blk-throttle.c 66.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include "blk.h"
14
#include "blk-cgroup-rwstat.h"
15
#include "blk-stat.h"
16
#include "blk-throttle.h"
17 18

/* Max dispatch from a group in 1 round */
19
#define THROTL_GRP_QUANTUM 8
20 21

/* Total max dispatch from all groups in one round */
22
#define THROTL_QUANTUM 32
23

24 25 26
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
27
#define MAX_THROTL_SLICE (HZ)
28
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 30
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
31 32
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
33 34 35 36 37 38 39
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
40

41 42 43
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

44 45
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

46 47 48 49 50 51 52 53 54 55 56 57 58
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

59 60 61
struct throtl_data
{
	/* service tree for active throtl groups */
62
	struct throtl_service_queue service_queue;
63 64 65 66 67 68

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

69 70
	unsigned int throtl_slice;

71
	/* Work for dispatching throttled bios */
72
	struct work_struct dispatch_work;
73 74
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
75 76 77

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
78 79

	unsigned int scale;
80

81 82 83
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
84
	unsigned long last_calculate_time;
85
	unsigned long filtered_latency;
86 87

	bool track_bio_latency;
88 89
};

90
static void throtl_pending_timer_fn(struct timer_list *t);
91

Tejun Heo's avatar
Tejun Heo committed
92
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93
{
94
	return pd_to_blkg(&tg->pd);
95 96
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
116
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
117 118 119 120 121 122 123 124 125 126 127 128
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

147 148
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
149
	struct blkcg_gq *blkg = tg_to_blkg(tg);
150
	struct throtl_data *td;
151 152 153 154
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
155 156 157

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
158 159 160 161 162 163 164 165
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
166 167 168 169 170 171 172 173

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
174
	return ret;
175 176 177 178
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
179
	struct blkcg_gq *blkg = tg_to_blkg(tg);
180
	struct throtl_data *td;
181 182 183 184
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
185

186 187
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
188 189 190 191 192 193 194 195
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
196 197 198 199 200 201 202 203 204 205

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
206
	return ret;
207 208
}

209 210 211
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

212 213 214 215 216 217 218 219 220 221 222 223 224 225
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
226 227
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
228
	if ((__tg)) {							\
229
		blk_add_cgroup_trace_msg(__td->queue,			\
230
			&tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231 232 233
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
234
} while (0)
235

236 237 238 239 240 241 242 243
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
277
	struct throtl_qnode *qn;
278 279 280 281 282
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

283
	qn = list_first_entry(queued, struct throtl_qnode, node);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
306
	struct throtl_qnode *qn;
307 308 309 310 311
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

312
	qn = list_first_entry(queued, struct throtl_qnode, node);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

329
/* init a service_queue, assumes the caller zeroed it */
330
static void throtl_service_queue_init(struct throtl_service_queue *sq)
331
{
332 333
	INIT_LIST_HEAD(&sq->queued[READ]);
	INIT_LIST_HEAD(&sq->queued[WRITE]);
334
	sq->pending_tree = RB_ROOT_CACHED;
335
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 337
}

338 339 340
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
						struct request_queue *q,
						struct blkcg *blkcg)
341
{
342
	struct throtl_grp *tg;
343
	int rw;
344

345
	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
346
	if (!tg)
347
		return NULL;
348

349 350 351 352 353 354
	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
		goto err_free_tg;

	if (blkg_rwstat_init(&tg->stat_ios, gfp))
		goto err_exit_stat_bytes;

355 356 357 358 359 360 361 362
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
363 364 365 366
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
367 368 369 370 371
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
372

373
	tg->latency_target = DFL_LATENCY_TARGET;
374
	tg->latency_target_conf = DFL_LATENCY_TARGET;
375 376
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
377

378
	return &tg->pd;
379 380 381 382 383 384

err_exit_stat_bytes:
	blkg_rwstat_exit(&tg->stat_bytes);
err_free_tg:
	kfree(tg);
	return NULL;
385 386
}

387
static void throtl_pd_init(struct blkg_policy_data *pd)
388
{
389 390
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
391
	struct throtl_data *td = blkg->q->td;
392
	struct throtl_service_queue *sq = &tg->service_queue;
393

394
	/*
395
	 * If on the default hierarchy, we switch to properly hierarchical
396 397 398 399 400
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
401
	 * If not on the default hierarchy, the broken flat hierarchy
402 403 404 405 406
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
407
	sq->parent_sq = &td->service_queue;
408
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410
	tg->td = td;
411 412
}

413 414 415 416 417 418 419 420
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421
	struct throtl_data *td = tg->td;
422 423
	int rw;

424 425 426 427 428 429 430
	for (rw = READ; rw <= WRITE; rw++) {
		tg->has_rules_iops[rw] =
			(parent_tg && parent_tg->has_rules_iops[rw]) ||
			(td->limit_valid[td->limit_index] &&
			  tg_iops_limit(tg, rw) != UINT_MAX);
		tg->has_rules_bps[rw] =
			(parent_tg && parent_tg->has_rules_bps[rw]) ||
431
			(td->limit_valid[td->limit_index] &&
432 433
			 (tg_bps_limit(tg, rw) != U64_MAX));
	}
434 435
}

436
static void throtl_pd_online(struct blkg_policy_data *pd)
437
{
438
	struct throtl_grp *tg = pd_to_tg(pd);
439 440 441 442
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
443
	tg_update_has_rules(tg);
444 445
}

446
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447 448 449 450 451 452 453 454 455 456 457
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
459
			low_valid = true;
460 461
			break;
		}
462 463 464 465 466
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}
467 468 469 470 471
#else
static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
{
}
#endif
472

473
static void throtl_upgrade_state(struct throtl_data *td);
474 475 476 477 478 479 480 481 482 483 484
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

485 486
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
487 488
}

489 490
static void throtl_pd_free(struct blkg_policy_data *pd)
{
491 492
	struct throtl_grp *tg = pd_to_tg(pd);

493
	del_timer_sync(&tg->service_queue.pending_timer);
494 495
	blkg_rwstat_exit(&tg->stat_bytes);
	blkg_rwstat_exit(&tg->stat_ios);
496
	kfree(tg);
497 498
}

499 500
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
501
{
502
	struct rb_node *n;
503

504 505 506 507 508
	n = rb_first_cached(&parent_sq->pending_tree);
	WARN_ON_ONCE(!n);
	if (!n)
		return NULL;
	return rb_entry_tg(n);
509 510
}

511 512
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
513
{
514 515
	rb_erase_cached(n, &parent_sq->pending_tree);
	RB_CLEAR_NODE(n);
516 517
}

518
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
519 520 521
{
	struct throtl_grp *tg;

522
	tg = throtl_rb_first(parent_sq);
523 524 525
	if (!tg)
		return;

526
	parent_sq->first_pending_disptime = tg->disptime;
527 528
}

529
static void tg_service_queue_add(struct throtl_grp *tg)
530
{
531
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532
	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533 534 535
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
536
	bool leftmost = true;
537 538 539 540 541 542 543 544 545

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
546
			leftmost = false;
547 548 549 550
		}
	}

	rb_link_node(&tg->rb_node, parent, node);
551 552
	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
			       leftmost);
553 554
}

555
static void throtl_enqueue_tg(struct throtl_grp *tg)
556
{
557 558 559 560 561
	if (!(tg->flags & THROTL_TG_PENDING)) {
		tg_service_queue_add(tg);
		tg->flags |= THROTL_TG_PENDING;
		tg->service_queue.parent_sq->nr_pending++;
	}
562 563
}

564
static void throtl_dequeue_tg(struct throtl_grp *tg)
565
{
566
	if (tg->flags & THROTL_TG_PENDING) {
567 568 569 570 571
		struct throtl_service_queue *parent_sq =
			tg->service_queue.parent_sq;

		throtl_rb_erase(&tg->rb_node, parent_sq);
		--parent_sq->nr_pending;
572 573
		tg->flags &= ~THROTL_TG_PENDING;
	}
574 575
}

576
/* Call with queue lock held */
577 578
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
579
{
580
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
581 582 583 584 585 586 587 588 589 590

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
591 592 593
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
616
{
617
	/* any pending children left? */
618
	if (!sq->nr_pending)
619
		return true;
620

621
	update_min_dispatch_time(sq);
622

623
	/* is the next dispatch time in the future? */
624
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
625
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
626
		return true;
627 628
	}

629 630
	/* tell the caller to continue dispatching */
	return false;
631 632
}

633 634 635 636 637
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;
638 639
	tg->carryover_bytes[rw] = 0;
	tg->carryover_ios[rw] = 0;
640 641 642 643 644 645 646 647 648 649

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

650
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651 652 653 654 655 656
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

657 658
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
					  bool clear_carryover)
659 660
{
	tg->bytes_disp[rw] = 0;
661
	tg->io_disp[rw] = 0;
662
	tg->slice_start[rw] = jiffies;
663
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664 665 666 667
	if (clear_carryover) {
		tg->carryover_bytes[rw] = 0;
		tg->carryover_ios[rw] = 0;
	}
668

669 670 671 672
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
673 674
}

675 676
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
677
{
678
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
679 680
}

681 682
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
683
{
684
	throtl_set_slice_end(tg, rw, jiffy_end);
685 686 687 688
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
689 690 691
}

/* Determine if previously allocated or extended slice is complete or not */
692
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
693 694
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
695
		return false;
696

697
	return true;
698 699 700
}

/* Trim the used slices and adjust slice start accordingly */
701
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
702
{
703 704
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
705 706 707 708 709 710 711 712

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
713
	if (throtl_slice_used(tg, rw))
714 715
		return;

716 717 718
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
719
	 * slice_end, but later limit was bumped up and bio was dispatched
720 721 722 723
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

724
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
725

726 727
	time_elapsed = jiffies - tg->slice_start[rw];

728
	nr_slices = time_elapsed / tg->td->throtl_slice;
729 730 731

	if (!nr_slices)
		return;
732
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
733 734
	do_div(tmp, HZ);
	bytes_trim = tmp;
735

736 737
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
738

739
	if (!bytes_trim && !io_trim)
740 741 742 743 744 745 746
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

747 748 749 750 751
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

752
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
753

754 755 756 757
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
758 759
}

760 761
static unsigned int calculate_io_allowed(u32 iops_limit,
					 unsigned long jiffy_elapsed)
762
{
763
	unsigned int io_allowed;
764
	u64 tmp;
765

766
	/*
767
	 * jiffy_elapsed should not be a big value as minimum iops can be
768 769 770 771 772
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

773
	tmp = (u64)iops_limit * jiffy_elapsed;
774 775 776 777 778 779
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
780

781 782 783 784 785 786 787 788
	return io_allowed;
}

static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
{
	return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
{
	unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
	u64 bps_limit = tg_bps_limit(tg, rw);
	u32 iops_limit = tg_iops_limit(tg, rw);

	/*
	 * If config is updated while bios are still throttled, calculate and
	 * accumulate how many bytes/ios are waited across changes. And
	 * carryover_bytes/ios will be used to calculate new wait time under new
	 * configuration.
	 */
	if (bps_limit != U64_MAX)
		tg->carryover_bytes[rw] +=
			calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
			tg->bytes_disp[rw];
	if (iops_limit != UINT_MAX)
		tg->carryover_ios[rw] +=
			calculate_io_allowed(iops_limit, jiffy_elapsed) -
			tg->io_disp[rw];
}

static void tg_update_carryover(struct throtl_grp *tg)
{
	if (tg->service_queue.nr_queued[READ])
		__tg_update_carryover(tg, READ);
	if (tg->service_queue.nr_queued[WRITE])
		__tg_update_carryover(tg, WRITE);

	/* see comments in struct throtl_grp for meaning of these fields. */
	throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
		   tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
		   tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static bool tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
				 u32 iops_limit, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned int io_allowed;
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;

	if (iops_limit == UINT_MAX) {
		if (wait)
			*wait = 0;
		return true;
	}

	jiffy_elapsed = jiffies - tg->slice_start[rw];

	/* Round up to the next throttle slice, wait time must be nonzero */
	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
841 842
	io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
		     tg->carryover_ios[rw];
843
	if (tg->io_disp[rw] + 1 <= io_allowed) {
844 845
		if (wait)
			*wait = 0;
846
		return true;
847 848
	}

849
	/* Calc approx time to dispatch */
850
	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
851 852 853

	if (wait)
		*wait = jiffy_wait;
854
	return false;
855 856
}

857 858
static bool tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
				u64 bps_limit, unsigned long *wait)
859 860
{
	bool rw = bio_data_dir(bio);
861
	u64 bytes_allowed, extra_bytes;
862
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
863
	unsigned int bio_size = throtl_bio_data_size(bio);
864

865
	/* no need to throttle if this bio's bytes have been accounted */
866
	if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
867 868 869 870 871
		if (wait)
			*wait = 0;
		return true;
	}

872 873 874 875
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
876
		jiffy_elapsed_rnd = tg->td->throtl_slice;
877

878
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
879 880
	bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
			tg->carryover_bytes[rw];
881
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
882 883
		if (wait)
			*wait = 0;
884
		return true;
885 886 887
	}

	/* Calc approx time to dispatch */
888
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
889
	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
890 891 892 893 894 895 896 897 898 899 900

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
901
	return false;
902 903 904 905 906 907
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
908 909
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
910 911 912
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
913 914
	u64 bps_limit = tg_bps_limit(tg, rw);
	u32 iops_limit = tg_iops_limit(tg, rw);
915 916 917 918 919 920 921

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
922
	BUG_ON(tg->service_queue.nr_queued[rw] &&
923
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
924

925
	/* If tg->bps = -1, then BW is unlimited */
926 927
	if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
	    tg->flags & THROTL_TG_CANCELING) {
928 929
		if (wait)
			*wait = 0;
930
		return true;
931 932 933 934 935
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
936 937 938
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
939
	 */
940
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
941
		throtl_start_new_slice(tg, rw, true);
942
	else {
943 944 945 946
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
947 948
	}

949 950
	if (tg_within_bps_limit(tg, bio, bps_limit, &bps_wait) &&
	    tg_within_iops_limit(tg, bio, iops_limit, &iops_wait)) {
951 952
		if (wait)
			*wait = 0;
953
		return true;
954 955 956 957 958 959 960 961
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
962
		throtl_extend_slice(tg, rw, jiffies + max_wait);
963

964
	return false;
965 966 967 968 969
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
970
	unsigned int bio_size = throtl_bio_data_size(bio);
971 972

	/* Charge the bio to the group */
973
	if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
974 975 976 977
		tg->bytes_disp[rw] += bio_size;
		tg->last_bytes_disp[rw] += bio_size;
	}

978
	tg->io_disp[rw]++;
979
	tg->last_io_disp[rw]++;
980 981
}

982 983 984 985 986 987 988 989 990 991 992
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
993
{
994
	struct throtl_service_queue *sq = &tg->service_queue;
995 996
	bool rw = bio_data_dir(bio);

997 998 999
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1000 1001 1002 1003
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
1004
	 * cleared on the next tg_update_disptime().
1005 1006 1007 1008
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1009 1010
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1011
	sq->nr_queued[rw]++;
1012
	throtl_enqueue_tg(tg);
1013 1014
}

1015
static void tg_update_disptime(struct throtl_grp *tg)
1016
{
1017
	struct throtl_service_queue *sq = &tg->service_queue;
1018 1019 1020
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1021 1022
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1023
		tg_may_dispatch(tg, bio, &read_wait);
1024

1025 1026
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1027
		tg_may_dispatch(tg, bio, &write_wait);
1028 1029 1030 1031 1032

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1033
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1034
	tg->disptime = disptime;
1035
	tg_service_queue_add(tg);
1036 1037 1038

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1051
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1052
{
1053
	struct throtl_service_queue *sq = &tg->service_queue;
1054 1055
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1056
	struct throtl_grp *tg_to_put = NULL;
1057 1058
	struct bio *bio;

1059 1060 1061 1062 1063 1064 1065
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1066
	sq->nr_queued[rw]--;
1067 1068

	throtl_charge_bio(tg, bio);
1069
	bio_set_flag(bio, BIO_BPS_THROTTLED);
1070 1071 1072 1073 1074 1075 1076 1077 1078

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1079
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1080
		start_parent_slice_with_credit(tg, parent_tg, rw);
1081
	} else {
1082 1083
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1084 1085 1086
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1087

1088
	throtl_trim_slice(tg, rw);
1089

1090 1091
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1092 1093
}

1094
static int throtl_dispatch_tg(struct throtl_grp *tg)
1095
{
1096
	struct throtl_service_queue *sq = &tg->service_queue;
1097
	unsigned int nr_reads = 0, nr_writes = 0;
1098 1099
	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1100 1101 1102 1103
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1104
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1105
	       tg_may_dispatch(tg, bio, NULL)) {
1106

1107
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1108 1109 1110 1111 1112 1113
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1114
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1115
	       tg_may_dispatch(tg, bio, NULL)) {
1116

1117
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1118 1119 1120 1121 1122 1123 1124 1125 1126
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1127
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1128 1129 1130 1131
{
	unsigned int nr_disp = 0;

	while (1) {
1132
		struct throtl_grp *tg;
1133
		struct throtl_service_queue *sq;
1134

1135 1136 1137 1138
		if (!parent_sq->nr_pending)
			break;

		tg = throtl_rb_first(parent_sq);
1139 1140 1141 1142 1143 1144
		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1145
		nr_disp += throtl_dispatch_tg(tg);
1146

1147
		sq = &tg->service_queue;
1148
		if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1149
			tg_update_disptime(tg);
1150 1151
		else
			throtl_dequeue_tg(tg);
1152

1153
		if (nr_disp >= THROTL_QUANTUM)
1154 1155 1156 1157 1158 1159
			break;
	}

	return nr_disp;
}

1160 1161
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1162 1163
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1164
 * @t: the pending_timer member of the throtl_service_queue being serviced
1165 1166 1167 1168
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1169 1170 1171 1172 1173 1174 1175
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1176
 */
1177
static void throtl_pending_timer_fn(struct timer_list *t)
1178
{
1179
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1180
	struct throtl_grp *tg = sq_to_tg(sq);
1181
	struct throtl_data *td = sq_to_td(sq);
1182
	struct throtl_service_queue *parent_sq;
1183
	struct request_queue *q;
1184
	bool dispatched;
1185
	int ret;
1186

1187 1188 1189 1190 1191 1192
	/* throtl_data may be gone, so figure out request queue by blkg */
	if (tg)
		q = tg->pd.blkg->q;
	else
		q = td->queue;

1193
	spin_lock_irq(&q->queue_lock);
1194 1195 1196 1197

	if (!q->root_blkg)
		goto out_unlock;

1198 1199 1200
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1201 1202 1203
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1204

1205 1206
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1207 1208
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1209 1210 1211 1212 1213 1214

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1215

1216 1217
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1218

1219
		/* this dispatch windows is still open, relax and repeat */
1220
		spin_unlock_irq(&q->queue_lock);
1221
		cpu_relax();
1222
		spin_lock_irq(&q->queue_lock);
1223
	}
1224

1225 1226
	if (!dispatched)
		goto out_unlock;
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
1240
		/* reached the top-level, queue issuing */
1241 1242 1243
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1244
	spin_unlock_irq(&q->queue_lock);
1245
}
1246

1247 1248 1249 1250
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
1251 1252
 * This function is queued for execution when bios reach the bio_lists[]
 * of throtl_data->service_queue.  Those bios are ready and issued by this
1253 1254
 * function.
 */
1255
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

1268
	spin_lock_irq(&q->queue_lock);
1269 1270 1271
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1272
	spin_unlock_irq(&q->queue_lock);
1273 1274

	if (!bio_list_empty(&bio_list_on_stack)) {
1275
		blk_start_plug(&plug);
1276
		while ((bio = bio_list_pop(&bio_list_on_stack)))
1277
			submit_bio_noacct_nocheck(bio);
1278
		blk_finish_plug(&plug);
1279 1280 1281
	}
}

1282 1283
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1284
{
1285 1286
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1287

1288
	if (v == U64_MAX)
1289
		return 0;
1290
	return __blkg_prfill_u64(sf, pd, v);
1291 1292
}

1293 1294
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1295
{
1296 1297
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1298

1299
	if (v == UINT_MAX)
1300
		return 0;
1301
	return __blkg_prfill_u64(sf, pd, v);
1302 1303
}

1304
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1305
{
1306 1307
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1308
	return 0;
1309 1310
}

1311
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1312
{
1313 1314
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1315
	return 0;
1316 1317
}

1318
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1319
{
1320
	struct throtl_service_queue *sq = &tg->service_queue;
1321
	struct cgroup_subsys_state *pos_css;
1322
	struct blkcg_gq *blkg;
1323

1324 1325
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1326 1327
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1328

1329 1330 1331 1332 1333 1334 1335
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1336 1337
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1356

1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1365 1366
	throtl_start_new_slice(tg, READ, false);
	throtl_start_new_slice(tg, WRITE, false);
1367

1368
	if (tg->flags & THROTL_TG_PENDING) {
1369
		tg_update_disptime(tg);
1370
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1371
	}
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1391
		v = U64_MAX;
1392 1393

	tg = blkg_to_tg(ctx.blkg);
1394
	tg_update_carryover(tg);
1395 1396 1397 1398 1399

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1400

1401
	tg_conf_updated(tg, false);
1402 1403
	ret = 0;
out_finish:
1404
	blkg_conf_finish(&ctx);
1405
	return ret ?: nbytes;
1406 1407
}

1408 1409
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1410
{
1411
	return tg_set_conf(of, buf, nbytes, off, true);
1412 1413
}

1414 1415
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1416
{
1417
	return tg_set_conf(of, buf, nbytes, off, false);
1418 1419
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static int tg_print_rwstat(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  blkg_prfill_rwstat, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
				      struct blkg_policy_data *pd, int off)
{
	struct blkg_rwstat_sample sum;

	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
				  &sum);
	return __blkg_prfill_rwstat(sf, pd, &sum);
}

static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

1446
static struct cftype throtl_legacy_files[] = {
1447 1448
	{
		.name = "throttle.read_bps_device",
1449
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1450
		.seq_show = tg_print_conf_u64,
1451
		.write = tg_set_conf_u64,
1452 1453 1454
	},
	{
		.name = "throttle.write_bps_device",
1455
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1456
		.seq_show = tg_print_conf_u64,
1457
		.write = tg_set_conf_u64,
1458 1459 1460
	},
	{
		.name = "throttle.read_iops_device",
1461
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1462
		.seq_show = tg_print_conf_uint,
1463
		.write = tg_set_conf_uint,
1464 1465 1466
	},
	{
		.name = "throttle.write_iops_device",
1467
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1468
		.seq_show = tg_print_conf_uint,
1469
		.write = tg_set_conf_uint,
1470 1471 1472
	},
	{
		.name = "throttle.io_service_bytes",
1473 1474
		.private = offsetof(struct throtl_grp, stat_bytes),
		.seq_show = tg_print_rwstat,
1475
	},
1476 1477
	{
		.name = "throttle.io_service_bytes_recursive",
1478 1479
		.private = offsetof(struct throtl_grp, stat_bytes),
		.seq_show = tg_print_rwstat_recursive,
1480
	},
1481 1482
	{
		.name = "throttle.io_serviced",
1483 1484
		.private = offsetof(struct throtl_grp, stat_ios),
		.seq_show = tg_print_rwstat,
1485
	},
1486 1487
	{
		.name = "throttle.io_serviced_recursive",
1488 1489
		.private = offsetof(struct throtl_grp, stat_ios),
		.seq_show = tg_print_rwstat_recursive,
1490
	},
1491 1492 1493
	{ }	/* terminate */
};

1494
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1495 1496 1497 1498 1499
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
1500 1501
	u64 bps_dft;
	unsigned int iops_dft;
1502
	char idle_time[26] = "";
1503
	char latency_time[26] = "";
1504 1505 1506

	if (!dname)
		return 0;
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1519
	    tg->iops_conf[WRITE][off] == iops_dft &&
1520
	    (off != LIMIT_LOW ||
1521
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1522
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1523 1524
		return 0;

1525
	if (tg->bps_conf[READ][off] != U64_MAX)
1526
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1527
			tg->bps_conf[READ][off]);
1528
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1529
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1530
			tg->bps_conf[WRITE][off]);
1531
	if (tg->iops_conf[READ][off] != UINT_MAX)
1532
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1533
			tg->iops_conf[READ][off]);
1534
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1535
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1536
			tg->iops_conf[WRITE][off]);
1537
	if (off == LIMIT_LOW) {
1538
		if (tg->idletime_threshold_conf == ULONG_MAX)
1539 1540 1541
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1542
				tg->idletime_threshold_conf);
1543

1544
		if (tg->latency_target_conf == ULONG_MAX)
1545 1546 1547
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1548
				" latency=%lu", tg->latency_target_conf);
1549
	}
1550

1551 1552 1553
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1554 1555 1556
	return 0;
}

1557
static int tg_print_limit(struct seq_file *sf, void *v)
1558
{
1559
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1560 1561 1562 1563
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

1564
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1565 1566 1567 1568 1569 1570
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1571
	unsigned long idle_time;
1572
	unsigned long latency_time;
1573
	int ret;
1574
	int index = of_cft(of)->private;
1575 1576 1577 1578 1579 1580

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);
1581
	tg_update_carryover(tg);
1582

1583 1584 1585 1586
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1587

1588 1589
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1590 1591 1592
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1593
		u64 val = U64_MAX;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
1613
		if (!strcmp(tok, "rbps") && val > 1)
1614
			v[0] = val;
1615
		else if (!strcmp(tok, "wbps") && val > 1)
1616
			v[1] = val;
1617
		else if (!strcmp(tok, "riops") && val > 1)
1618
			v[2] = min_t(u64, val, UINT_MAX);
1619
		else if (!strcmp(tok, "wiops") && val > 1)
1620
			v[3] = min_t(u64, val, UINT_MAX);
1621 1622
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1623 1624
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1625 1626 1627 1628
		else
			goto out_finish;
	}

1629 1630 1631 1632
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1633

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1663 1664
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
1665
	}
1666 1667 1668 1669 1670 1671 1672

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1673 1674
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1675 1676 1677 1678 1679 1680 1681
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
1682 1683 1684 1685 1686 1687 1688 1689 1690
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1691 1692 1693
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
1694 1695 1696
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1697 1698 1699 1700
	},
	{ }	/* terminate */
};

1701
static void throtl_shutdown_wq(struct request_queue *q)
1702 1703 1704
{
	struct throtl_data *td = q->td;

1705
	cancel_work_sync(&td->dispatch_work);
1706 1707
}

1708
struct blkcg_policy blkcg_policy_throtl = {
1709
	.dfl_cftypes		= throtl_files,
1710
	.legacy_cftypes		= throtl_legacy_files,
1711

1712
	.pd_alloc_fn		= throtl_pd_alloc,
1713
	.pd_init_fn		= throtl_pd_init,
1714
	.pd_online_fn		= throtl_pd_online,
1715
	.pd_offline_fn		= throtl_pd_offline,
1716
	.pd_free_fn		= throtl_pd_free,
1717 1718
};

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
void blk_throtl_cancel_bios(struct request_queue *q)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	spin_lock_irq(&q->queue_lock);
	/*
	 * queue_lock is held, rcu lock is not needed here technically.
	 * However, rcu lock is still held to emphasize that following
	 * path need RCU protection and to prevent warning from lockdep.
	 */
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		/*
		 * Set the flag to make sure throtl_pending_timer_fn() won't
		 * stop until all throttled bios are dispatched.
		 */
		blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING;
		/*
		 * Update disptime after setting the above flag to make sure
		 * throtl_select_dispatch() won't exit without dispatching.
		 */
		tg_update_disptime(tg);

		throtl_schedule_pending_timer(sq, jiffies + 1);
	}
	rcu_read_unlock();
	spin_unlock_irq(&q->queue_lock);
}

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1792 1793 1794 1795 1796
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1797
	 *   configure a too big threshold) or 4 times of idletime threshold
1798
	 * - average think time is more than threshold
1799
	 * - IO latency is largely below threshold
1800
	 */
1801
	unsigned long time;
1802
	bool ret;
1803

1804 1805 1806 1807 1808 1809
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1810
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1811 1812 1813 1814 1815
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1816 1817
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1837 1838

	if (time_after_eq(jiffies,
1839 1840
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1841
		return true;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1866
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1867 1868
		return false;

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1906 1907 1908 1909 1910
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1911
	throtl_log(&td->service_queue, "upgrade to max");
1912
	td->limit_index = LIMIT_MAX;
1913
	td->low_upgrade_time = jiffies;
1914
	td->scale = 0;
1915 1916 1917 1918 1919 1920 1921
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
1922
		throtl_schedule_next_dispatch(sq, true);
1923 1924 1925
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
1926
	throtl_schedule_next_dispatch(&td->service_queue, true);
1927 1928 1929
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

1930
static void throtl_downgrade_state(struct throtl_data *td)
1931
{
1932 1933
	td->scale /= 2;

1934
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1935 1936 1937 1938 1939
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

1940
	td->limit_index = LIMIT_LOW;
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1953 1954
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1955 1956 1957
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1986
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1987 1988 1989 1990 1991
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1992 1993
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
2027
		throtl_downgrade_state(tg->td);
2028 2029 2030 2031 2032 2033 2034

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2035 2036
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
2037
	unsigned long now;
2038 2039
	unsigned long last_finish_time = tg->last_finish_time;

2040 2041 2042 2043 2044
	if (last_finish_time == 0)
		return;

	now = ktime_get_ns() >> 10;
	if (now <= last_finish_time ||
2045 2046 2047 2048 2049 2050 2051
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2052 2053
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2054 2055 2056 2057
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2058

2059
	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2060 2061 2062 2063 2064 2065
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2081

2082 2083
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2084

2085
				latency[rw] = tmp->total_latency;
2086

2087 2088 2089 2090 2091 2092 2093
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2094 2095 2096
		}
	}

2097 2098 2099 2100 2101 2102 2103 2104
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2105

2106 2107 2108 2109 2110
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2111

2112 2113 2114 2115 2116
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2117
	}
2118 2119 2120

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2121 2122 2123 2124 2125 2126
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2127 2128 2129 2130 2131
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
}

static void throtl_upgrade_check(struct throtl_grp *tg)
{
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	return false;
}

static void throtl_upgrade_state(struct throtl_data *td)
{
}
2154 2155
#endif

2156
bool __blk_throtl_bio(struct bio *bio)
2157
{
2158
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2159
	struct blkcg_gq *blkg = bio->bi_blkg;
2160
	struct throtl_qnode *qn = NULL;
2161
	struct throtl_grp *tg = blkg_to_tg(blkg);
2162
	struct throtl_service_queue *sq;
2163
	bool rw = bio_data_dir(bio);
2164
	bool throttled = false;
2165
	struct throtl_data *td = tg->td;
2166

2167
	rcu_read_lock();
2168

2169 2170 2171 2172 2173 2174
	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
		blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
				bio->bi_iter.bi_size);
		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
	}

2175
	spin_lock_irq(&q->queue_lock);
2176

2177 2178
	throtl_update_latency_buckets(td);

2179 2180
	blk_throtl_update_idletime(tg);

2181 2182
	sq = &tg->service_queue;

2183
again:
2184
	while (true) {
2185 2186 2187
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2188
		throtl_upgrade_check(tg);
2189 2190 2191
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2192

2193
		/* if above limits, break to queue */
2194
		if (!tg_may_dispatch(tg, bio, NULL)) {
2195
			tg->last_low_overflow_time[rw] = jiffies;
2196 2197
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2198 2199
				goto again;
			}
2200
			break;
2201
		}
2202 2203

		/* within limits, let's charge and dispatch directly */
2204
		throtl_charge_bio(tg, bio);
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2217
		throtl_trim_slice(tg, rw);
2218 2219 2220

		/*
		 * @bio passed through this layer without being throttled.
2221
		 * Climb up the ladder.  If we're already at the top, it
2222 2223
		 * can be executed directly.
		 */
2224
		qn = &tg->qnode_on_parent[rw];
2225 2226
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
2227 2228
		if (!tg) {
			bio_set_flag(bio, BIO_BPS_THROTTLED);
2229
			goto out_unlock;
2230
		}
2231 2232
	}

2233
	/* out-of-limit, queue to @tg */
2234 2235
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2236 2237 2238
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2239
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2240

2241 2242
	tg->last_low_overflow_time[rw] = jiffies;

2243
	td->nr_queued[rw]++;
2244
	throtl_add_bio_tg(bio, qn, tg);
2245
	throttled = true;
2246

2247 2248 2249 2250 2251 2252
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2253
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2254
		tg_update_disptime(tg);
2255
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2256 2257
	}

2258
out_unlock:
2259 2260
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2261
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2262
#endif
2263 2264
	spin_unlock_irq(&q->queue_lock);

2265
	rcu_read_unlock();
2266
	return throttled;
2267 2268
}

2269
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2270
static void throtl_track_latency(struct throtl_data *td, sector_t size,
2271
				 enum req_op op, unsigned long time)
2272
{
2273
	const bool rw = op_is_write(op);
2274 2275 2276
	struct latency_bucket *latency;
	int index;

2277 2278
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2279 2280 2281 2282 2283
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2284
	latency = get_cpu_ptr(td->latency_buckets[rw]);
2285 2286
	latency[index].total_latency += time;
	latency[index].samples++;
2287
	put_cpu_ptr(td->latency_buckets[rw]);
2288 2289 2290 2291 2292 2293 2294
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

2295 2296
	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
			     time_ns >> 10);
2297 2298
}

2299 2300
void blk_throtl_bio_endio(struct bio *bio)
{
2301
	struct blkcg_gq *blkg;
2302
	struct throtl_grp *tg;
2303 2304 2305 2306
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2307
	int rw = bio_data_dir(bio);
2308

2309 2310
	blkg = bio->bi_blkg;
	if (!blkg)
2311
		return;
2312
	tg = blkg_to_tg(blkg);
2313 2314
	if (!tg->td->limit_valid[LIMIT_LOW])
		return;
2315

2316 2317 2318
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2319 2320
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2321
	if (!start_time || finish_time <= start_time)
2322 2323 2324
		return;

	lat = finish_time - start_time;
2325
	/* this is only for bio based driver */
2326 2327 2328
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2329

2330
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2331 2332 2333
		int bucket;
		unsigned int threshold;

2334
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2335
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2350
	}
2351 2352 2353
}
#endif

2354
int blk_throtl_init(struct gendisk *disk)
2355
{
2356
	struct request_queue *q = disk->queue;
2357
	struct throtl_data *td;
2358
	int ret;
2359 2360 2361 2362

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2363
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2364
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2365 2366 2367 2368 2369
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2370
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2371 2372
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2373 2374 2375
		kfree(td);
		return -ENOMEM;
	}
2376

2377
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2378
	throtl_service_queue_init(&td->service_queue);
2379

2380
	q->td = td;
2381
	td->queue = q;
2382

2383
	td->limit_valid[LIMIT_MAX] = true;
2384
	td->limit_index = LIMIT_MAX;
2385 2386
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2387

2388
	/* activate policy */
Tejun Heo's avatar
Tejun Heo committed
2389
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2390
	if (ret) {
2391 2392
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2393
		kfree(td);
2394
	}
2395
	return ret;
2396 2397
}

2398
void blk_throtl_exit(struct gendisk *disk)
2399
{
2400 2401
	struct request_queue *q = disk->queue;

2402
	BUG_ON(!q->td);
2403
	del_timer_sync(&q->td->service_queue.pending_timer);
2404
	throtl_shutdown_wq(q);
Tejun Heo's avatar
Tejun Heo committed
2405
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2406 2407
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2408
	kfree(q->td);
2409 2410
}

2411 2412 2413
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2414
	int i;
2415 2416 2417 2418

	td = q->td;
	BUG_ON(!td);

2419
	if (blk_queue_nonrot(q)) {
2420
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2421 2422
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2423
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2424
		td->filtered_latency = LATENCY_FILTERED_HD;
2425 2426 2427 2428
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2429
	}
2430 2431 2432 2433
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2434

2435
	td->track_bio_latency = !queue_is_mq(q);
2436 2437
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2438 2439
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2466 2467
static int __init throtl_init(void)
{
2468 2469 2470 2471
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

Tejun Heo's avatar
Tejun Heo committed
2472
	return blkcg_policy_register(&blkcg_policy_throtl);
2473 2474 2475
}

module_init(throtl_init);