irqchip(kvm)->lock);
2965 2966 2967
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
2968
		spin_unlock(&pic_irqchip(kvm)->lock);
2969 2970
		break;
	case KVM_IRQCHIP_IOAPIC:
2971
		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2972 2973 2974 2975 2976 2977 2978 2979 2980
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

2981 2982 2983 2984
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

2985
	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2986
	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2987
	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2988 2989 2990 2991 2992 2993 2994
	return r;
}

static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

2995
	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2996
	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
	return r;
}

static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
	int r = 0;

	mutex_lock(&kvm->arch.vpit->pit_state.lock);
	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
		sizeof(ps->channels));
	ps->flags = kvm->arch.vpit->pit_state.flags;
	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3011
	memset(&ps->reserved, 0, sizeof(ps->reserved));
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	return r;
}

static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
{
	int r = 0, start = 0;
	u32 prev_legacy, cur_legacy;
	mutex_lock(&kvm->arch.vpit->pit_state.lock);
	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
	if (!prev_legacy && cur_legacy)
		start = 1;
	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
	       sizeof(kvm->arch.vpit->pit_state.channels));
	kvm->arch.vpit->pit_state.flags = ps->flags;
	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3028
	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3029 3030 3031
	return r;
}

3032 3033 3034 3035 3036
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
				 struct kvm_reinject_control *control)
{
	if (!kvm->arch.vpit)
		return -ENXIO;
3037
	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3038
	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3039
	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3040 3041 3042
	return 0;
}

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * write_protect_slot - write protect a slot for dirty logging
 * @kvm: the kvm instance
 * @memslot: the slot we protect
 * @dirty_bitmap: the bitmap indicating which pages are dirty
 * @nr_dirty_pages: the number of dirty pages
 *
 * We have two ways to find all sptes to protect:
 * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
 *    checks ones that have a spte mapping a page in the slot.
 * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
 *
 * Generally speaking, if there are not so many dirty pages compared to the
 * number of shadow pages, we should use the latter.
 *
 * Note that letting others write into a page marked dirty in the old bitmap
 * by using the remaining tlb entry is not a problem.  That page will become
 * write protected again when we flush the tlb and then be reported dirty to
 * the user space by copying the old bitmap.
 */
static void write_protect_slot(struct kvm *kvm,
			       struct kvm_memory_slot *memslot,
			       unsigned long *dirty_bitmap,
			       unsigned long nr_dirty_pages)
{
3068 3069
	spin_lock(&kvm->mmu_lock);

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	/* Not many dirty pages compared to # of shadow pages. */
	if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
		unsigned long gfn_offset;

		for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
			unsigned long gfn = memslot->base_gfn + gfn_offset;

			kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
		}
		kvm_flush_remote_tlbs(kvm);
3080
	} else
3081
		kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3082 3083

	spin_unlock(&kvm->mmu_lock);
3084 3085
}

3086 3087 3088 3089 3090 3091
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
3092
	int r;
3093
	struct kvm_memory_slot *memslot;
3094
	unsigned long n, nr_dirty_pages;
3095

3096
	mutex_lock(&kvm->slots_lock);
3097

3098 3099 3100 3101
	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

3102
	memslot = id_to_memslot(kvm->memslots, log->slot);
3103 3104 3105 3106
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

3107
	n = kvm_dirty_bitmap_bytes(memslot);
3108
	nr_dirty_pages = memslot->nr_dirty_pages;
3109

3110
	/* If nothing is dirty, don't bother messing with page tables. */
3111
	if (nr_dirty_pages) {
3112
		struct kvm_memslots *slots, *old_slots;
3113
		unsigned long *dirty_bitmap, *dirty_bitmap_head;
3114

3115 3116 3117 3118 3119
		dirty_bitmap = memslot->dirty_bitmap;
		dirty_bitmap_head = memslot->dirty_bitmap_head;
		if (dirty_bitmap == dirty_bitmap_head)
			dirty_bitmap_head += n / sizeof(long);
		memset(dirty_bitmap_head, 0, n);
3120

3121
		r = -ENOMEM;
3122
		slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3123
		if (!slots)
3124
			goto out;
3125

3126
		memslot = id_to_memslot(slots, log->slot);
3127
		memslot->nr_dirty_pages = 0;
3128
		memslot->dirty_bitmap = dirty_bitmap_head;
3129
		update_memslots(slots, NULL);
3130 3131 3132 3133 3134

		old_slots = kvm->memslots;
		rcu_assign_pointer(kvm->memslots, slots);
		synchronize_srcu_expedited(&kvm->srcu);
		kfree(old_slots);
3135

3136
		write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3137

3138
		r = -EFAULT;
3139
		if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3140 3141 3142 3143 3144
			goto out;
	} else {
		r = -EFAULT;
		if (clear_user(log->dirty_bitmap, n))
			goto out;
3145
	}
3146

3147 3148
	r = 0;
out:
3149
	mutex_unlock(&kvm->slots_lock);
3150 3151 3152
	return r;
}

3153 3154 3155 3156 3157
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
3158
	int r = -ENOTTY;
3159 3160 3161 3162 3163 3164 3165
	/*
	 * This union makes it completely explicit to gcc-3.x
	 * that these two variables' stack usage should be
	 * combined, not added together.
	 */
	union {
		struct kvm_pit_state ps;
3166
		struct kvm_pit_state2 ps2;
3167
		struct kvm_pit_config pit_config;
3168
	} u;
3169 3170 3171 3172 3173 3174 3175

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	case KVM_SET_IDENTITY_MAP_ADDR: {
		u64 ident_addr;

		r = -EFAULT;
		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
			goto out;
		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
		if (r < 0)
			goto out;
		break;
	}
3187 3188 3189 3190 3191 3192 3193 3194
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
3195 3196 3197 3198 3199 3200 3201
	case KVM_CREATE_IRQCHIP: {
		struct kvm_pic *vpic;

		mutex_lock(&kvm->lock);
		r = -EEXIST;
		if (kvm->arch.vpic)
			goto create_irqchip_unlock;
3202
		r = -ENOMEM;
3203 3204
		vpic = kvm_create_pic(kvm);
		if (vpic) {
3205 3206
			r = kvm_ioapic_init(kvm);
			if (r) {
3207
				mutex_lock(&kvm->slots_lock);
3208
				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3209 3210 3211 3212 3213
							  &vpic->dev_master);
				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
							  &vpic->dev_slave);
				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
							  &vpic->dev_eclr);
3214
				mutex_unlock(&kvm->slots_lock);
3215 3216
				kfree(vpic);
				goto create_irqchip_unlock;
3217 3218
			}
		} else
3219 3220 3221 3222
			goto create_irqchip_unlock;
		smp_wmb();
		kvm->arch.vpic = vpic;
		smp_wmb();
3223 3224
		r = kvm_setup_default_irq_routing(kvm);
		if (r) {
3225
			mutex_lock(&kvm->slots_lock);
3226
			mutex_lock(&kvm->irq_lock);
3227 3228
			kvm_ioapic_destroy(kvm);
			kvm_destroy_pic(kvm);
3229
			mutex_unlock(&kvm->irq_lock);
3230
			mutex_unlock(&kvm->slots_lock);
3231
		}
3232 3233
	create_irqchip_unlock:
		mutex_unlock(&kvm->lock);
3234
		break;
3235
	}
Sheng Yang's avatar
Sheng Yang committed
3236
	case KVM_CREATE_PIT:
3237 3238 3239 3240 3241 3242 3243 3244
		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
		goto create_pit;
	case KVM_CREATE_PIT2:
		r = -EFAULT;
		if (copy_from_user(&u.pit_config, argp,
				   sizeof(struct kvm_pit_config)))
			goto out;
	create_pit:
3245
		mutex_lock(&kvm->slots_lock);
Avi Kivity's avatar
Avi Kivity committed
3246 3247 3248
		r = -EEXIST;
		if (kvm->arch.vpit)
			goto create_pit_unlock;
Sheng Yang's avatar
Sheng Yang committed
3249
		r = -ENOMEM;
3250
		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
Sheng Yang's avatar
Sheng Yang committed
3251 3252
		if (kvm->arch.vpit)
			r = 0;
Avi Kivity's avatar
Avi Kivity committed
3253
	create_pit_unlock:
3254
		mutex_unlock(&kvm->slots_lock);
Sheng Yang's avatar
Sheng Yang committed
3255
		break;
3256
	case KVM_IRQ_LINE_STATUS:
3257 3258 3259 3260 3261 3262
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
3263
		r = -ENXIO;
3264
		if (irqchip_in_kernel(kvm)) {
3265 3266 3267 3268
			__s32 status;
			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event.irq, irq_event.level);
			if (ioctl == KVM_IRQ_LINE_STATUS) {
3269
				r = -EFAULT;
3270 3271 3272 3273 3274
				irq_event.status = status;
				if (copy_to_user(argp, &irq_event,
							sizeof irq_event))
					goto out;
			}
3275 3276 3277 3278 3279 3280
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3281
		struct kvm_irqchip *chip;
3282

3283 3284 3285
		chip = memdup_user(argp, sizeof(*chip));
		if (IS_ERR(chip)) {
			r = PTR_ERR(chip);
3286
			goto out;
3287 3288
		}

3289 3290
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
3291 3292
			goto get_irqchip_out;
		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3293
		if (r)
3294
			goto get_irqchip_out;
3295
		r = -EFAULT;
3296 3297
		if (copy_to_user(argp, chip, sizeof *chip))
			goto get_irqchip_out;
3298
		r = 0;
3299 3300 3301 3302
	get_irqchip_out:
		kfree(chip);
		if (r)
			goto out;
3303 3304 3305 3306
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3307
		struct kvm_irqchip *chip;
3308

3309 3310 3311
		chip = memdup_user(argp, sizeof(*chip));
		if (IS_ERR(chip)) {
			r = PTR_ERR(chip);
3312
			goto out;
3313 3314
		}

3315 3316
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
3317 3318
			goto set_irqchip_out;
		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3319
		if (r)
3320
			goto set_irqchip_out;
3321
		r = 0;
3322 3323 3324 3325
	set_irqchip_out:
		kfree(chip);
		if (r)
			goto out;
3326 3327
		break;
	}
3328 3329
	case KVM_GET_PIT: {
		r = -EFAULT;
3330
		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3331 3332 3333 3334
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
3335
		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3336 3337 3338
		if (r)
			goto out;
		r = -EFAULT;
3339
		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3340 3341 3342 3343 3344 3345
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT: {
		r = -EFAULT;
3346
		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3347 3348 3349 3350
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
3351
		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3352 3353 3354 3355 3356
		if (r)
			goto out;
		r = 0;
		break;
	}
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	case KVM_GET_PIT2: {
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT2: {
		r = -EFAULT;
		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
		if (r)
			goto out;
		r = 0;
		break;
	}
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	case KVM_REINJECT_CONTROL: {
		struct kvm_reinject_control control;
		r =  -EFAULT;
		if (copy_from_user(&control, argp, sizeof(control)))
			goto out;
		r = kvm_vm_ioctl_reinject(kvm, &control);
		if (r)
			goto out;
		r = 0;
		break;
	}
Ed Swierk's avatar
Ed Swierk committed
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	case KVM_XEN_HVM_CONFIG: {
		r = -EFAULT;
		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
				   sizeof(struct kvm_xen_hvm_config)))
			goto out;
		r = -EINVAL;
		if (kvm->arch.xen_hvm_config.flags)
			goto out;
		r = 0;
		break;
	}
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	case KVM_SET_CLOCK: {
		struct kvm_clock_data user_ns;
		u64 now_ns;
		s64 delta;

		r = -EFAULT;
		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
			goto out;

		r = -EINVAL;
		if (user_ns.flags)
			goto out;

		r = 0;
3419
		local_irq_disable();
3420
		now_ns = get_kernel_ns();
3421
		delta = user_ns.clock - now_ns;
3422
		local_irq_enable();
3423 3424 3425 3426 3427 3428 3429
		kvm->arch.kvmclock_offset = delta;
		break;
	}
	case KVM_GET_CLOCK: {
		struct kvm_clock_data user_ns;
		u64 now_ns;

3430
		local_irq_disable();
3431
		now_ns = get_kernel_ns();
3432
		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3433
		local_irq_enable();
3434
		user_ns.flags = 0;
3435
		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3436 3437 3438 3439 3440 3441 3442 3443

		r = -EFAULT;
		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
			goto out;
		r = 0;
		break;
	}

3444 3445 3446 3447 3448 3449 3450
	default:
		;
	}
out:
	return r;
}

3451
static void kvm_init_msr_list(void)
3452 3453 3454 3455
{
	u32 dummy[2];
	unsigned i, j;

3456 3457
	/* skip the first msrs in the list. KVM-specific */
	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3458 3459 3460 3461 3462 3463 3464 3465 3466
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

3467 3468
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
			   const void *v)
3469
{
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	int handled = 0;
	int n;

	do {
		n = min(len, 8);
		if (!(vcpu->arch.apic &&
		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
			break;
		handled += n;
		addr += n;
		len -= n;
		v += n;
	} while (len);
3484

3485
	return handled;
3486 3487
}

3488
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3489
{
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	int handled = 0;
	int n;

	do {
		n = min(len, 8);
		if (!(vcpu->arch.apic &&
		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
			break;
		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
		handled += n;
		addr += n;
		len -= n;
		v += n;
	} while (len);
3505

3506
	return handled;
3507 3508
}

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
static void kvm_set_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
	kvm_x86_ops->set_segment(vcpu, var, seg);
}

void kvm_get_segment(struct kvm_vcpu *vcpu,
		     struct kvm_segment *var, int seg)
{
	kvm_x86_ops->get_segment(vcpu, var, seg);
}

3521
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3522 3523
{
	gpa_t t_gpa;
3524
	struct x86_exception exception;
3525 3526 3527 3528 3529

	BUG_ON(!mmu_is_nested(vcpu));

	/* NPT walks are always user-walks */
	access |= PFERR_USER_MASK;
3530
	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3531 3532 3533 3534

	return t_gpa;
}

3535 3536
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
			      struct x86_exception *exception)
3537 3538
{
	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3539
	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3540 3541
}

3542 3543
 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
				struct x86_exception *exception)
3544 3545 3546
{
	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
	access |= PFERR_FETCH_MASK;
3547
	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3548 3549
}

3550 3551
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
			       struct x86_exception *exception)
3552 3553 3554
{
	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
	access |= PFERR_WRITE_MASK;
3555
	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3556 3557 3558
}

/* uses this to access any guest's mapped memory without checking CPL */
3559 3560
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
				struct x86_exception *exception)
3561
{
3562
	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3563 3564 3565 3566
}

static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
				      struct kvm_vcpu *vcpu, u32 access,
3567
				      struct x86_exception *exception)
3568 3569
{
	void *data = val;
3570
	int r = X86EMUL_CONTINUE;
3571 3572

	while (bytes) {
3573
		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3574
							    exception);
3575
		unsigned offset = addr & (PAGE_SIZE-1);
3576
		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3577 3578
		int ret;

3579
		if (gpa == UNMAPPED_GVA)
3580
			return X86EMUL_PROPAGATE_FAULT;
3581
		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3582
		if (ret < 0) {
3583
			r = X86EMUL_IO_NEEDED;
3584 3585
			goto out;
		}
3586

3587 3588 3589
		bytes -= toread;
		data += toread;
		addr += toread;
3590
	}
3591 3592
out:
	return r;
3593
}
3594

3595
/* used for instruction fetching */
3596 3597
static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
				gva_t addr, void *val, unsigned int bytes,
3598
				struct x86_exception *exception)
3599
{
3600
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3601
	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3602

3603
	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3604 3605
					  access | PFERR_FETCH_MASK,
					  exception);
3606 3607
}

3608
int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3609
			       gva_t addr, void *val, unsigned int bytes,
3610
			       struct x86_exception *exception)
3611
{
3612
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3613
	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3614

3615
	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3616
					  exception);
3617
}
3618
EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3619

3620 3621
static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
				      gva_t addr, void *val, unsigned int bytes,
3622
				      struct x86_exception *exception)
3623
{
3624
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3625
	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3626 3627
}

Nadav Har'El's avatar
Nadav Har'El committed
3628
int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3629
				       gva_t addr, void *val,
3630
				       unsigned int bytes,
3631
				       struct x86_exception *exception)
3632
{
3633
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3634 3635 3636 3637
	void *data = val;
	int r = X86EMUL_CONTINUE;

	while (bytes) {
3638 3639
		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
							     PFERR_WRITE_MASK,
3640
							     exception);
3641 3642 3643 3644
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

3645
		if (gpa == UNMAPPED_GVA)
3646
			return X86EMUL_PROPAGATE_FAULT;
3647 3648
		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
		if (ret < 0) {
3649
			r = X86EMUL_IO_NEEDED;
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
			goto out;
		}

		bytes -= towrite;
		data += towrite;
		addr += towrite;
	}
out:
	return r;
}
Nadav Har'El's avatar
Nadav Har'El committed
3660
EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3661

3662 3663 3664 3665 3666 3667
static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
				gpa_t *gpa, struct x86_exception *exception,
				bool write)
{
	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;

3668 3669 3670 3671 3672
	if (vcpu_match_mmio_gva(vcpu, gva) &&
		  check_write_user_access(vcpu, write, access,
		  vcpu->arch.access)) {
		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
					(gva & (PAGE_SIZE - 1));
3673
		trace_vcpu_match_mmio(gva, *gpa, write, false);
3674 3675 3676
		return 1;
	}

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	if (write)
		access |= PFERR_WRITE_MASK;

	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);

	if (*gpa == UNMAPPED_GVA)
		return -1;

	/* For APIC access vmexit */
	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		return 1;

3689 3690
	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
		trace_vcpu_match_mmio(gva, *gpa, write, true);
3691
		return 1;
3692
	}
3693

3694 3695 3696
	return 0;
}

3697
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3698
			const void *val, int bytes)
3699 3700 3701 3702
{
	int ret;

	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3703
	if (ret < 0)
3704
		return 0;
3705
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3706 3707 3708
	return 1;
}

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
struct read_write_emulator_ops {
	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
				  int bytes);
	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
				  void *val, int bytes);
	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
			       int bytes, void *val);
	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
				    void *val, int bytes);
	bool write;
};

static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
{
	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
			       vcpu->mmio_phys_addr, *(u64 *)val);
		vcpu->mmio_read_completed = 0;
		return 1;
	}

	return 0;
}

static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
			void *val, int bytes)
{
	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
}

static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
			 void *val, int bytes)
{
	return emulator_write_phys(vcpu, gpa, val, bytes);
}

static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
{
	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
	return vcpu_mmio_write(vcpu, gpa, bytes, val);
}

static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
			  void *val, int bytes)
{
	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
	return X86EMUL_IO_NEEDED;
}

static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
			   void *val, int bytes)
{
	memcpy(vcpu->mmio_data, val, bytes);
	memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
	return X86EMUL_CONTINUE;
}

static struct read_write_emulator_ops read_emultor = {
	.read_write_prepare = read_prepare,
	.read_write_emulate = read_emulate,
	.read_write_mmio = vcpu_mmio_read,
	.read_write_exit_mmio = read_exit_mmio,
};

static struct read_write_emulator_ops write_emultor = {
	.read_write_emulate = write_emulate,
	.read_write_mmio = write_mmio,
	.read_write_exit_mmio = write_exit_mmio,
	.write = true,
};

3781 3782 3783 3784 3785
static int emulator_read_write_onepage(unsigned long addr, void *val,
				       unsigned int bytes,
				       struct x86_exception *exception,
				       struct kvm_vcpu *vcpu,
				       struct read_write_emulator_ops *ops)
3786
{
3787 3788
	gpa_t gpa;
	int handled, ret;
3789 3790 3791 3792 3793
	bool write = ops->write;

	if (ops->read_write_prepare &&
		  ops->read_write_prepare(vcpu, val, bytes))
		return X86EMUL_CONTINUE;
3794

3795
	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3796

3797
	if (ret < 0)
3798 3799 3800
		return X86EMUL_PROPAGATE_FAULT;

	/* For APIC access vmexit */
3801
	if (ret)
3802 3803
		goto mmio;

3804
	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3805 3806 3807 3808 3809 3810
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
3811
	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3812
	if (handled == bytes)
3813 3814
		return X86EMUL_CONTINUE;

3815 3816 3817 3818
	gpa += handled;
	bytes -= handled;
	val += handled;

3819
	vcpu->mmio_needed = 1;
3820 3821
	vcpu->run->exit_reason = KVM_EXIT_MMIO;
	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
Avi Kivity's avatar
Avi Kivity committed
3822 3823
	vcpu->mmio_size = bytes;
	vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3824
	vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
Avi Kivity's avatar
Avi Kivity committed
3825
	vcpu->mmio_index = 0;
3826

3827
	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3828 3829
}

3830 3831 3832 3833
int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
			void *val, unsigned int bytes,
			struct x86_exception *exception,
			struct read_write_emulator_ops *ops)
3834
{
3835 3836
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);

3837 3838 3839 3840 3841
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
3842 3843 3844
		rc = emulator_read_write_onepage(addr, val, now, exception,
						 vcpu, ops);

3845 3846 3847 3848 3849 3850
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

	return emulator_read_write_onepage(addr, val, bytes, exception,
					   vcpu, ops);
}

static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
				  unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct x86_exception *exception)
{
	return emulator_read_write(ctxt, addr, val, bytes,
				   exception, &read_emultor);
}

int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
			    unsigned long addr,
			    const void *val,
			    unsigned int bytes,
			    struct x86_exception *exception)
{
	return emulator_read_write(ctxt, addr, (void *)val, bytes,
				   exception, &write_emultor);
3874 3875
}

3876 3877 3878 3879 3880 3881 3882
#define CMPXCHG_TYPE(t, ptr, old, new) \
	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))

#ifdef CONFIG_X86_64
#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
#else
#  define CMPXCHG64(ptr, old, new) \
3883
	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3884 3885
#endif

3886 3887
static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
				     unsigned long addr,
3888 3889 3890
				     const void *old,
				     const void *new,
				     unsigned int bytes,
3891
				     struct x86_exception *exception)
3892
{
3893
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3894 3895 3896 3897
	gpa_t gpa;
	struct page *page;
	char *kaddr;
	bool exchanged;
3898

3899 3900 3901
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes > 8 || (bytes & (bytes - 1)))
		goto emul_write;
3902

3903
	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3904

3905 3906 3907
	if (gpa == UNMAPPED_GVA ||
	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto emul_write;
3908

3909 3910
	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
		goto emul_write;
3911

3912
	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3913 3914 3915 3916
	if (is_error_page(page)) {
		kvm_release_page_clean(page);
		goto emul_write;
	}
3917

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	kaddr = kmap_atomic(page, KM_USER0);
	kaddr += offset_in_page(gpa);
	switch (bytes) {
	case 1:
		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
		break;
	case 2:
		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
		break;
	case 4:
		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
		break;
	case 8:
		exchanged = CMPXCHG64(kaddr, old, new);
		break;
	default:
		BUG();
3935
	}
3936 3937 3938 3939 3940 3941
	kunmap_atomic(kaddr, KM_USER0);
	kvm_release_page_dirty(page);

	if (!exchanged)
		return X86EMUL_CMPXCHG_FAILED;

3942
	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3943 3944

	return X86EMUL_CONTINUE;
3945

3946
emul_write:
3947
	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3948

3949
	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3950 3951
}

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
{
	/* TODO: String I/O for in kernel device */
	int r;

	if (vcpu->arch.pio.in)
		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
				    vcpu->arch.pio.size, pd);
	else
		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
				     vcpu->arch.pio.port, vcpu->arch.pio.size,
				     pd);
	return r;
}

3967 3968 3969
static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
			       unsigned short port, void *val,
			       unsigned int count, bool in)
3970
{
3971
	trace_kvm_pio(!in, port, size, count);
3972 3973

	vcpu->arch.pio.port = port;
3974
	vcpu->arch.pio.in = in;
3975
	vcpu->arch.pio.count  = count;
3976 3977 3978
	vcpu->arch.pio.size = size;

	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3979
		vcpu->arch.pio.count = 0;
3980 3981 3982 3983
		return 1;
	}

	vcpu->run->exit_reason = KVM_EXIT_IO;
3984
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3985 3986 3987 3988 3989 3990 3991 3992
	vcpu->run->io.size = size;
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
	vcpu->run->io.count = count;
	vcpu->run->io.port = port;

	return 0;
}

3993 3994 3995
static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
				    int size, unsigned short port, void *val,
				    unsigned int count)
3996
{
3997
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3998
	int ret;
3999

4000 4001
	if (vcpu->arch.pio.count)
		goto data_avail;
4002

4003 4004 4005 4006
	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
	if (ret) {
data_avail:
		memcpy(val, vcpu->arch.pio_data, size * count);
4007
		vcpu->arch.pio.count = 0;
4008 4009 4010 4011 4012 4013
		return 1;
	}

	return 0;
}

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
				     int size, unsigned short port,
				     const void *val, unsigned int count)
{
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);

	memcpy(vcpu->arch.pio_data, val, size * count);
	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
}

4024 4025 4026 4027 4028
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

4029
static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4030
{
4031
	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4032 4033
}

4034 4035 4036 4037 4038 4039
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
{
	if (!need_emulate_wbinvd(vcpu))
		return X86EMUL_CONTINUE;

	if (kvm_x86_ops->has_wbinvd_exit()) {
4040 4041 4042
		int cpu = get_cpu();

		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4043 4044
		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
				wbinvd_ipi, NULL, 1);
4045
		put_cpu();
4046
		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4047 4048
	} else
		wbinvd();
4049 4050 4051 4052
	return X86EMUL_CONTINUE;
}
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);

4053 4054 4055 4056 4057
static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
{
	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
}

4058
int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4059
{
4060
	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4061 4062
}

4063
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4064
{
4065

4066
	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4067 4068
}

4069
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4070
{
4071
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4072 4073
}

4074
static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4075
{
4076
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	unsigned long value;

	switch (cr) {
	case 0:
		value = kvm_read_cr0(vcpu);
		break;
	case 2:
		value = vcpu->arch.cr2;
		break;
	case 3:
4087
		value = kvm_read_cr3(vcpu);
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
		break;
	case 4:
		value = kvm_read_cr4(vcpu);
		break;
	case 8:
		value = kvm_get_cr8(vcpu);
		break;
	default:
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
		return 0;
	}

	return value;
}

4103
static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4104
{
4105
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4106 4107
	int res = 0;

4108 4109
	switch (cr) {
	case 0:
4110
		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4111 4112 4113 4114 4115
		break;
	case 2:
		vcpu->arch.cr2 = val;
		break;
	case 3:
4116
		res = kvm_set_cr3(vcpu, val);
4117 4118
		break;
	case 4:
4119
		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4120 4121
		break;
	case 8:
Andre Przywara's avatar
Andre Przywara committed
4122
		res = kvm_set_cr8(vcpu, val);
4123 4124 4125
		break;
	default:
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4126
		res = -1;
4127
	}
4128 4129

	return res;
4130 4131
}

4132
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4133
{
4134
	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4135 4136
}

4137
static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4138
{
4139
	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4140 4141
}

4142
static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4143
{
4144
	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4145 4146
}

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
}

static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
{
	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
}

4157 4158
static unsigned long emulator_get_cached_segment_base(
	struct x86_emulate_ctxt *ctxt, int seg)
4159
{
4160
	return get_segment_base(emul_to_vcpu(ctxt), seg);
4161 4162
}

4163 4164 4165
static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
				 struct desc_struct *desc, u32 *base3,
				 int seg)
4166 4167 4168
{
	struct kvm_segment var;

4169
	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4170
	*selector = var.selector;
4171 4172 4173 4174 4175 4176 4177 4178

	if (var.unusable)
		return false;

	if (var.g)
		var.limit >>= 12;
	set_desc_limit(desc, var.limit);
	set_desc_base(desc, (unsigned long)var.base);
4179 4180 4181 4182
#ifdef CONFIG_X86_64
	if (base3)
		*base3 = var.base >> 32;
#endif
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	desc->type = var.type;
	desc->s = var.s;
	desc->dpl = var.dpl;
	desc->p = var.present;
	desc->avl = var.avl;
	desc->l = var.l;
	desc->d = var.db;
	desc->g = var.g;

	return true;
}

4195 4196 4197
static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
				 struct desc_struct *desc, u32 base3,
				 int seg)
4198
{
4199
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4200 4201
	struct kvm_segment var;

4202
	var.selector = selector;
4203
	var.base = get_desc_base(desc);
4204 4205 4206
#ifdef CONFIG_X86_64
	var.base |= ((u64)base3) << 32;
#endif
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	var.limit = get_desc_limit(desc);
	if (desc->g)
		var.limit = (var.limit << 12) | 0xfff;
	var.type = desc->type;
	var.present = desc->p;
	var.dpl = desc->dpl;
	var.db = desc->d;
	var.s = desc->s;
	var.l = desc->l;
	var.g = desc->g;
	var.avl = desc->avl;
	var.present = desc->p;
	var.unusable = !var.present;
	var.padding = 0;

	kvm_set_segment(vcpu, &var, seg);
	return;
}

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
			    u32 msr_index, u64 *pdata)
{
	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
}

static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
			    u32 msr_index, u64 data)
{
	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
}

4238 4239 4240 4241 4242 4243
static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
			     u32 pmc, u64 *pdata)
{
	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
}

4244 4245 4246 4247 4248
static void emulator_halt(struct x86_emulate_ctxt *ctxt)
{
	emul_to_vcpu(ctxt)->arch.halt_request = 1;
}

4249 4250 4251
static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
{
	preempt_disable();
4252
	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
	/*
	 * CR0.TS may reference the host fpu state, not the guest fpu state,
	 * so it may be clear at this point.
	 */
	clts();
}

static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
{
	preempt_enable();
}

4265
static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4266
			      struct x86_instruction_info *info,
4267 4268
			      enum x86_intercept_stage stage)
{
4269
	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4270 4271
}

4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
{
	struct kvm_cpuid_entry2 *cpuid = NULL;

	if (eax && ecx)
		cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
					    *eax, *ecx);

	if (cpuid) {
		*eax = cpuid->eax;
		*ecx = cpuid->ecx;
		if (ebx)
			*ebx = cpuid->ebx;
		if (edx)
			*edx = cpuid->edx;
		return true;
	}

	return false;
}

4294
static struct x86_emulate_ops emulate_ops = {
4295
	.read_std            = kvm_read_guest_virt_system,
4296
	.write_std           = kvm_write_guest_virt_system,
4297
	.fetch               = kvm_fetch_guest_virt,
4298 4299 4300
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4301
	.invlpg              = emulator_invlpg,
4302 4303
	.pio_in_emulated     = emulator_pio_in_emulated,
	.pio_out_emulated    = emulator_pio_out_emulated,
4304 4305
	.get_segment         = emulator_get_segment,
	.set_segment         = emulator_set_segment,
4306
	.get_cached_segment_base = emulator_get_cached_segment_base,
4307
	.get_gdt             = emulator_get_gdt,
4308
	.get_idt	     = emulator_get_idt,
4309 4310
	.set_gdt             = emulator_set_gdt,
	.set_idt	     = emulator_set_idt,
4311 4312
	.get_cr              = emulator_get_cr,
	.set_cr              = emulator_set_cr,
4313
	.cpl                 = emulator_get_cpl,
4314 4315
	.get_dr              = emulator_get_dr,
	.set_dr              = emulator_set_dr,
4316 4317
	.set_msr             = emulator_set_msr,
	.get_msr             = emulator_get_msr,
4318
	.read_pmc            = emulator_read_pmc,
4319
	.halt                = emulator_halt,
4320
	.wbinvd              = emulator_wbinvd,
4321
	.fix_hypercall       = emulator_fix_hypercall,
4322 4323
	.get_fpu             = emulator_get_fpu,
	.put_fpu             = emulator_put_fpu,
4324
	.intercept           = emulator_intercept,
4325
	.get_cpuid           = emulator_get_cpuid,
4326 4327
};

4328 4329 4330 4331 4332 4333 4334 4335
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
	kvm_register_read(vcpu, VCPU_REGS_RAX);
	kvm_register_read(vcpu, VCPU_REGS_RSP);
	kvm_register_read(vcpu, VCPU_REGS_RIP);
	vcpu->arch.regs_dirty = ~0;
}

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
{
	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
	/*
	 * an sti; sti; sequence only disable interrupts for the first
	 * instruction. So, if the last instruction, be it emulated or
	 * not, left the system with the INT_STI flag enabled, it
	 * means that the last instruction is an sti. We should not
	 * leave the flag on in this case. The same goes for mov ss
	 */
	if (!(int_shadow & mask))
		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
}

4350 4351 4352
static void inject_emulated_exception(struct kvm_vcpu *vcpu)
{
	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4353
	if (ctxt->exception.vector == PF_VECTOR)
4354
		kvm_propagate_fault(vcpu, &ctxt->exception);
4355 4356 4357
	else if (ctxt->exception.error_code_valid)
		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
				      ctxt->exception.error_code);
4358
	else
4359
		kvm_queue_exception(vcpu, ctxt->exception.vector);
4360 4361
}

4362
static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4363 4364
			      const unsigned long *regs)
{
4365 4366 4367
	memset(&ctxt->twobyte, 0,
	       (void *)&ctxt->regs - (void *)&ctxt->twobyte);
	memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4368

4369 4370 4371 4372 4373 4374
	ctxt->fetch.start = 0;
	ctxt->fetch.end = 0;
	ctxt->io_read.pos = 0;
	ctxt->io_read.end = 0;
	ctxt->mem_read.pos = 0;
	ctxt->mem_read.end = 0;
4375 4376
}

4377 4378
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
{
4379
	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4380 4381
	int cs_db, cs_l;

4382 4383 4384 4385 4386 4387
	/*
	 * TODO: fix emulate.c to use guest_read/write_register
	 * instead of direct ->regs accesses, can save hundred cycles
	 * on Intel for instructions that don't read/change RSP, for
	 * for example.
	 */
4388 4389 4390 4391
	cache_all_regs(vcpu);

	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

4392 4393 4394 4395 4396 4397 4398 4399 4400
	ctxt->eflags = kvm_get_rflags(vcpu);
	ctxt->eip = kvm_rip_read(vcpu);
	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
		     cs_l				? X86EMUL_MODE_PROT64 :
		     cs_db				? X86EMUL_MODE_PROT32 :
							  X86EMUL_MODE_PROT16;
	ctxt->guest_mode = is_guest_mode(vcpu);

4401
	init_decode_cache(ctxt, vcpu->arch.regs);
4402
	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4403 4404
}

4405
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4406
{
4407
	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4408 4409 4410 4411
	int ret;

	init_emulate_ctxt(vcpu);

4412 4413 4414
	ctxt->op_bytes = 2;
	ctxt->ad_bytes = 2;
	ctxt->_eip = ctxt->eip + inc_eip;
4415
	ret = emulate_int_real(ctxt, irq);
4416 4417 4418 4419

	if (ret != X86EMUL_CONTINUE)
		return EMULATE_FAIL;

4420 4421
	ctxt->eip = ctxt->_eip;
	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4422 4423
	kvm_rip_write(vcpu, ctxt->eip);
	kvm_set_rflags(vcpu, ctxt->eflags);
4424 4425

	if (irq == NMI_VECTOR)
Avi Kivity's avatar
Avi Kivity committed
4426
		vcpu->arch.nmi_pending = 0;
4427 4428 4429 4430 4431 4432 4433
	else
		vcpu->arch.interrupt.pending = false;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);

4434 4435
static int handle_emulation_failure(struct kvm_vcpu *vcpu)
{
4436 4437
	int r = EMULATE_DONE;

4438 4439
	++vcpu->stat.insn_emulation_fail;
	trace_kvm_emulate_insn_failed(vcpu);
4440 4441 4442 4443 4444 4445
	if (!is_guest_mode(vcpu)) {
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		vcpu->run->internal.ndata = 0;
		r = EMULATE_FAIL;
	}
4446
	kvm_queue_exception(vcpu, UD_VECTOR);
4447 4448

	return r;
4449 4450
}

4451 4452 4453 4454
static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;

4455 4456 4457
	if (tdp_enabled)
		return false;

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
	/*
	 * if emulation was due to access to shadowed page table
	 * and it failed try to unshadow page and re-entetr the
	 * guest to let CPU execute the instruction.
	 */
	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
		return true;

	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);

	if (gpa == UNMAPPED_GVA)
		return true; /* let cpu generate fault */

	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
		return true;

	return false;
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
			      unsigned long cr2,  int emulation_type)
{
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;

	last_retry_eip = vcpu->arch.last_retry_eip;
	last_retry_addr = vcpu->arch.last_retry_addr;

	/*
	 * If the emulation is caused by #PF and it is non-page_table
	 * writing instruction, it means the VM-EXIT is caused by shadow
	 * page protected, we can zap the shadow page and retry this
	 * instruction directly.
	 *
	 * Note: if the guest uses a non-page-table modifying instruction
	 * on the PDE that points to the instruction, then we will unmap
	 * the instruction and go to an infinite loop. So, we cache the
	 * last retried eip and the last fault address, if we meet the eip
	 * and the address again, we can break out of the potential infinite
	 * loop.
	 */
	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;

	if (!(emulation_type & EMULTYPE_RETRY))
		return false;

	if (x86_page_table_writing_insn(ctxt))
		return false;

	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
		return false;

	vcpu->arch.last_retry_eip = ctxt->eip;
	vcpu->arch.last_retry_addr = cr2;

	if (!vcpu->arch.mmu.direct_map)
		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);

	kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return true;
}

4521 4522
int x86_emulate_instruction(struct kvm_vcpu *vcpu,
			    unsigned long cr2,
4523 4524 4525
			    int emulation_type,
			    void *insn,
			    int insn_len)
4526
{
4527
	int r;
4528
	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4529
	bool writeback = true;
4530

4531
	kvm_clear_exception_queue(vcpu);
4532

4533
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4534
		init_emulate_ctxt(vcpu);
4535 4536 4537
		ctxt->interruptibility = 0;
		ctxt->have_exception = false;
		ctxt->perm_ok = false;
4538

4539
		ctxt->only_vendor_specific_insn
4540 4541
			= emulation_type & EMULTYPE_TRAP_UD;

4542
		r = x86_decode_insn(ctxt, insn, insn_len);
4543

4544
		trace_kvm_emulate_insn_start(vcpu);
4545
		++vcpu->stat.insn_emulation;
4546
		if (r != EMULATION_OK)  {
4547 4548
			if (emulation_type & EMULTYPE_TRAP_UD)
				return EMULATE_FAIL;
4549
			if (reexecute_instruction(vcpu, cr2))
4550
				return EMULATE_DONE;
4551 4552 4553
			if (emulation_type & EMULTYPE_SKIP)
				return EMULATE_FAIL;
			return handle_emulation_failure(vcpu);
4554 4555 4556
		}
	}

4557
	if (emulation_type & EMULTYPE_SKIP) {
4558
		kvm_rip_write(vcpu, ctxt->_eip);
4559 4560 4561
		return EMULATE_DONE;
	}

4562 4563 4564
	if (retry_instruction(ctxt, cr2, emulation_type))
		return EMULATE_DONE;

4565
	/* this is needed for vmware backdoor interface to work since it
4566
	   changes registers values  during IO operation */
4567 4568
	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4569
		memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4570
	}
4571

4572
restart:
4573
	r = x86_emulate_insn(ctxt);
4574

4575 4576 4577
	if (r == EMULATION_INTERCEPTED)
		return EMULATE_DONE;

4578
	if (r == EMULATION_FAILED) {
4579
		if (reexecute_instruction(vcpu, cr2))
4580 4581
			return EMULATE_DONE;

4582
		return handle_emulation_failure(vcpu);
4583 4584
	}

4585
	if (ctxt->have_exception) {
4586
		inject_emulated_exception(vcpu);
4587 4588
		r = EMULATE_DONE;
	} else if (vcpu->arch.pio.count) {
4589 4590
		if (!vcpu->arch.pio.in)
			vcpu->arch.pio.count = 0;
4591 4592
		else
			writeback = false;
4593
		r = EMULATE_DO_MMIO;
4594 4595 4596
	} else if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			writeback = false;
4597
		r = EMULATE_DO_MMIO;
4598
	} else if (r == EMULATION_RESTART)
4599
		goto restart;
4600 4601
	else
		r = EMULATE_DONE;
4602

4603
	if (writeback) {
4604 4605
		toggle_interruptibility(vcpu, ctxt->interruptibility);
		kvm_set_rflags(vcpu, ctxt->eflags);
4606
		kvm_make_request(KVM_REQ_EVENT, vcpu);
4607
		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4608
		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4609
		kvm_rip_write(vcpu, ctxt->eip);
4610 4611
	} else
		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4612 4613

	return r;
4614
}
4615
EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4616

4617
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4618
{
4619
	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4620 4621
	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
					    size, port, &val, 1);
4622
	/* do not return to emulator after return from userspace */
4623
	vcpu->arch.pio.count = 0;
4624 4625
	return ret;
}
4626
EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4627

4628 4629
static void tsc_bad(void *info)
{
4630
	__this_cpu_write(cpu_tsc_khz, 0);
4631 4632 4633
}

static void tsc_khz_changed(void *data)
4634
{
4635 4636 4637 4638 4639 4640 4641 4642 4643
	struct cpufreq_freqs *freq = data;
	unsigned long khz = 0;

	if (data)
		khz = freq->new;
	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		khz = cpufreq_quick_get(raw_smp_processor_id());
	if (!khz)
		khz = tsc_khz;
4644
	__this_cpu_write(cpu_tsc_khz, khz);
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
}

static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				     void *data)
{
	struct cpufreq_freqs *freq = data;
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i, send_ipi = 0;

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	/*
	 * We allow guests to temporarily run on slowing clocks,
	 * provided we notify them after, or to run on accelerating
	 * clocks, provided we notify them before.  Thus time never
	 * goes backwards.
	 *
	 * However, we have a problem.  We can't atomically update
	 * the frequency of a given CPU from this function; it is
	 * merely a notifier, which can be called from any CPU.
	 * Changing the TSC frequency at arbitrary points in time
	 * requires a recomputation of local variables related to
	 * the TSC for each VCPU.  We must flag these local variables
	 * to be updated and be sure the update takes place with the
	 * new frequency before any guests proceed.
	 *
	 * Unfortunately, the combination of hotplug CPU and frequency
	 * change creates an intractable locking scenario; the order
	 * of when these callouts happen is undefined with respect to
	 * CPU hotplug, and they can race with each other.  As such,
	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
	 * undefined; you can actually have a CPU frequency change take
	 * place in between the computation of X and the setting of the
	 * variable.  To protect against this problem, all updates of
	 * the per_cpu tsc_khz variable are done in an interrupt
	 * protected IPI, and all callers wishing to update the value
	 * must wait for a synchronous IPI to complete (which is trivial
	 * if the caller is on the CPU already).  This establishes the
	 * necessary total order on variable updates.
	 *
	 * Note that because a guest time update may take place
	 * anytime after the setting of the VCPU's request bit, the
	 * correct TSC value must be set before the request.  However,
	 * to ensure the update actually makes it to any guest which
	 * starts running in hardware virtualization between the set
	 * and the acquisition of the spinlock, we must also ping the
	 * CPU after setting the request bit.
	 *
	 */

4694 4695 4696 4697
	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
		return 0;
	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
		return 0;
4698 4699

	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4700

4701
	raw_spin_lock(&kvm_lock);
4702
	list_for_each_entry(kvm, &vm_list, vm_list) {
4703
		kvm_for_each_vcpu(i, vcpu, kvm) {
4704 4705
			if (vcpu->cpu != freq->cpu)
				continue;
Zachary Amsden's avatar
Zachary Amsden committed
4706
			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4707
			if (vcpu->cpu != smp_processor_id())
4708
				send_ipi = 1;
4709 4710
		}
	}
4711
	raw_spin_unlock(&kvm_lock);
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725

	if (freq->old < freq->new && send_ipi) {
		/*
		 * We upscale the frequency.  Must make the guest
		 * doesn't see old kvmclock values while running with
		 * the new frequency, otherwise we risk the guest sees
		 * time go backwards.
		 *
		 * In case we update the frequency for another cpu
		 * (which might be in guest context) send an interrupt
		 * to kick the cpu out of guest context.  Next time
		 * guest context is entered kvmclock will be updated,
		 * so the guest will not see stale values.
		 */
4726
		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4727 4728 4729 4730 4731
	}
	return 0;
}

static struct notifier_block kvmclock_cpufreq_notifier_block = {
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
	.notifier_call  = kvmclock_cpufreq_notifier
};

static int kvmclock_cpu_notifier(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action) {
		case CPU_ONLINE:
		case CPU_DOWN_FAILED:
			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
			break;
		case CPU_DOWN_PREPARE:
			smp_call_function_single(cpu, tsc_bad, NULL, 1);
			break;
	}
	return NOTIFY_OK;
}

static struct notifier_block kvmclock_cpu_notifier_block = {
	.notifier_call  = kvmclock_cpu_notifier,
	.priority = -INT_MAX
4755 4756
};

4757 4758 4759 4760
static void kvm_timer_init(void)
{
	int cpu;

Zachary Amsden's avatar
Zachary Amsden committed
4761
	max_tsc_khz = tsc_khz;
4762
	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4763
	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
Zachary Amsden's avatar
Zachary Amsden committed
4764 4765 4766
#ifdef CONFIG_CPU_FREQ
		struct cpufreq_policy policy;
		memset(&policy, 0, sizeof(policy));
4767 4768
		cpu = get_cpu();
		cpufreq_get_policy(&policy, cpu);
Zachary Amsden's avatar
Zachary Amsden committed
4769 4770
		if (policy.cpuinfo.max_freq)
			max_tsc_khz = policy.cpuinfo.max_freq;
4771
		put_cpu();
Zachary Amsden's avatar
Zachary Amsden committed
4772
#endif
4773 4774 4775
		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
					  CPUFREQ_TRANSITION_NOTIFIER);
	}
Zachary Amsden's avatar
Zachary Amsden committed
4776
	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4777 4778
	for_each_online_cpu(cpu)
		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4779 4780
}

4781 4782
static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);

4783
int kvm_is_in_guest(void)
4784
{
4785
	return __this_cpu_read(current_vcpu) != NULL;
4786 4787 4788 4789 4790
}

static int kvm_is_user_mode(void)
{
	int user_mode = 3;
4791

4792 4793
	if (__this_cpu_read(current_vcpu))
		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4794

4795 4796 4797 4798 4799 4800
	return user_mode != 0;
}

static unsigned long kvm_get_guest_ip(void)
{
	unsigned long ip = 0;
4801

4802 4803
	if (__this_cpu_read(current_vcpu))
		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4804

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
	return ip;
}

static struct perf_guest_info_callbacks kvm_guest_cbs = {
	.is_in_guest		= kvm_is_in_guest,
	.is_user_mode		= kvm_is_user_mode,
	.get_guest_ip		= kvm_get_guest_ip,
};

void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
{
4816
	__this_cpu_write(current_vcpu, vcpu);
4817 4818 4819 4820 4821
}
EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);

void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
{
4822
	__this_cpu_write(current_vcpu, NULL);
4823 4824 4825
}
EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;
	int maxphyaddr = boot_cpu_data.x86_phys_bits;

	/*
	 * Set the reserved bits and the present bit of an paging-structure
	 * entry to generate page fault with PFER.RSV = 1.
	 */
	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
	mask |= 1ull;

#ifdef CONFIG_X86_64
	/*
	 * If reserved bit is not supported, clear the present bit to disable
	 * mmio page fault.
	 */
	if (maxphyaddr == 52)
		mask &= ~1ull;
#endif

	kvm_mmu_set_mmio_spte_mask(mask);
}

4850
int kvm_arch_init(void *opaque)
4851
{
4852
	int r;
4853 4854 4855 4856
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
4857 4858
		r = -EEXIST;
		goto out;
4859 4860 4861 4862
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
4863 4864
		r = -EOPNOTSUPP;
		goto out;
4865 4866 4867
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
4868 4869
		r = -EOPNOTSUPP;
		goto out;
4870 4871
	}

4872 4873 4874 4875
	r = kvm_mmu_module_init();
	if (r)
		goto out;

4876
	kvm_set_mmio_spte_mask();
4877 4878
	kvm_init_msr_list();

4879
	kvm_x86_ops = ops;
Sheng Yang's avatar
Sheng Yang committed
4880
	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4881
			PT_DIRTY_MASK, PT64_NX_MASK, 0);
4882

4883
	kvm_timer_init();
4884

4885 4886
	perf_register_guest_info_callbacks(&kvm_guest_cbs);

4887 4888 4889
	if (cpu_has_xsave)
		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);

4890
	return 0;
4891 4892 4893

out:
	return r;
4894
}
4895

4896 4897
void kvm_arch_exit(void)
{
4898 4899
	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);

4900 4901 4902
	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
					    CPUFREQ_TRANSITION_NOTIFIER);
4903
	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4904
	kvm_x86_ops = NULL;
4905 4906
	kvm_mmu_module_exit();
}
4907

4908 4909 4910 4911
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
	if (irqchip_in_kernel(vcpu->kvm)) {
4912
		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4913 4914 4915 4916 4917 4918 4919 4920
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
	u64 param, ingpa, outgpa, ret;
	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
	bool fast, longmode;
	int cs_db, cs_l;

	/*
	 * hypercall generates UD from non zero cpl and real mode
	 * per HYPER-V spec
	 */
4932
	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4933 4934 4935 4936 4937 4938 4939 4940
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
	longmode = is_long_mode(vcpu) && cs_l == 1;

	if (!longmode) {
4941 4942 4943 4944 4945 4946
		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
	}
#ifdef CONFIG_X86_64
	else {
		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
	}
#endif

	code = param & 0xffff;
	fast = (param >> 16) & 0x1;
	rep_cnt = (param >> 32) & 0xfff;
	rep_idx = (param >> 48) & 0xfff;

	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);

4963 4964 4965 4966 4967 4968 4969 4970
	switch (code) {
	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
		kvm_vcpu_on_spin(vcpu);
		break;
	default:
		res = HV_STATUS_INVALID_HYPERCALL_CODE;
		break;
	}
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982

	ret = res | (((u64)rep_done & 0xfff) << 32);
	if (longmode) {
		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
	} else {
		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
	}

	return 1;
}

4983 4984 4985
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;
4986
	int r = 1;
4987

4988 4989 4990
	if (kvm_hv_hypercall_enabled(vcpu->kvm))
		return kvm_hv_hypercall(vcpu);

4991 4992 4993 4994 4995
	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4996

4997
	trace_kvm_hypercall(nr, a0, a1, a2, a3);
Feng (Eric) Liu's avatar
Feng (Eric) Liu committed
4998

4999 5000 5001 5002 5003 5004 5005 5006
	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

5007 5008 5009 5010 5011
	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
		ret = -KVM_EPERM;
		goto out;
	}

5012
	switch (nr) {
Avi Kivity's avatar
Avi Kivity committed
5013 5014 5015
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
5016 5017 5018 5019
	default:
		ret = -KVM_ENOSYS;
		break;
	}
5020
out:
5021
	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5022
	++vcpu->stat.hypercalls;
5023
	return r;
5024 5025 5026
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

5027
int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5028
{
5029
	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5030
	char instruction[3];
5031
	unsigned long rip = kvm_rip_read(vcpu);
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041

	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->patch_hypercall(vcpu, instruction);

5042
	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5043 5044
}

5045 5046 5047 5048 5049 5050
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
5051
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5052
{
5053
	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5054
		vcpu->run->request_interrupt_window &&
5055
		kvm_arch_interrupt_allowed(vcpu));
5056 5057
}

5058
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5059
{
5060 5061
	struct kvm_run *kvm_run = vcpu->run;

5062
	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5063
	kvm_run->cr8 = kvm_get_cr8(vcpu);
5064
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5065
	if (irqchip_in_kernel(vcpu->kvm))
5066
		kvm_run->ready_for_interrupt_injection = 1;
5067
	else
5068
		kvm_run->ready_for_interrupt_injection =
5069 5070 5071
			kvm_arch_interrupt_allowed(vcpu) &&
			!kvm_cpu_has_interrupt(vcpu) &&
			!kvm_event_needs_reinjection(vcpu);
5072 5073
}

Avi Kivity's avatar
Avi Kivity committed
5074 5075 5076 5077 5078 5079 5080 5081 5082
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5083 5084

	vcpu->arch.apic->vapic_page = page;
Avi Kivity's avatar
Avi Kivity committed
5085 5086 5087 5088 5089
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
5090
	int idx;
Avi Kivity's avatar
Avi Kivity committed
5091 5092 5093 5094

	if (!apic || !apic->vapic_addr)
		return;

5095
	idx = srcu_read_lock(&vcpu->kvm->srcu);
Avi Kivity's avatar
Avi Kivity committed
5096 5097
	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5098
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
Avi Kivity's avatar
Avi Kivity committed
5099 5100
}

5101 5102 5103 5104 5105 5106 5107
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
{
	int max_irr, tpr;

	if (!kvm_x86_ops->update_cr8_intercept)
		return;

5108 5109 5110
	if (!vcpu->arch.apic)
		return;

5111 5112 5113 5114
	if (!vcpu->arch.apic->vapic_addr)
		max_irr = kvm_lapic_find_highest_irr(vcpu);
	else
		max_irr = -1;
5115 5116 5117 5118 5119 5120 5121 5122 5123

	if (max_irr != -1)
		max_irr >>= 4;

	tpr = kvm_lapic_get_cr8(vcpu);

	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
}

5124
static void inject_pending_event(struct kvm_vcpu *vcpu)
5125 5126
{
	/* try to reinject previous events if any */
5127
	if (vcpu->arch.exception.pending) {
Avi Kivity's avatar
Avi Kivity committed
5128 5129 5130
		trace_kvm_inj_exception(vcpu->arch.exception.nr,
					vcpu->arch.exception.has_error_code,
					vcpu->arch.exception.error_code);
5131 5132
		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
					  vcpu->arch.exception.has_error_code,
5133 5134
					  vcpu->arch.exception.error_code,
					  vcpu->arch.exception.reinject);
5135 5136 5137
		return;
	}

5138 5139 5140 5141 5142 5143
	if (vcpu->arch.nmi_injected) {
		kvm_x86_ops->set_nmi(vcpu);
		return;
	}

	if (vcpu->arch.interrupt.pending) {
5144
		kvm_x86_ops->set_irq(vcpu);
5145 5146 5147 5148 5149 5150
		return;
	}

	/* try to inject new event if pending */
	if (vcpu->arch.nmi_pending) {
		if (kvm_x86_ops->nmi_allowed(vcpu)) {
Avi Kivity's avatar
Avi Kivity committed
5151
			--vcpu->arch.nmi_pending;
5152 5153 5154 5155 5156
			vcpu->arch.nmi_injected = true;
			kvm_x86_ops->set_nmi(vcpu);
		}
	} else if (kvm_cpu_has_interrupt(vcpu)) {
		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5157 5158 5159
			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
					    false);
			kvm_x86_ops->set_irq(vcpu);
5160 5161 5162 5163
		}
	}
}

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
{
	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
			!vcpu->guest_xcr0_loaded) {
		/* kvm_set_xcr() also depends on this */
		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
		vcpu->guest_xcr0_loaded = 1;
	}
}

static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_xcr0_loaded) {
		if (vcpu->arch.xcr0 != host_xcr0)
			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
		vcpu->guest_xcr0_loaded = 0;
	}
}

Avi Kivity's avatar
Avi Kivity committed
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
static void process_nmi(struct kvm_vcpu *vcpu)
{
	unsigned limit = 2;

	/*
	 * x86 is limited to one NMI running, and one NMI pending after it.
	 * If an NMI is already in progress, limit further NMIs to just one.
	 * Otherwise, allow two (and we'll inject the first one immediately).
	 */
	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
		limit = 1;

	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
	kvm_make_request(KVM_REQ_EVENT, vcpu);
}

5200
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5201 5202
{
	int r;
5203
	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5204
		vcpu->run->request_interrupt_window;
5205
	bool req_immediate_exit = 0;
5206

5207
	if (vcpu->requests) {
5208
		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5209
			kvm_mmu_unload(vcpu);
5210
		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
Marcelo Tosatti's avatar
Marcelo Tosatti committed
5211
			__kvm_migrate_timers(vcpu);
5212 5213
		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
			r = kvm_guest_time_update(vcpu);
5214 5215 5216
			if (unlikely(r))
				goto out;
		}
5217
		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5218
			kvm_mmu_sync_roots(vcpu);
5219
		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5220
			kvm_x86_ops->tlb_flush(vcpu);
5221
		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5222
			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
Avi Kivity's avatar
Avi Kivity committed
5223 5224 5225
			r = 0;
			goto out;
		}
5226
		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5227
			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5228 5229 5230
			r = 0;
			goto out;
		}
5231
		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5232 5233 5234
			vcpu->fpu_active = 0;
			kvm_x86_ops->fpu_deactivate(vcpu);
		}
5235 5236 5237 5238 5239 5240
		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
			/* Page is swapped out. Do synthetic halt */
			vcpu->arch.apf.halted = true;
			r = 1;
			goto out;
		}
5241 5242
		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
			record_steal_time(vcpu);
Avi Kivity's avatar
Avi Kivity committed
5243 5244
		if (kvm_check_request(KVM_REQ_NMI, vcpu))
			process_nmi(vcpu);
5245 5246
		req_immediate_exit =
			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5247 5248 5249 5250
		if (kvm_check_request(KVM_REQ_PMU, vcpu))
			kvm_handle_pmu_event(vcpu);
		if (kvm_check_request(KVM_REQ_PMI, vcpu))
			kvm_deliver_pmi(vcpu);
5251
	}
Avi Kivity's avatar
Avi Kivity committed
5252

5253 5254 5255 5256
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

5257 5258 5259 5260
	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
		inject_pending_event(vcpu);

		/* enable NMI/IRQ window open exits if needed */
Avi Kivity's avatar
Avi Kivity committed
5261
		if (vcpu->arch.nmi_pending)
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
			kvm_x86_ops->enable_nmi_window(vcpu);
		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
			kvm_x86_ops->enable_irq_window(vcpu);

		if (kvm_lapic_enabled(vcpu)) {
			update_cr8_intercept(vcpu);
			kvm_lapic_sync_to_vapic(vcpu);
		}
	}

5272 5273 5274
	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
5275 5276
	if (vcpu->fpu_active)
		kvm_load_guest_fpu(vcpu);
5277
	kvm_load_guest_xcr0(vcpu);
5278

5279 5280 5281 5282 5283 5284
	vcpu->mode = IN_GUEST_MODE;

	/* We should set ->mode before check ->requests,
	 * see the comment in make_all_cpus_request.
	 */
	smp_mb();
5285

Avi Kivity's avatar
Avi Kivity committed
5286
	local_irq_disable();
5287

5288
	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
Avi Kivity's avatar
Avi Kivity committed
5289
	    || need_resched() || signal_pending(current)) {
5290
		vcpu->mode = OUTSIDE_GUEST_MODE;
Avi Kivity's avatar
Avi Kivity committed
5291
		smp_wmb();
5292 5293
		local_irq_enable();
		preempt_enable();
5294
		kvm_x86_ops->cancel_injection(vcpu);
5295 5296 5297 5298
		r = 1;
		goto out;
	}

5299
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5300

5301 5302 5303
	if (req_immediate_exit)
		smp_send_reschedule(vcpu->cpu);

5304 5305
	kvm_guest_enter();

5306 5307 5308 5309 5310 5311 5312
	if (unlikely(vcpu->arch.switch_db_regs)) {
		set_debugreg(0, 7);
		set_debugreg(vcpu->arch.eff_db[0], 0);
		set_debugreg(vcpu->arch.eff_db[1], 1);
		set_debugreg(vcpu->arch.eff_db[2], 2);
		set_debugreg(vcpu->arch.eff_db[3], 3);
	}
5313

5314
	trace_kvm_entry(vcpu->vcpu_id);
5315
	kvm_x86_ops->run(vcpu);
5316

5317 5318 5319 5320 5321 5322 5323
	/*
	 * If the guest has used debug registers, at least dr7
	 * will be disabled while returning to the host.
	 * If we don't have active breakpoints in the host, we don't
	 * care about the messed up debug address registers. But if
	 * we have some of them active, restore the old state.
	 */
5324
	if (hw_breakpoint_active())
5325
		hw_breakpoint_restore();
5326

Nadav Har'El's avatar
Nadav Har'El committed
5327
	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5328

5329
	vcpu->mode = OUTSIDE_GUEST_MODE;
Avi Kivity's avatar
Avi Kivity committed
5330
	smp_wmb();
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

5347
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5348

5349 5350 5351 5352
	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
5353 5354
		unsigned long rip = kvm_rip_read(vcpu);
		profile_hit(KVM_PROFILING, (void *)rip);
5355 5356
	}

5357 5358
	if (unlikely(vcpu->arch.tsc_always_catchup))
		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5359

Avi Kivity's avatar
Avi Kivity committed
5360 5361
	kvm_lapic_sync_from_vapic(vcpu);

5362
	r = kvm_x86_ops->handle_exit(vcpu);
5363 5364 5365
out:
	return r;
}
5366

5367

5368
static int __vcpu_run(struct kvm_vcpu *vcpu)
5369 5370
{
	int r;
5371
	struct kvm *kvm = vcpu->kvm;
5372 5373

	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5374 5375
		pr_debug("vcpu %d received sipi with vector # %x\n",
			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5376
		kvm_lapic_reset(vcpu);
5377
		r = kvm_arch_vcpu_reset(vcpu);
5378 5379 5380
		if (r)
			return r;
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5381 5382
	}

5383
	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5384 5385 5386 5387
	vapic_enter(vcpu);

	r = 1;
	while (r > 0) {
5388 5389
		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
		    !vcpu->arch.apf.halted)
5390
			r = vcpu_enter_guest(vcpu);
5391
		else {
5392
			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5393
			kvm_vcpu_block(vcpu);
5394
			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5395
			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5396 5397 5398
			{
				switch(vcpu->arch.mp_state) {
				case KVM_MP_STATE_HALTED:
5399
					vcpu->arch.mp_state =
5400 5401
						KVM_MP_STATE_RUNNABLE;
				case KVM_MP_STATE_RUNNABLE:
5402
					vcpu->arch.apf.halted = false;
5403 5404 5405 5406 5407 5408 5409
					break;
				case KVM_MP_STATE_SIPI_RECEIVED:
				default:
					r = -EINTR;
					break;
				}
			}
5410 5411
		}

5412 5413 5414 5415 5416 5417 5418
		if (r <= 0)
			break;

		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
		if (kvm_cpu_has_pending_timer(vcpu))
			kvm_inject_pending_timer_irqs(vcpu);

5419
		if (dm_request_for_irq_injection(vcpu)) {
5420
			r = -EINTR;
5421
			vcpu->run->exit_reason = KVM_EXIT_INTR;
5422 5423
			++vcpu->stat.request_irq_exits;
		}
5424 5425 5426

		kvm_check_async_pf_completion(vcpu);

5427 5428
		if (signal_pending(current)) {
			r = -EINTR;
5429
			vcpu->run->exit_reason = KVM_EXIT_INTR;
5430 5431 5432
			++vcpu->stat.signal_exits;
		}
		if (need_resched()) {
5433
			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5434
			kvm_resched(vcpu);
5435
			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5436
		}
5437 5438
	}

5439
	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5440

Avi Kivity's avatar
Avi Kivity committed
5441 5442
	vapic_exit(vcpu);

5443 5444 5445
	return r;
}

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
static int complete_mmio(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
	int r;

	if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
		return 1;

	if (vcpu->mmio_needed) {
		vcpu->mmio_needed = 0;
Avi Kivity's avatar
Avi Kivity committed
5456
		if (!vcpu->mmio_is_write)
Gleb Natapov's avatar
Gleb Natapov committed
5457 5458
			memcpy(vcpu->mmio_data + vcpu->mmio_index,
			       run->mmio.data, 8);
Avi Kivity's avatar
Avi Kivity committed
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
		vcpu->mmio_index += 8;
		if (vcpu->mmio_index < vcpu->mmio_size) {
			run->exit_reason = KVM_EXIT_MMIO;
			run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
			memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
			run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
			run->mmio.is_write = vcpu->mmio_is_write;
			vcpu->mmio_needed = 1;
			return 0;
		}
		if (vcpu->mmio_is_write)
			return 1;
		vcpu->mmio_read_completed = 1;
5472 5473 5474 5475 5476 5477 5478 5479 5480
	}
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
	if (r != EMULATE_DONE)
		return 0;
	return 1;
}

5481 5482 5483 5484 5485
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

5486 5487 5488
	if (!tsk_used_math(current) && init_fpu(current))
		return -ENOMEM;

5489 5490 5491
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

5492
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5493
		kvm_vcpu_block(vcpu);
5494
		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5495 5496
		r = -EAGAIN;
		goto out;
5497 5498 5499
	}

	/* re-sync apic's tpr */
Andre Przywara's avatar
Andre Przywara committed
5500 5501 5502 5503 5504 5505
	if (!irqchip_in_kernel(vcpu->kvm)) {
		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
			r = -EINVAL;
			goto out;
		}
	}
5506

5507 5508 5509 5510
	r = complete_mmio(vcpu);
	if (r <= 0)
		goto out;

5511
	r = __vcpu_run(vcpu);
5512 5513

out:
5514
	post_kvm_run_save(vcpu);
5515 5516 5517 5518 5519 5520 5521 5522
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
5523 5524 5525 5526 5527 5528 5529 5530
	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
		/*
		 * We are here if userspace calls get_regs() in the middle of
		 * instruction emulation. Registers state needs to be copied
		 * back from emulation context to vcpu. Usrapace shouldn't do
		 * that usually, but some bad designed PV devices (vmware
		 * backdoor interface) need this to work
		 */
5531 5532
		struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5533 5534
		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
	}
5535 5536 5537 5538 5539 5540 5541 5542
	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5543
#ifdef CONFIG_X86_64
5544 5545 5546 5547 5548 5549 5550 5551
	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5552 5553
#endif

5554
	regs->rip = kvm_rip_read(vcpu);
5555
	regs->rflags = kvm_get_rflags(vcpu);
5556 5557 5558 5559 5560 5561

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
5562 5563 5564
	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;

5565 5566 5567 5568 5569 5570 5571 5572
	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5573
#ifdef CONFIG_X86_64
5574 5575 5576 5577 5578 5579 5580 5581
	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5582 5583
#endif

5584
	kvm_rip_write(vcpu, regs->rip);
5585
	kvm_set_rflags(vcpu, regs->rflags);
5586

5587 5588
	vcpu->arch.exception.pending = false;

5589 5590
	kvm_make_request(KVM_REQ_EVENT, vcpu);

5591 5592 5593 5594 5595 5596 5597
	return 0;
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

5598
	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5599 5600 5601 5602 5603 5604 5605 5606
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
5607
	struct desc_ptr dt;
5608

5609 5610 5611 5612 5613 5614
	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5615

5616 5617
	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5618 5619

	kvm_x86_ops->get_idt(vcpu, &dt);
5620 5621
	sregs->idt.limit = dt.size;
	sregs->idt.base = dt.address;
5622
	kvm_x86_ops->get_gdt(vcpu, &dt);
5623 5624
	sregs->gdt.limit = dt.size;
	sregs->gdt.base = dt.address;
5625

5626
	sregs->cr0 = kvm_read_cr0(vcpu);
5627
	sregs->cr2 = vcpu->arch.cr2;
5628
	sregs->cr3 = kvm_read_cr3(vcpu);
5629
	sregs->cr4 = kvm_read_cr4(vcpu);
5630
	sregs->cr8 = kvm_get_cr8(vcpu);
5631
	sregs->efer = vcpu->arch.efer;
5632 5633
	sregs->apic_base = kvm_get_apic_base(vcpu);

5634
	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5635

5636
	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5637 5638
		set_bit(vcpu->arch.interrupt.nr,
			(unsigned long *)sregs->interrupt_bitmap);
5639

5640 5641 5642
	return 0;
}

5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	mp_state->mp_state = vcpu->arch.mp_state;
	return 0;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu->arch.mp_state = mp_state->mp_state;
5654
	kvm_make_request(KVM_REQ_EVENT, vcpu);
5655 5656 5657
	return 0;
}

5658 5659
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
		    bool has_error_code, u32 error_code)
5660
{
5661
	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5662
	int ret;
5663

5664
	init_emulate_ctxt(vcpu);
5665

5666 5667
	ret = emulator_task_switch(ctxt, tss_selector, reason,
				   has_error_code, error_code);
5668 5669

	if (ret)
5670
		return EMULATE_FAIL;
5671

5672
	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5673 5674
	kvm_rip_write(vcpu, ctxt->eip);
	kvm_set_rflags(vcpu, ctxt->eflags);
5675
	kvm_make_request(KVM_REQ_EVENT, vcpu);
5676
	return EMULATE_DONE;
5677 5678 5679
}
EXPORT_SYMBOL_GPL(kvm_task_switch);

5680 5681 5682 5683
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
5684
	int pending_vec, max_bits, idx;
5685
	struct desc_ptr dt;
5686

5687 5688
	dt.size = sregs->idt.limit;
	dt.address = sregs->idt.base;
5689
	kvm_x86_ops->set_idt(vcpu, &dt);
5690 5691
	dt.size = sregs->gdt.limit;
	dt.address = sregs->gdt.base;
5692 5693
	kvm_x86_ops->set_gdt(vcpu, &dt);

5694
	vcpu->arch.cr2 = sregs->cr2;
5695
	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5696
	vcpu->arch.cr3 = sregs->cr3;
5697
	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5698

5699
	kvm_set_cr8(vcpu, sregs->cr8);
5700

5701
	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5702 5703 5704
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

5705
	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5706
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5707
	vcpu->arch.cr0 = sregs->cr0;
5708

5709
	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5710
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5711
	if (sregs->cr4 & X86_CR4_OSXSAVE)
5712
		kvm_update_cpuid(vcpu);
5713 5714

	idx = srcu_read_lock(&vcpu->kvm->srcu);
5715
	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5716
		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5717 5718
		mmu_reset_needed = 1;
	}
5719
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5720 5721 5722 5723

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

5724 5725 5726 5727
	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
	pending_vec = find_first_bit(
		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
	if (pending_vec < max_bits) {
5728
		kvm_queue_interrupt(vcpu, pending_vec, false);
5729
		pr_debug("Set back pending irq %d\n", pending_vec);
5730 5731
	}

5732 5733 5734 5735 5736 5737
	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5738

5739 5740
	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5741

5742 5743
	update_cr8_intercept(vcpu);

5744
	/* Older userspace won't unhalt the vcpu on reset. */
5745
	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5746
	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5747
	    !is_protmode(vcpu))
5748 5749
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;

5750 5751
	kvm_make_request(KVM_REQ_EVENT, vcpu);

5752 5753 5754
	return 0;
}

Jan Kiszka's avatar
Jan Kiszka committed
5755 5756
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
5757
{
5758
	unsigned long rflags;
5759
	int i, r;
5760

5761 5762 5763
	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
		r = -EBUSY;
		if (vcpu->arch.exception.pending)
5764
			goto out;
5765 5766 5767 5768 5769 5770
		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
			kvm_queue_exception(vcpu, DB_VECTOR);
		else
			kvm_queue_exception(vcpu, BP_VECTOR);
	}

5771 5772 5773 5774 5775
	/*
	 * Read rflags as long as potentially injected trace flags are still
	 * filtered out.
	 */
	rflags = kvm_get_rflags(vcpu);
5776 5777 5778 5779 5780 5781

	vcpu->guest_debug = dbg->control;
	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
		vcpu->guest_debug = 0;

	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
		for (i = 0; i < KVM_NR_DB_REGS; ++i)
			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
		vcpu->arch.switch_db_regs =
			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
	} else {
		for (i = 0; i < KVM_NR_DB_REGS; i++)
			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
	}

Jan Kiszka's avatar
Jan Kiszka committed
5792 5793 5794
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
			get_segment_base(vcpu, VCPU_SREG_CS);
5795

5796 5797 5798 5799 5800
	/*
	 * Trigger an rflags update that will inject or remove the trace
	 * flags.
	 */
	kvm_set_rflags(vcpu, rflags);
5801

5802
	kvm_x86_ops->set_guest_debug(vcpu, dbg);
5803

5804
	r = 0;
Jan Kiszka's avatar
Jan Kiszka committed
5805

5806
out:
5807 5808 5809 5810

	return r;
}

5811 5812 5813 5814 5815 5816 5817 5818
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;
5819
	int idx;
5820

5821
	idx = srcu_read_lock(&vcpu->kvm->srcu);
5822
	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5823
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5824 5825 5826 5827 5828 5829 5830 5831
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;

	return 0;
}

5832 5833
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
Sheng Yang's avatar
Sheng Yang committed
5834 5835
	struct i387_fxsave_struct *fxsave =
			&vcpu->arch.guest_fpu.state->fxsave;
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
Sheng Yang's avatar
Sheng Yang committed
5851 5852
	struct i387_fxsave_struct *fxsave =
			&vcpu->arch.guest_fpu.state->fxsave;
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	return 0;
}

5866
int fx_init(struct kvm_vcpu *vcpu)
5867
{
5868 5869 5870 5871 5872 5873
	int err;

	err = fpu_alloc(&vcpu->arch.guest_fpu);
	if (err)
		return err;

Sheng Yang's avatar
Sheng Yang committed
5874
	fpu_finit(&vcpu->arch.guest_fpu);
5875

5876 5877 5878 5879 5880
	/*
	 * Ensure guest xcr0 is valid for loading
	 */
	vcpu->arch.xcr0 = XSTATE_FP;

5881
	vcpu->arch.cr0 |= X86_CR0_ET;
5882 5883

	return 0;
5884 5885 5886
}
EXPORT_SYMBOL_GPL(fx_init);

Sheng Yang's avatar
Sheng Yang committed
5887 5888 5889 5890 5891
static void fx_free(struct kvm_vcpu *vcpu)
{
	fpu_free(&vcpu->arch.guest_fpu);
}

5892 5893
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
5894
	if (vcpu->guest_fpu_loaded)
5895 5896
		return;

5897 5898 5899 5900 5901 5902
	/*
	 * Restore all possible states in the guest,
	 * and assume host would use all available bits.
	 * Guest xcr0 would be loaded later.
	 */
	kvm_put_guest_xcr0(vcpu);
5903
	vcpu->guest_fpu_loaded = 1;
5904
	unlazy_fpu(current);
Sheng Yang's avatar
Sheng Yang committed
5905
	fpu_restore_checking(&vcpu->arch.guest_fpu);
5906
	trace_kvm_fpu(1);
5907 5908 5909 5910
}

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
5911 5912
	kvm_put_guest_xcr0(vcpu);

5913 5914 5915 5916
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
Sheng Yang's avatar
Sheng Yang committed
5917
	fpu_save_init(&vcpu->arch.guest_fpu);
Avi Kivity's avatar
Avi Kivity committed
5918
	++vcpu->stat.fpu_reload;
5919
	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5920
	trace_kvm_fpu(0);
5921
}
5922 5923 5924

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
5925
	kvmclock_reset(vcpu);
5926

5927
	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
Sheng Yang's avatar
Sheng Yang committed
5928
	fx_free(vcpu);
5929 5930 5931 5932 5933 5934
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
5935 5936 5937 5938
	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
		printk_once(KERN_WARNING
		"kvm: SMP vm created on host with unstable TSC; "
		"guest TSC will not be reliable\n");
5939 5940
	return kvm_x86_ops->vcpu_create(kvm, id);
}
5941

5942 5943 5944
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
5945

Sheng Yang's avatar
Sheng Yang committed
5946
	vcpu->arch.mtrr_state.have_fixed = 1;
5947 5948 5949 5950 5951 5952
	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);

5953
	return r;
5954 5955
}

5956
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5957
{
5958 5959
	vcpu->arch.apf.msr_val = 0;

5960 5961 5962 5963
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

Sheng Yang's avatar
Sheng Yang committed
5964
	fx_free(vcpu);
5965 5966 5967 5968 5969
	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
Avi Kivity's avatar
Avi Kivity committed
5970 5971
	atomic_set(&vcpu->arch.nmi_queued, 0);
	vcpu->arch.nmi_pending = 0;
5972 5973
	vcpu->arch.nmi_injected = false;

5974 5975 5976 5977 5978
	vcpu->arch.switch_db_regs = 0;
	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
	vcpu->arch.dr6 = DR6_FIXED_1;
	vcpu->arch.dr7 = DR7_FIXED_1;

5979
	kvm_make_request(KVM_REQ_EVENT, vcpu);
5980
	vcpu->arch.apf.msr_val = 0;
5981
	vcpu->arch.st.msr_val = 0;
5982

5983 5984
	kvmclock_reset(vcpu);

5985 5986 5987
	kvm_clear_async_pf_completion_queue(vcpu);
	kvm_async_pf_hash_reset(vcpu);
	vcpu->arch.apf.halted = false;
5988

5989 5990
	kvm_pmu_reset(vcpu);

5991 5992 5993
	return kvm_x86_ops->vcpu_reset(vcpu);
}

5994
int kvm_arch_hardware_enable(void *garbage)
5995
{
5996 5997 5998
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
5999 6000 6001 6002
	int ret;
	u64 local_tsc;
	u64 max_tsc = 0;
	bool stable, backwards_tsc = false;
6003 6004

	kvm_shared_msr_cpu_online();
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
	ret = kvm_x86_ops->hardware_enable(garbage);
	if (ret != 0)
		return ret;

	local_tsc = native_read_tsc();
	stable = !check_tsc_unstable();
	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (!stable && vcpu->cpu == smp_processor_id())
				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
				backwards_tsc = true;
				if (vcpu->arch.last_host_tsc > max_tsc)
					max_tsc = vcpu->arch.last_host_tsc;
			}
		}
	}

	/*
	 * Sometimes, even reliable TSCs go backwards.  This happens on
	 * platforms that reset TSC during suspend or hibernate actions, but
	 * maintain synchronization.  We must compensate.  Fortunately, we can
	 * detect that condition here, which happens early in CPU bringup,
	 * before any KVM threads can be running.  Unfortunately, we can't
	 * bring the TSCs fully up to date with real time, as we aren't yet far
	 * enough into CPU bringup that we know how much real time has actually
	 * elapsed; our helper function, get_kernel_ns() will be using boot
	 * variables that haven't been updated yet.
	 *
	 * So we simply find the maximum observed TSC above, then record the
	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
	 * the adjustment will be applied.  Note that we accumulate
	 * adjustments, in case multiple suspend cycles happen before some VCPU
	 * gets a chance to run again.  In the event that no KVM threads get a
	 * chance to run, we will miss the entire elapsed period, as we'll have
	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
	 * loose cycle time.  This isn't too big a deal, since the loss will be
	 * uniform across all VCPUs (not to mention the scenario is extremely
	 * unlikely). It is possible that a second hibernate recovery happens
	 * much faster than a first, causing the observed TSC here to be
	 * smaller; this would require additional padding adjustment, which is
	 * why we set last_host_tsc to the local tsc observed here.
	 *
	 * N.B. - this code below runs only on platforms with reliable TSC,
	 * as that is the only way backwards_tsc is set above.  Also note
	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
	 * have the same delta_cyc adjustment applied if backwards_tsc
	 * is detected.  Note further, this adjustment is only done once,
	 * as we reset last_host_tsc on all VCPUs to stop this from being
	 * called multiple times (one for each physical CPU bringup).
	 *
	 * Platforms with unnreliable TSCs don't have to deal with this, they
	 * will be compensated by the logic in vcpu_load, which sets the TSC to
	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
	 * guarantee that they stay in perfect synchronization.
	 */
	if (backwards_tsc) {
		u64 delta_cyc = max_tsc - local_tsc;
		list_for_each_entry(kvm, &vm_list, vm_list) {
			kvm_for_each_vcpu(i, vcpu, kvm) {
				vcpu->arch.tsc_offset_adjustment += delta_cyc;
				vcpu->arch.last_host_tsc = local_tsc;
			}

			/*
			 * We have to disable TSC offset matching.. if you were
			 * booting a VM while issuing an S4 host suspend....
			 * you may have some problem.  Solving this issue is
			 * left as an exercise to the reader.
			 */
			kvm->arch.last_tsc_nsec = 0;
			kvm->arch.last_tsc_write = 0;
		}

	}
	return 0;
6081 6082 6083 6084 6085
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
6086
	drop_user_return_notifiers(garbage);
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

6113
	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6114
	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6115
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6116
	else
6117
		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6118 6119 6120 6121 6122 6123

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
6124
	vcpu->arch.pio_data = page_address(page);
6125

6126
	kvm_set_tsc_khz(vcpu, max_tsc_khz);
Zachary Amsden's avatar
Zachary Amsden committed
6127

6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

Huang Ying's avatar
Huang Ying committed
6138 6139 6140 6141
	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
				       GFP_KERNEL);
	if (!vcpu->arch.mce_banks) {
		r = -ENOMEM;
6142
		goto fail_free_lapic;
Huang Ying's avatar
Huang Ying committed
6143 6144 6145
	}
	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;

6146 6147 6148
	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
		goto fail_free_mce_banks;

6149
	kvm_async_pf_hash_reset(vcpu);
6150
	kvm_pmu_init(vcpu);
6151

6152
	return 0;
6153 6154
fail_free_mce_banks:
	kfree(vcpu->arch.mce_banks);
6155 6156
fail_free_lapic:
	kvm_free_lapic(vcpu);
6157 6158 6159
fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
6160
	free_page((unsigned long)vcpu->arch.pio_data);
6161 6162 6163 6164 6165 6166
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
6167 6168
	int idx;

6169
	kvm_pmu_destroy(vcpu);
6170
	kfree(vcpu->arch.mce_banks);
6171
	kvm_free_lapic(vcpu);
6172
	idx = srcu_read_lock(&vcpu->kvm->srcu);
6173
	kvm_mmu_destroy(vcpu);
6174
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6175
	free_page((unsigned long)vcpu->arch.pio_data);
6176
}
6177

6178
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6179
{
6180 6181 6182
	if (type)
		return -EINVAL;

6183
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
Ben-Ami Yassour's avatar
Ben-Ami Yassour committed
6184
	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6185

6186 6187 6188
	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);

6189
	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6190

6191
	return 0;
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
6204
	struct kvm_vcpu *vcpu;
6205 6206 6207 6208

	/*
	 * Unpin any mmu pages first.
	 */
6209 6210
	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_clear_async_pf_completion_queue(vcpu);
6211
		kvm_unload_vcpu_mmu(vcpu);
6212
	}
6213 6214 6215 6216 6217 6218
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;
6219

6220 6221
	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
6222 6223
}

6224 6225
void kvm_arch_sync_events(struct kvm *kvm)
{
6226
	kvm_free_all_assigned_devices(kvm);
6227
	kvm_free_pit(kvm);
6228 6229
}

6230 6231
void kvm_arch_destroy_vm(struct kvm *kvm)
{
6232
	kvm_iommu_unmap_guest(kvm);
6233 6234
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
6235
	kvm_free_vcpus(kvm);
6236 6237
	if (kvm->arch.apic_access_page)
		put_page(kvm->arch.apic_access_page);
6238 6239
	if (kvm->arch.ept_identity_pagetable)
		put_page(kvm->arch.ept_identity_pagetable);
6240
}
6241

6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
void kvm_arch_free_memslot(struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
	int i;

	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
		if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
			vfree(free->arch.lpage_info[i]);
			free->arch.lpage_info[i] = NULL;
		}
	}
}

int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
{
	int i;

	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
		unsigned long ugfn;
		int lpages;
		int level = i + 2;

		lpages = gfn_to_index(slot->base_gfn + npages - 1,
				      slot->base_gfn, level) + 1;

		slot->arch.lpage_info[i] =
			vzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
		if (!slot->arch.lpage_info[i])
			goto out_free;

		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
			slot->arch.lpage_info[i][0].write_count = 1;
		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
			slot->arch.lpage_info[i][lpages - 1].write_count = 1;
		ugfn = slot->userspace_addr >> PAGE_SHIFT;
		/*
		 * If the gfn and userspace address are not aligned wrt each
		 * other, or if explicitly asked to, disable large page
		 * support for this slot
		 */
		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
		    !kvm_largepages_enabled()) {
			unsigned long j;

			for (j = 0; j < lpages; ++j)
				slot->arch.lpage_info[i][j].write_count = 1;
		}
	}

	return 0;

out_free:
	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
		vfree(slot->arch.lpage_info[i]);
		slot->arch.lpage_info[i] = NULL;
	}
	return -ENOMEM;
}

6301 6302
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				struct kvm_memory_slot *memslot,
6303
				struct kvm_memory_slot old,
6304
				struct kvm_userspace_memory_region *mem,
6305 6306
				int user_alloc)
{
6307
	int npages = memslot->npages;
6308 6309 6310 6311 6312
	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;

	/* Prevent internal slot pages from being moved by fork()/COW. */
	if (memslot->id >= KVM_MEMORY_SLOTS)
		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6313 6314 6315 6316 6317 6318

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
6319 6320
			unsigned long userspace_addr;

6321
			down_write(&current->mm->mmap_sem);
6322 6323 6324
			userspace_addr = do_mmap(NULL, 0,
						 npages * PAGE_SIZE,
						 PROT_READ | PROT_WRITE,
6325
						 map_flags,
6326
						 0);
6327
			up_write(&current->mm->mmap_sem);
6328

6329 6330 6331 6332
			if (IS_ERR((void *)userspace_addr))
				return PTR_ERR((void *)userspace_addr);

			memslot->userspace_addr = userspace_addr;
6333 6334 6335
		}
	}

6336 6337 6338 6339 6340 6341 6342 6343 6344 6345

	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{

6346
	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360

	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
		int ret;

		down_write(&current->mm->mmap_sem);
		ret = do_munmap(current->mm, old.userspace_addr,
				old.npages * PAGE_SIZE);
		up_write(&current->mm->mmap_sem);
		if (ret < 0)
			printk(KERN_WARNING
			       "kvm_vm_ioctl_set_memory_region: "
			       "failed to munmap memory\n");
	}

6361 6362 6363
	if (!kvm->arch.n_requested_mmu_pages)
		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);

6364
	spin_lock(&kvm->mmu_lock);
6365
	if (nr_mmu_pages)
6366 6367
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6368
	spin_unlock(&kvm->mmu_lock);
6369
}
6370

6371 6372 6373
void kvm_arch_flush_shadow(struct kvm *kvm)
{
	kvm_mmu_zap_all(kvm);
6374
	kvm_reload_remote_mmus(kvm);
6375 6376
}

6377 6378
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
6379 6380 6381
	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
		!vcpu->arch.apf.halted)
		|| !list_empty_careful(&vcpu->async_pf.done)
6382
		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
Avi Kivity's avatar
Avi Kivity committed
6383
		|| atomic_read(&vcpu->arch.nmi_queued) ||
6384 6385
		(kvm_arch_interrupt_allowed(vcpu) &&
		 kvm_cpu_has_interrupt(vcpu));
6386
}
6387 6388 6389

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
6390 6391
	int me;
	int cpu = vcpu->cpu;
6392 6393 6394 6395 6396

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
6397 6398 6399

	me = get_cpu();
	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6400
		if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6401
			smp_send_reschedule(cpu);
6402
	put_cpu();
6403
}
6404 6405 6406 6407 6408

int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->interrupt_allowed(vcpu);
}
6409

Jan Kiszka's avatar
Jan Kiszka committed
6410 6411 6412 6413 6414 6415 6416 6417 6418
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
{
	unsigned long current_rip = kvm_rip_read(vcpu) +
		get_segment_base(vcpu, VCPU_SREG_CS);

	return current_rip == linear_rip;
}
EXPORT_SYMBOL_GPL(kvm_is_linear_rip);

6419 6420 6421 6422 6423 6424
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
{
	unsigned long rflags;

	rflags = kvm_x86_ops->get_rflags(vcpu);
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6425
		rflags &= ~X86_EFLAGS_TF;
6426 6427 6428 6429 6430 6431 6432
	return rflags;
}
EXPORT_SYMBOL_GPL(kvm_get_rflags);

void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
Jan Kiszka's avatar
Jan Kiszka committed
6433
	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6434
		rflags |= X86_EFLAGS_TF;
6435
	kvm_x86_ops->set_rflags(vcpu, rflags);
6436
	kvm_make_request(KVM_REQ_EVENT, vcpu);
6437 6438 6439
}
EXPORT_SYMBOL_GPL(kvm_set_rflags);

6440 6441 6442 6443
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
{
	int r;

6444
	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6445
	      is_error_page(work->page))
6446 6447 6448 6449 6450 6451
		return;

	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		return;

6452 6453 6454 6455
	if (!vcpu->arch.mmu.direct_map &&
	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
		return;

6456 6457 6458
	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
}

6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
{
	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
}

static inline u32 kvm_async_pf_next_probe(u32 key)
{
	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
}

static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	u32 key = kvm_async_pf_hash_fn(gfn);

	while (vcpu->arch.apf.gfns[key] != ~0)
		key = kvm_async_pf_next_probe(key);

	vcpu->arch.apf.gfns[key] = gfn;
}

static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	int i;
	u32 key = kvm_async_pf_hash_fn(gfn);

	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6485 6486
		     (vcpu->arch.apf.gfns[key] != gfn &&
		      vcpu->arch.apf.gfns[key] != ~0); i++)
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
		key = kvm_async_pf_next_probe(key);

	return key;
}

bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
}

static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	u32 i, j, k;

	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
	while (true) {
		vcpu->arch.apf.gfns[i] = ~0;
		do {
			j = kvm_async_pf_next_probe(j);
			if (vcpu->arch.apf.gfns[j] == ~0)
				return;
			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
			/*
			 * k lies cyclically in ]i,j]
			 * |    i.k.j |
			 * |....j i.k.| or  |.k..j i...|
			 */
		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
		i = j;
	}
}

6520 6521 6522 6523 6524 6525 6526
static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
{

	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
				      sizeof(val));
}

6527 6528 6529
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
6530 6531
	struct x86_exception fault;

6532
	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6533
	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6534 6535

	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6536 6537
	    (vcpu->arch.apf.send_user_only &&
	     kvm_x86_ops->get_cpl(vcpu) == 0))
6538 6539
		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6540 6541 6542 6543 6544 6545
		fault.vector = PF_VECTOR;
		fault.error_code_valid = true;
		fault.error_code = 0;
		fault.nested_page_fault = false;
		fault.address = work->arch.token;
		kvm_inject_page_fault(vcpu, &fault);
6546
	}
6547 6548 6549 6550 6551
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
6552 6553
	struct x86_exception fault;

6554 6555 6556 6557 6558 6559 6560 6561
	trace_kvm_async_pf_ready(work->arch.token, work->gva);
	if (is_error_page(work->page))
		work->arch.token = ~0; /* broadcast wakeup */
	else
		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);

	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6562 6563 6564 6565 6566 6567
		fault.vector = PF_VECTOR;
		fault.error_code_valid = true;
		fault.error_code = 0;
		fault.nested_page_fault = false;
		fault.address = work->arch.token;
		kvm_inject_page_fault(vcpu, &fault);
6568
	}
6569
	vcpu->arch.apf.halted = false;
6570 6571 6572 6573 6574 6575 6576 6577 6578
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
		return true;
	else
		return !kvm_event_needs_reinjection(vcpu) &&
			kvm_x86_ops->interrupt_allowed(vcpu);
6579 6580
}

6581 6582 6583 6584 6585
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6586
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6587
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6588
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6589
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6590
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6591
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6592
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);