vmx.c 207 KB
Newer Older
Avi Kivity's avatar
Avi Kivity committed
1 2 3 4 5 6 7
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * Copyright (C) 2006 Qumranet, Inc.
8
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
Avi Kivity's avatar
Avi Kivity committed
9 10 11 12 13 14 15 16 17 18
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

19
#include "irq.h"
20
#include "mmu.h"
Avi Kivity's avatar
Avi Kivity committed
21
#include "cpuid.h"
Avi Kivity's avatar
Avi Kivity committed
22

23
#include <linux/kvm_host.h>
Avi Kivity's avatar
Avi Kivity committed
24
#include <linux/module.h>
25
#include <linux/kernel.h>
Avi Kivity's avatar
Avi Kivity committed
26 27
#include <linux/mm.h>
#include <linux/highmem.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
28
#include <linux/sched.h>
29
#include <linux/moduleparam.h>
30
#include <linux/ftrace_event.h>
31
#include <linux/slab.h>
32
#include <linux/tboot.h>
33
#include "kvm_cache_regs.h"
34
#include "x86.h"
Avi Kivity's avatar
Avi Kivity committed
35

Avi Kivity's avatar
Avi Kivity committed
36
#include <asm/io.h>
37
#include <asm/desc.h>
38
#include <asm/vmx.h>
39
#include <asm/virtext.h>
40
#include <asm/mce.h>
41 42
#include <asm/i387.h>
#include <asm/xcr.h>
43
#include <asm/perf_event.h>
Avi Kivity's avatar
Avi Kivity committed
44

45 46
#include "trace.h"

47
#define __ex(x) __kvm_handle_fault_on_reboot(x)
48 49
#define __ex_clear(x, reg) \
	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
50

Avi Kivity's avatar
Avi Kivity committed
51 52 53
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");

54
static bool __read_mostly enable_vpid = 1;
55
module_param_named(vpid, enable_vpid, bool, 0444);
56

57
static bool __read_mostly flexpriority_enabled = 1;
58
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
59

60
static bool __read_mostly enable_ept = 1;
61
module_param_named(ept, enable_ept, bool, S_IRUGO);
Sheng Yang's avatar
Sheng Yang committed
62

63
static bool __read_mostly enable_unrestricted_guest = 1;
64 65 66
module_param_named(unrestricted_guest,
			enable_unrestricted_guest, bool, S_IRUGO);

67
static bool __read_mostly emulate_invalid_guest_state = 0;
68
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
69

70
static bool __read_mostly vmm_exclusive = 1;
71 72
module_param(vmm_exclusive, bool, S_IRUGO);

73
static bool __read_mostly fasteoi = 1;
74 75
module_param(fasteoi, bool, S_IRUGO);

76 77 78 79 80
/*
 * If nested=1, nested virtualization is supported, i.e., guests may use
 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 * use VMX instructions.
 */
81
static bool __read_mostly nested = 0;
82 83
module_param(nested, bool, S_IRUGO);

84 85 86 87 88
#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST				\
	(X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
#define KVM_GUEST_CR0_MASK						\
	(KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST				\
89
	(X86_CR0_WP | X86_CR0_NE)
90 91
#define KVM_VM_CR0_ALWAYS_ON						\
	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
92 93 94 95
#define KVM_CR4_GUEST_OWNED_BITS				      \
	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
	 | X86_CR4_OSXMMEXCPT)

96 97 98
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)

99 100
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))

101 102 103 104
/*
 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 * ple_gap:    upper bound on the amount of time between two successive
 *             executions of PAUSE in a loop. Also indicate if ple enabled.
105
 *             According to test, this time is usually smaller than 128 cycles.
106 107 108 109 110 111
 * ple_window: upper bound on the amount of time a guest is allowed to execute
 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 *             less than 2^12 cycles
 * Time is measured based on a counter that runs at the same rate as the TSC,
 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 */
112
#define KVM_VMX_DEFAULT_PLE_GAP    128
113 114 115 116 117 118 119
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
module_param(ple_gap, int, S_IRUGO);

static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, int, S_IRUGO);

120
#define NR_AUTOLOAD_MSRS 8
121
#define VMCS02_POOL_SIZE 1
122

123 124 125 126 127 128
struct vmcs {
	u32 revision_id;
	u32 abort;
	char data[0];
};

129 130 131 132 133 134 135 136 137 138 139 140
/*
 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 * loaded on this CPU (so we can clear them if the CPU goes down).
 */
struct loaded_vmcs {
	struct vmcs *vmcs;
	int cpu;
	int launched;
	struct list_head loaded_vmcss_on_cpu_link;
};

141 142 143
struct shared_msr_entry {
	unsigned index;
	u64 data;
144
	u64 mask;
145 146
};

147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 * More than one of these structures may exist, if L1 runs multiple L2 guests.
 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
 * underlying hardware which will be used to run L2.
 * This structure is packed to ensure that its layout is identical across
 * machines (necessary for live migration).
 * If there are changes in this struct, VMCS12_REVISION must be changed.
 */
160
typedef u64 natural_width;
161 162 163 164 165 166
struct __packed vmcs12 {
	/* According to the Intel spec, a VMCS region must start with the
	 * following two fields. Then follow implementation-specific data.
	 */
	u32 revision_id;
	u32 abort;
167

Nadav Har'El's avatar
Nadav Har'El committed
168 169 170
	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
	u32 padding[7]; /* room for future expansion */

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	u64 io_bitmap_a;
	u64 io_bitmap_b;
	u64 msr_bitmap;
	u64 vm_exit_msr_store_addr;
	u64 vm_exit_msr_load_addr;
	u64 vm_entry_msr_load_addr;
	u64 tsc_offset;
	u64 virtual_apic_page_addr;
	u64 apic_access_addr;
	u64 ept_pointer;
	u64 guest_physical_address;
	u64 vmcs_link_pointer;
	u64 guest_ia32_debugctl;
	u64 guest_ia32_pat;
	u64 guest_ia32_efer;
	u64 guest_ia32_perf_global_ctrl;
	u64 guest_pdptr0;
	u64 guest_pdptr1;
	u64 guest_pdptr2;
	u64 guest_pdptr3;
	u64 host_ia32_pat;
	u64 host_ia32_efer;
	u64 host_ia32_perf_global_ctrl;
	u64 padding64[8]; /* room for future expansion */
	/*
	 * To allow migration of L1 (complete with its L2 guests) between
	 * machines of different natural widths (32 or 64 bit), we cannot have
	 * unsigned long fields with no explict size. We use u64 (aliased
	 * natural_width) instead. Luckily, x86 is little-endian.
	 */
	natural_width cr0_guest_host_mask;
	natural_width cr4_guest_host_mask;
	natural_width cr0_read_shadow;
	natural_width cr4_read_shadow;
	natural_width cr3_target_value0;
	natural_width cr3_target_value1;
	natural_width cr3_target_value2;
	natural_width cr3_target_value3;
	natural_width exit_qualification;
	natural_width guest_linear_address;
	natural_width guest_cr0;
	natural_width guest_cr3;
	natural_width guest_cr4;
	natural_width guest_es_base;
	natural_width guest_cs_base;
	natural_width guest_ss_base;
	natural_width guest_ds_base;
	natural_width guest_fs_base;
	natural_width guest_gs_base;
	natural_width guest_ldtr_base;
	natural_width guest_tr_base;
	natural_width guest_gdtr_base;
	natural_width guest_idtr_base;
	natural_width guest_dr7;
	natural_width guest_rsp;
	natural_width guest_rip;
	natural_width guest_rflags;
	natural_width guest_pending_dbg_exceptions;
	natural_width guest_sysenter_esp;
	natural_width guest_sysenter_eip;
	natural_width host_cr0;
	natural_width host_cr3;
	natural_width host_cr4;
	natural_width host_fs_base;
	natural_width host_gs_base;
	natural_width host_tr_base;
	natural_width host_gdtr_base;
	natural_width host_idtr_base;
	natural_width host_ia32_sysenter_esp;
	natural_width host_ia32_sysenter_eip;
	natural_width host_rsp;
	natural_width host_rip;
	natural_width paddingl[8]; /* room for future expansion */
	u32 pin_based_vm_exec_control;
	u32 cpu_based_vm_exec_control;
	u32 exception_bitmap;
	u32 page_fault_error_code_mask;
	u32 page_fault_error_code_match;
	u32 cr3_target_count;
	u32 vm_exit_controls;
	u32 vm_exit_msr_store_count;
	u32 vm_exit_msr_load_count;
	u32 vm_entry_controls;
	u32 vm_entry_msr_load_count;
	u32 vm_entry_intr_info_field;
	u32 vm_entry_exception_error_code;
	u32 vm_entry_instruction_len;
	u32 tpr_threshold;
	u32 secondary_vm_exec_control;
	u32 vm_instruction_error;
	u32 vm_exit_reason;
	u32 vm_exit_intr_info;
	u32 vm_exit_intr_error_code;
	u32 idt_vectoring_info_field;
	u32 idt_vectoring_error_code;
	u32 vm_exit_instruction_len;
	u32 vmx_instruction_info;
	u32 guest_es_limit;
	u32 guest_cs_limit;
	u32 guest_ss_limit;
	u32 guest_ds_limit;
	u32 guest_fs_limit;
	u32 guest_gs_limit;
	u32 guest_ldtr_limit;
	u32 guest_tr_limit;
	u32 guest_gdtr_limit;
	u32 guest_idtr_limit;
	u32 guest_es_ar_bytes;
	u32 guest_cs_ar_bytes;
	u32 guest_ss_ar_bytes;
	u32 guest_ds_ar_bytes;
	u32 guest_fs_ar_bytes;
	u32 guest_gs_ar_bytes;
	u32 guest_ldtr_ar_bytes;
	u32 guest_tr_ar_bytes;
	u32 guest_interruptibility_info;
	u32 guest_activity_state;
	u32 guest_sysenter_cs;
	u32 host_ia32_sysenter_cs;
	u32 padding32[8]; /* room for future expansion */
	u16 virtual_processor_id;
	u16 guest_es_selector;
	u16 guest_cs_selector;
	u16 guest_ss_selector;
	u16 guest_ds_selector;
	u16 guest_fs_selector;
	u16 guest_gs_selector;
	u16 guest_ldtr_selector;
	u16 guest_tr_selector;
	u16 host_es_selector;
	u16 host_cs_selector;
	u16 host_ss_selector;
	u16 host_ds_selector;
	u16 host_fs_selector;
	u16 host_gs_selector;
	u16 host_tr_selector;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
};

/*
 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 */
#define VMCS12_REVISION 0x11e57ed0

/*
 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 * current implementation, 4K are reserved to avoid future complications.
 */
#define VMCS12_SIZE 0x1000

323 324 325 326 327 328 329
/* Used to remember the last vmcs02 used for some recently used vmcs12s */
struct vmcs02_list {
	struct list_head list;
	gpa_t vmptr;
	struct loaded_vmcs vmcs02;
};

330 331 332 333 334 335 336
/*
 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 */
struct nested_vmx {
	/* Has the level1 guest done vmxon? */
	bool vmxon;
337 338 339 340 341 342

	/* The guest-physical address of the current VMCS L1 keeps for L2 */
	gpa_t current_vmptr;
	/* The host-usable pointer to the above */
	struct page *current_vmcs12_page;
	struct vmcs12 *current_vmcs12;
343 344 345 346

	/* vmcs02_list cache of VMCSs recently used to run L2 guests */
	struct list_head vmcs02_pool;
	int vmcs02_num;
347
	u64 vmcs01_tsc_offset;
348 349
	/* L2 must run next, and mustn't decide to exit to L1. */
	bool nested_run_pending;
350 351 352 353 354
	/*
	 * Guest pages referred to in vmcs02 with host-physical pointers, so
	 * we must keep them pinned while L2 runs.
	 */
	struct page *apic_access_page;
355 356
};

357
struct vcpu_vmx {
358
	struct kvm_vcpu       vcpu;
359
	unsigned long         host_rsp;
360
	u8                    fail;
Avi Kivity's avatar
Avi Kivity committed
361
	u8                    cpl;
362
	bool                  nmi_known_unmasked;
363
	u32                   exit_intr_info;
364
	u32                   idt_vectoring_info;
365
	ulong                 rflags;
366
	struct shared_msr_entry *guest_msrs;
367 368 369
	int                   nmsrs;
	int                   save_nmsrs;
#ifdef CONFIG_X86_64
370 371
	u64 		      msr_host_kernel_gs_base;
	u64 		      msr_guest_kernel_gs_base;
372
#endif
373 374 375 376 377 378 379 380
	/*
	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
	 * non-nested (L1) guest, it always points to vmcs01. For a nested
	 * guest (L2), it points to a different VMCS.
	 */
	struct loaded_vmcs    vmcs01;
	struct loaded_vmcs   *loaded_vmcs;
	bool                  __launched; /* temporary, used in vmx_vcpu_run */
381 382 383 384 385
	struct msr_autoload {
		unsigned nr;
		struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
		struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
	} msr_autoload;
386 387 388
	struct {
		int           loaded;
		u16           fs_sel, gs_sel, ldt_sel;
389 390
		int           gs_ldt_reload_needed;
		int           fs_reload_needed;
391
		unsigned long vmcs_host_cr4;    /* May not match real cr4 */
Mike Day's avatar
Mike Day committed
392
	} host_state;
393
	struct {
394
		int vm86_active;
395
		ulong save_rflags;
396 397 398 399 400 401
		struct kvm_save_segment {
			u16 selector;
			unsigned long base;
			u32 limit;
			u32 ar;
		} tr, es, ds, fs, gs;
402
	} rmode;
403 404 405 406
	struct {
		u32 bitmask; /* 4 bits per segment (1 bit per field) */
		struct kvm_save_segment seg[8];
	} segment_cache;
407
	int vpid;
408
	bool emulation_required;
409 410 411 412 413

	/* Support for vnmi-less CPUs */
	int soft_vnmi_blocked;
	ktime_t entry_time;
	s64 vnmi_blocked_time;
414
	u32 exit_reason;
415 416

	bool rdtscp_enabled;
417 418 419

	/* Support for a guest hypervisor (nested VMX) */
	struct nested_vmx nested;
420 421
};

422 423 424 425 426 427 428 429 430
enum segment_cache_field {
	SEG_FIELD_SEL = 0,
	SEG_FIELD_BASE = 1,
	SEG_FIELD_LIMIT = 2,
	SEG_FIELD_AR = 3,

	SEG_FIELD_NR = 4
};

431 432
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
433
	return container_of(vcpu, struct vcpu_vmx, vcpu);
434 435
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
#define FIELD(number, name)	[number] = VMCS12_OFFSET(name)
#define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \
				[number##_HIGH] = VMCS12_OFFSET(name)+4

static unsigned short vmcs_field_to_offset_table[] = {
	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
	FIELD(HOST_ES_SELECTOR, host_es_selector),
	FIELD(HOST_CS_SELECTOR, host_cs_selector),
	FIELD(HOST_SS_SELECTOR, host_ss_selector),
	FIELD(HOST_DS_SELECTOR, host_ds_selector),
	FIELD(HOST_FS_SELECTOR, host_fs_selector),
	FIELD(HOST_GS_SELECTOR, host_gs_selector),
	FIELD(HOST_TR_SELECTOR, host_tr_selector),
	FIELD64(IO_BITMAP_A, io_bitmap_a),
	FIELD64(IO_BITMAP_B, io_bitmap_b),
	FIELD64(MSR_BITMAP, msr_bitmap),
	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
	FIELD64(TSC_OFFSET, tsc_offset),
	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
	FIELD64(EPT_POINTER, ept_pointer),
	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
	FIELD64(GUEST_PDPTR0, guest_pdptr0),
	FIELD64(GUEST_PDPTR1, guest_pdptr1),
	FIELD64(GUEST_PDPTR2, guest_pdptr2),
	FIELD64(GUEST_PDPTR3, guest_pdptr3),
	FIELD64(HOST_IA32_PAT, host_ia32_pat),
	FIELD64(HOST_IA32_EFER, host_ia32_efer),
	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
	FIELD(EXCEPTION_BITMAP, exception_bitmap),
	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
	FIELD(CR3_TARGET_COUNT, cr3_target_count),
	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
	FIELD(TPR_THRESHOLD, tpr_threshold),
	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
	FIELD(VM_EXIT_REASON, vm_exit_reason),
	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
	FIELD(GUEST_ES_LIMIT, guest_es_limit),
	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
	FIELD(EXIT_QUALIFICATION, exit_qualification),
	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
	FIELD(GUEST_CR0, guest_cr0),
	FIELD(GUEST_CR3, guest_cr3),
	FIELD(GUEST_CR4, guest_cr4),
	FIELD(GUEST_ES_BASE, guest_es_base),
	FIELD(GUEST_CS_BASE, guest_cs_base),
	FIELD(GUEST_SS_BASE, guest_ss_base),
	FIELD(GUEST_DS_BASE, guest_ds_base),
	FIELD(GUEST_FS_BASE, guest_fs_base),
	FIELD(GUEST_GS_BASE, guest_gs_base),
	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
	FIELD(GUEST_TR_BASE, guest_tr_base),
	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
	FIELD(GUEST_DR7, guest_dr7),
	FIELD(GUEST_RSP, guest_rsp),
	FIELD(GUEST_RIP, guest_rip),
	FIELD(GUEST_RFLAGS, guest_rflags),
	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
	FIELD(HOST_CR0, host_cr0),
	FIELD(HOST_CR3, host_cr3),
	FIELD(HOST_CR4, host_cr4),
	FIELD(HOST_FS_BASE, host_fs_base),
	FIELD(HOST_GS_BASE, host_gs_base),
	FIELD(HOST_TR_BASE, host_tr_base),
	FIELD(HOST_GDTR_BASE, host_gdtr_base),
	FIELD(HOST_IDTR_BASE, host_idtr_base),
	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
	FIELD(HOST_RSP, host_rsp),
	FIELD(HOST_RIP, host_rip),
};
static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);

static inline short vmcs_field_to_offset(unsigned long field)
{
	if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
		return -1;
	return vmcs_field_to_offset_table[field];
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
{
	return to_vmx(vcpu)->nested.current_vmcs12;
}

static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
{
	struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
	if (is_error_page(page)) {
		kvm_release_page_clean(page);
		return NULL;
	}
	return page;
}

static void nested_release_page(struct page *page)
{
	kvm_release_page_dirty(page);
}

static void nested_release_page_clean(struct page *page)
{
	kvm_release_page_clean(page);
}

604
static u64 construct_eptp(unsigned long root_hpa);
605 606
static void kvm_cpu_vmxon(u64 addr);
static void kvm_cpu_vmxoff(void);
607
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
608
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
609

Avi Kivity's avatar
Avi Kivity committed
610 611
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
612 613 614 615 616
/*
 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 */
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
617
static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
Avi Kivity's avatar
Avi Kivity committed
618

619 620
static unsigned long *vmx_io_bitmap_a;
static unsigned long *vmx_io_bitmap_b;
621 622
static unsigned long *vmx_msr_bitmap_legacy;
static unsigned long *vmx_msr_bitmap_longmode;
623

624
static bool cpu_has_load_ia32_efer;
625
static bool cpu_has_load_perf_global_ctrl;
626

627 628 629
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);

630
static struct vmcs_config {
Avi Kivity's avatar
Avi Kivity committed
631 632 633
	int size;
	int order;
	u32 revision_id;
634 635
	u32 pin_based_exec_ctrl;
	u32 cpu_based_exec_ctrl;
636
	u32 cpu_based_2nd_exec_ctrl;
637 638 639
	u32 vmexit_ctrl;
	u32 vmentry_ctrl;
} vmcs_config;
Avi Kivity's avatar
Avi Kivity committed
640

Hannes Eder's avatar
Hannes Eder committed
641
static struct vmx_capability {
Sheng Yang's avatar
Sheng Yang committed
642 643 644 645
	u32 ept;
	u32 vpid;
} vmx_capability;

Avi Kivity's avatar
Avi Kivity committed
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
#define VMX_SEGMENT_FIELD(seg)					\
	[VCPU_SREG_##seg] = {                                   \
		.selector = GUEST_##seg##_SELECTOR,		\
		.base = GUEST_##seg##_BASE,		   	\
		.limit = GUEST_##seg##_LIMIT,		   	\
		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
	}

static struct kvm_vmx_segment_field {
	unsigned selector;
	unsigned base;
	unsigned limit;
	unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
	VMX_SEGMENT_FIELD(CS),
	VMX_SEGMENT_FIELD(DS),
	VMX_SEGMENT_FIELD(ES),
	VMX_SEGMENT_FIELD(FS),
	VMX_SEGMENT_FIELD(GS),
	VMX_SEGMENT_FIELD(SS),
	VMX_SEGMENT_FIELD(TR),
	VMX_SEGMENT_FIELD(LDTR),
};

670 671
static u64 host_efer;

Avi Kivity's avatar
Avi Kivity committed
672 673
static void ept_save_pdptrs(struct kvm_vcpu *vcpu);

674
/*
Brian Gerst's avatar
Brian Gerst committed
675
 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
676 677
 * away by decrementing the array size.
 */
Avi Kivity's avatar
Avi Kivity committed
678
static const u32 vmx_msr_index[] = {
679
#ifdef CONFIG_X86_64
680
	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
Avi Kivity's avatar
Avi Kivity committed
681
#endif
Brian Gerst's avatar
Brian Gerst committed
682
	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
Avi Kivity's avatar
Avi Kivity committed
683
};
684
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
Avi Kivity's avatar
Avi Kivity committed
685

686
static inline bool is_page_fault(u32 intr_info)
Avi Kivity's avatar
Avi Kivity committed
687 688 689
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
			     INTR_INFO_VALID_MASK)) ==
690
		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
Avi Kivity's avatar
Avi Kivity committed
691 692
}

693
static inline bool is_no_device(u32 intr_info)
694 695 696
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
			     INTR_INFO_VALID_MASK)) ==
697
		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
698 699
}

700
static inline bool is_invalid_opcode(u32 intr_info)
701 702 703
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
			     INTR_INFO_VALID_MASK)) ==
704
		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
705 706
}

707
static inline bool is_external_interrupt(u32 intr_info)
Avi Kivity's avatar
Avi Kivity committed
708 709 710 711 712
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}

713
static inline bool is_machine_check(u32 intr_info)
714 715 716 717 718 719
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
			     INTR_INFO_VALID_MASK)) ==
		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
}

720
static inline bool cpu_has_vmx_msr_bitmap(void)
721
{
722
	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
723 724
}

725
static inline bool cpu_has_vmx_tpr_shadow(void)
726
{
727
	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
728 729
}

730
static inline bool vm_need_tpr_shadow(struct kvm *kvm)
731
{
732
	return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
733 734
}

735
static inline bool cpu_has_secondary_exec_ctrls(void)
736
{
737 738
	return vmcs_config.cpu_based_exec_ctrl &
		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
739 740
}

741
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
742
{
743 744 745 746 747 748 749 750
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}

static inline bool cpu_has_vmx_flexpriority(void)
{
	return cpu_has_vmx_tpr_shadow() &&
		cpu_has_vmx_virtualize_apic_accesses();
751 752
}

753 754
static inline bool cpu_has_vmx_ept_execute_only(void)
{
755
	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
756 757 758 759
}

static inline bool cpu_has_vmx_eptp_uncacheable(void)
{
760
	return vmx_capability.ept & VMX_EPTP_UC_BIT;
761 762 763 764
}

static inline bool cpu_has_vmx_eptp_writeback(void)
{
765
	return vmx_capability.ept & VMX_EPTP_WB_BIT;
766 767 768 769
}

static inline bool cpu_has_vmx_ept_2m_page(void)
{
770
	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
771 772
}

773 774
static inline bool cpu_has_vmx_ept_1g_page(void)
{
775
	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
776 777
}

778 779 780 781 782
static inline bool cpu_has_vmx_ept_4levels(void)
{
	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
}

783
static inline bool cpu_has_vmx_invept_individual_addr(void)
Sheng Yang's avatar
Sheng Yang committed
784
{
785
	return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
Sheng Yang's avatar
Sheng Yang committed
786 787
}

788
static inline bool cpu_has_vmx_invept_context(void)
Sheng Yang's avatar
Sheng Yang committed
789
{
790
	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
Sheng Yang's avatar
Sheng Yang committed
791 792
}

793
static inline bool cpu_has_vmx_invept_global(void)
Sheng Yang's avatar
Sheng Yang committed
794
{
795
	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
Sheng Yang's avatar
Sheng Yang committed
796 797
}

798 799 800 801 802
static inline bool cpu_has_vmx_invvpid_single(void)
{
	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
}

803 804 805 806 807
static inline bool cpu_has_vmx_invvpid_global(void)
{
	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
}

808
static inline bool cpu_has_vmx_ept(void)
Sheng Yang's avatar
Sheng Yang committed
809
{
810 811
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_ENABLE_EPT;
Sheng Yang's avatar
Sheng Yang committed
812 813
}

814
static inline bool cpu_has_vmx_unrestricted_guest(void)
815 816 817 818 819
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_UNRESTRICTED_GUEST;
}

820
static inline bool cpu_has_vmx_ple(void)
821 822 823 824 825
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
}

826
static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
827
{
828
	return flexpriority_enabled && irqchip_in_kernel(kvm);
829 830
}

831
static inline bool cpu_has_vmx_vpid(void)
832
{
833 834
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_ENABLE_VPID;
835 836
}

837
static inline bool cpu_has_vmx_rdtscp(void)
838 839 840 841 842
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_RDTSCP;
}

843
static inline bool cpu_has_virtual_nmis(void)
844 845 846 847
{
	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
}

848 849 850 851 852 853
static inline bool cpu_has_vmx_wbinvd_exit(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_WBINVD_EXITING;
}

854 855 856 857 858
static inline bool report_flexpriority(void)
{
	return flexpriority_enabled;
}

859 860 861 862 863 864 865 866 867 868 869 870
static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
{
	return vmcs12->cpu_based_vm_exec_control & bit;
}

static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
{
	return (vmcs12->cpu_based_vm_exec_control &
			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
		(vmcs12->secondary_vm_exec_control & bit);
}

871 872 873 874 875 876 877 878 879 880 881 882 883
static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
	struct kvm_vcpu *vcpu)
{
	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
}

static inline bool is_exception(u32 intr_info)
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
		== (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
}

static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
884 885 886 887
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
			struct vmcs12 *vmcs12,
			u32 reason, unsigned long qualification);

888
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
889 890 891
{
	int i;

892
	for (i = 0; i < vmx->nmsrs; ++i)
893
		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
894 895 896 897
			return i;
	return -1;
}

898 899 900 901 902 903 904 905
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
{
    struct {
	u64 vpid : 16;
	u64 rsvd : 48;
	u64 gva;
    } operand = { vpid, 0, gva };

906
    asm volatile (__ex(ASM_VMX_INVVPID)
907 908 909 910 911
		  /* CF==1 or ZF==1 --> rc = -1 */
		  "; ja 1f ; ud2 ; 1:"
		  : : "a"(&operand), "c"(ext) : "cc", "memory");
}

912 913 914 915 916 917
static inline void __invept(int ext, u64 eptp, gpa_t gpa)
{
	struct {
		u64 eptp, gpa;
	} operand = {eptp, gpa};

918
	asm volatile (__ex(ASM_VMX_INVEPT)
919 920 921 922 923
			/* CF==1 or ZF==1 --> rc = -1 */
			"; ja 1f ; ud2 ; 1:\n"
			: : "a" (&operand), "c" (ext) : "cc", "memory");
}

924
static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
925 926 927
{
	int i;

928
	i = __find_msr_index(vmx, msr);
929
	if (i >= 0)
930
		return &vmx->guest_msrs[i];
Al Viro's avatar
Al Viro committed
931
	return NULL;
932 933
}

Avi Kivity's avatar
Avi Kivity committed
934 935 936 937 938
static void vmcs_clear(struct vmcs *vmcs)
{
	u64 phys_addr = __pa(vmcs);
	u8 error;

939
	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
940
		      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
Avi Kivity's avatar
Avi Kivity committed
941 942 943 944 945 946
		      : "cc", "memory");
	if (error)
		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
		       vmcs, phys_addr);
}

947 948 949 950 951 952 953
static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
{
	vmcs_clear(loaded_vmcs->vmcs);
	loaded_vmcs->cpu = -1;
	loaded_vmcs->launched = 0;
}

954 955 956 957 958 959
static void vmcs_load(struct vmcs *vmcs)
{
	u64 phys_addr = __pa(vmcs);
	u8 error;

	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
960
			: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
961 962
			: "cc", "memory");
	if (error)
963
		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
964 965 966
		       vmcs, phys_addr);
}

967
static void __loaded_vmcs_clear(void *arg)
Avi Kivity's avatar
Avi Kivity committed
968
{
969
	struct loaded_vmcs *loaded_vmcs = arg;
970
	int cpu = raw_smp_processor_id();
Avi Kivity's avatar
Avi Kivity committed
971

972 973 974
	if (loaded_vmcs->cpu != cpu)
		return; /* vcpu migration can race with cpu offline */
	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
Avi Kivity's avatar
Avi Kivity committed
975
		per_cpu(current_vmcs, cpu) = NULL;
976 977
	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
	loaded_vmcs_init(loaded_vmcs);
Avi Kivity's avatar
Avi Kivity committed
978 979
}

980
static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
981
{
982 983 984
	if (loaded_vmcs->cpu != -1)
		smp_call_function_single(
			loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
985 986
}

987
static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
988 989 990 991
{
	if (vmx->vpid == 0)
		return;

992 993
	if (cpu_has_vmx_invvpid_single())
		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
994 995
}

996 997 998 999 1000 1001 1002 1003 1004
static inline void vpid_sync_vcpu_global(void)
{
	if (cpu_has_vmx_invvpid_global())
		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
}

static inline void vpid_sync_context(struct vcpu_vmx *vmx)
{
	if (cpu_has_vmx_invvpid_single())
1005
		vpid_sync_vcpu_single(vmx);
1006 1007 1008 1009
	else
		vpid_sync_vcpu_global();
}

1010 1011 1012 1013 1014 1015 1016 1017
static inline void ept_sync_global(void)
{
	if (cpu_has_vmx_invept_global())
		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
}

static inline void ept_sync_context(u64 eptp)
{
1018
	if (enable_ept) {
1019 1020 1021 1022 1023 1024 1025 1026 1027
		if (cpu_has_vmx_invept_context())
			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
		else
			ept_sync_global();
	}
}

static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
{
1028
	if (enable_ept) {
1029 1030 1031 1032 1033 1034 1035 1036
		if (cpu_has_vmx_invept_individual_addr())
			__invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
					eptp, gpa);
		else
			ept_sync_context(eptp);
	}
}

Avi Kivity's avatar
Avi Kivity committed
1037
static __always_inline unsigned long vmcs_readl(unsigned long field)
Avi Kivity's avatar
Avi Kivity committed
1038
{
1039
	unsigned long value;
Avi Kivity's avatar
Avi Kivity committed
1040

1041 1042
	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
		      : "=a"(value) : "d"(field) : "cc");
Avi Kivity's avatar
Avi Kivity committed
1043 1044 1045
	return value;
}

Avi Kivity's avatar
Avi Kivity committed
1046
static __always_inline u16 vmcs_read16(unsigned long field)
Avi Kivity's avatar
Avi Kivity committed
1047 1048 1049 1050
{
	return vmcs_readl(field);
}

Avi Kivity's avatar
Avi Kivity committed
1051
static __always_inline u32 vmcs_read32(unsigned long field)
Avi Kivity's avatar
Avi Kivity committed
1052 1053 1054 1055
{
	return vmcs_readl(field);
}

Avi Kivity's avatar
Avi Kivity committed
1056
static __always_inline u64 vmcs_read64(unsigned long field)
Avi Kivity's avatar
Avi Kivity committed
1057
{
1058
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
1059 1060 1061 1062 1063 1064
	return vmcs_readl(field);
#else
	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
#endif
}

1065 1066 1067 1068 1069 1070 1071
static noinline void vmwrite_error(unsigned long field, unsigned long value)
{
	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
	dump_stack();
}

Avi Kivity's avatar
Avi Kivity committed
1072 1073 1074 1075
static void vmcs_writel(unsigned long field, unsigned long value)
{
	u8 error;

1076
	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
Mike Day's avatar
Mike Day committed
1077
		       : "=q"(error) : "a"(value), "d"(field) : "cc");
1078 1079
	if (unlikely(error))
		vmwrite_error(field, value);
Avi Kivity's avatar
Avi Kivity committed
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static void vmcs_write16(unsigned long field, u16 value)
{
	vmcs_writel(field, value);
}

static void vmcs_write32(unsigned long field, u32 value)
{
	vmcs_writel(field, value);
}

static void vmcs_write64(unsigned long field, u64 value)
{
	vmcs_writel(field, value);
1095
#ifndef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
1096 1097 1098 1099 1100
	asm volatile ("");
	vmcs_writel(field+1, value >> 32);
#endif
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static void vmcs_clear_bits(unsigned long field, u32 mask)
{
	vmcs_writel(field, vmcs_readl(field) & ~mask);
}

static void vmcs_set_bits(unsigned long field, u32 mask)
{
	vmcs_writel(field, vmcs_readl(field) | mask);
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
{
	vmx->segment_cache.bitmask = 0;
}

static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
				       unsigned field)
{
	bool ret;
	u32 mask = 1 << (seg * SEG_FIELD_NR + field);

	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
		vmx->segment_cache.bitmask = 0;
	}
	ret = vmx->segment_cache.bitmask & mask;
	vmx->segment_cache.bitmask |= mask;
	return ret;
}

static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
{
	u16 *p = &vmx->segment_cache.seg[seg].selector;

	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
	return *p;
}

static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
{
	ulong *p = &vmx->segment_cache.seg[seg].base;

	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
	return *p;
}

static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
{
	u32 *p = &vmx->segment_cache.seg[seg].limit;

	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
	return *p;
}

static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
{
	u32 *p = &vmx->segment_cache.seg[seg].ar;

	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
	return *p;
}

1167 1168 1169 1170
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
	u32 eb;

Jan Kiszka's avatar
Jan Kiszka committed
1171
	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1172
	     (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
Jan Kiszka's avatar
Jan Kiszka committed
1173 1174 1175 1176
	if ((vcpu->guest_debug &
	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
		eb |= 1u << BP_VECTOR;
1177
	if (to_vmx(vcpu)->rmode.vm86_active)
1178
		eb = ~0;
1179
	if (enable_ept)
1180
		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1181 1182
	if (vcpu->fpu_active)
		eb &= ~(1u << NM_VECTOR);
1183 1184 1185 1186 1187 1188 1189 1190 1191

	/* When we are running a nested L2 guest and L1 specified for it a
	 * certain exception bitmap, we must trap the same exceptions and pass
	 * them to L1. When running L2, we will only handle the exceptions
	 * specified above if L1 did not want them.
	 */
	if (is_guest_mode(vcpu))
		eb |= get_vmcs12(vcpu)->exception_bitmap;

1192 1193 1194
	vmcs_write32(EXCEPTION_BITMAP, eb);
}

1195 1196 1197 1198 1199 1200 1201
static void clear_atomic_switch_msr_special(unsigned long entry,
		unsigned long exit)
{
	vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
	vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
}

1202 1203 1204 1205 1206
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
{
	unsigned i;
	struct msr_autoload *m = &vmx->msr_autoload;

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	switch (msr) {
	case MSR_EFER:
		if (cpu_has_load_ia32_efer) {
			clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
					VM_EXIT_LOAD_IA32_EFER);
			return;
		}
		break;
	case MSR_CORE_PERF_GLOBAL_CTRL:
		if (cpu_has_load_perf_global_ctrl) {
			clear_atomic_switch_msr_special(
					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
			return;
		}
		break;
1223 1224
	}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	for (i = 0; i < m->nr; ++i)
		if (m->guest[i].index == msr)
			break;

	if (i == m->nr)
		return;
	--m->nr;
	m->guest[i] = m->guest[m->nr];
	m->host[i] = m->host[m->nr];
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
static void add_atomic_switch_msr_special(unsigned long entry,
		unsigned long exit, unsigned long guest_val_vmcs,
		unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
{
	vmcs_write64(guest_val_vmcs, guest_val);
	vmcs_write64(host_val_vmcs, host_val);
	vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
	vmcs_set_bits(VM_EXIT_CONTROLS, exit);
}

1248 1249 1250 1251 1252 1253
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
				  u64 guest_val, u64 host_val)
{
	unsigned i;
	struct msr_autoload *m = &vmx->msr_autoload;

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	switch (msr) {
	case MSR_EFER:
		if (cpu_has_load_ia32_efer) {
			add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
					VM_EXIT_LOAD_IA32_EFER,
					GUEST_IA32_EFER,
					HOST_IA32_EFER,
					guest_val, host_val);
			return;
		}
		break;
	case MSR_CORE_PERF_GLOBAL_CTRL:
		if (cpu_has_load_perf_global_ctrl) {
			add_atomic_switch_msr_special(
					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
					GUEST_IA32_PERF_GLOBAL_CTRL,
					HOST_IA32_PERF_GLOBAL_CTRL,
					guest_val, host_val);
			return;
		}
		break;
1276 1277
	}

1278 1279 1280 1281
	for (i = 0; i < m->nr; ++i)
		if (m->guest[i].index == msr)
			break;

1282 1283 1284 1285 1286
	if (i == NR_AUTOLOAD_MSRS) {
		printk_once(KERN_WARNING"Not enough mst switch entries. "
				"Can't add msr %x\n", msr);
		return;
	} else if (i == m->nr) {
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		++m->nr;
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
	}

	m->guest[i].index = msr;
	m->guest[i].value = guest_val;
	m->host[i].index = msr;
	m->host[i].value = host_val;
}

1298 1299 1300 1301 1302
static void reload_tss(void)
{
	/*
	 * VT restores TR but not its size.  Useless.
	 */
1303
	struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1304
	struct desc_struct *descs;
1305

1306
	descs = (void *)gdt->address;
1307 1308 1309 1310
	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
	load_TR_desc();
}

1311
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1312
{
1313
	u64 guest_efer;
1314 1315
	u64 ignore_bits;

1316
	guest_efer = vmx->vcpu.arch.efer;
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	/*
	 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
	 * outside long mode
	 */
	ignore_bits = EFER_NX | EFER_SCE;
#ifdef CONFIG_X86_64
	ignore_bits |= EFER_LMA | EFER_LME;
	/* SCE is meaningful only in long mode on Intel */
	if (guest_efer & EFER_LMA)
		ignore_bits &= ~(u64)EFER_SCE;
#endif
	guest_efer &= ~ignore_bits;
	guest_efer |= host_efer & ignore_bits;
1331
	vmx->guest_msrs[efer_offset].data = guest_efer;
1332
	vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	clear_atomic_switch_msr(vmx, MSR_EFER);
	/* On ept, can't emulate nx, and must switch nx atomically */
	if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
		guest_efer = vmx->vcpu.arch.efer;
		if (!(guest_efer & EFER_LMA))
			guest_efer &= ~EFER_LME;
		add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
		return false;
	}

1344
	return true;
1345 1346
}

1347 1348
static unsigned long segment_base(u16 selector)
{
1349
	struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1350 1351 1352 1353 1354 1355 1356
	struct desc_struct *d;
	unsigned long table_base;
	unsigned long v;

	if (!(selector & ~3))
		return 0;

1357
	table_base = gdt->address;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector = kvm_read_ldt();

		if (!(ldt_selector & ~3))
			return 0;

		table_base = segment_base(ldt_selector);
	}
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = get_desc_base(d);
#ifdef CONFIG_X86_64
       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
#endif
	return v;
}

static inline unsigned long kvm_read_tr_base(void)
{
	u16 tr;
	asm("str %0" : "=g"(tr));
	return segment_base(tr);
}

1383
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1384
{
1385
	struct vcpu_vmx *vmx = to_vmx(vcpu);
1386
	int i;
1387

1388
	if (vmx->host_state.loaded)
1389 1390
		return;

1391
	vmx->host_state.loaded = 1;
1392 1393 1394 1395
	/*
	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
	 * allow segment selectors with cpl > 0 or ti == 1.
	 */
1396
	vmx->host_state.ldt_sel = kvm_read_ldt();
1397
	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1398
	savesegment(fs, vmx->host_state.fs_sel);
1399
	if (!(vmx->host_state.fs_sel & 7)) {
1400
		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1401 1402
		vmx->host_state.fs_reload_needed = 0;
	} else {
1403
		vmcs_write16(HOST_FS_SELECTOR, 0);
1404
		vmx->host_state.fs_reload_needed = 1;
1405
	}
1406
	savesegment(gs, vmx->host_state.gs_sel);
1407 1408
	if (!(vmx->host_state.gs_sel & 7))
		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1409 1410
	else {
		vmcs_write16(HOST_GS_SELECTOR, 0);
1411
		vmx->host_state.gs_ldt_reload_needed = 1;
1412 1413 1414 1415 1416 1417
	}

#ifdef CONFIG_X86_64
	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
1418 1419
	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1420
#endif
1421 1422

#ifdef CONFIG_X86_64
1423 1424
	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
	if (is_long_mode(&vmx->vcpu))
1425
		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1426
#endif
1427 1428
	for (i = 0; i < vmx->save_nmsrs; ++i)
		kvm_set_shared_msr(vmx->guest_msrs[i].index,
1429 1430
				   vmx->guest_msrs[i].data,
				   vmx->guest_msrs[i].mask);
1431 1432
}

1433
static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1434
{
1435
	if (!vmx->host_state.loaded)
1436 1437
		return;

1438
	++vmx->vcpu.stat.host_state_reload;
1439
	vmx->host_state.loaded = 0;
1440 1441 1442 1443
#ifdef CONFIG_X86_64
	if (is_long_mode(&vmx->vcpu))
		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
1444
	if (vmx->host_state.gs_ldt_reload_needed) {
1445
		kvm_load_ldt(vmx->host_state.ldt_sel);
1446
#ifdef CONFIG_X86_64
1447 1448 1449
		load_gs_index(vmx->host_state.gs_sel);
#else
		loadsegment(gs, vmx->host_state.gs_sel);
1450 1451
#endif
	}
1452 1453
	if (vmx->host_state.fs_reload_needed)
		loadsegment(fs, vmx->host_state.fs_sel);
1454
	reload_tss();
1455
#ifdef CONFIG_X86_64
1456
	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1457
#endif
1458 1459 1460 1461 1462 1463
	/*
	 * If the FPU is not active (through the host task or
	 * the guest vcpu), then restore the cr0.TS bit.
	 */
	if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
		stts();
1464
	load_gdt(&__get_cpu_var(host_gdt));
1465 1466
}

1467 1468 1469 1470 1471 1472 1473
static void vmx_load_host_state(struct vcpu_vmx *vmx)
{
	preempt_disable();
	__vmx_load_host_state(vmx);
	preempt_enable();
}

Avi Kivity's avatar
Avi Kivity committed
1474 1475 1476 1477
/*
 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
 * vcpu mutex is already taken.
 */
1478
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
Avi Kivity's avatar
Avi Kivity committed
1479
{
1480
	struct vcpu_vmx *vmx = to_vmx(vcpu);
1481
	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
Avi Kivity's avatar
Avi Kivity committed
1482

1483 1484
	if (!vmm_exclusive)
		kvm_cpu_vmxon(phys_addr);
1485 1486
	else if (vmx->loaded_vmcs->cpu != cpu)
		loaded_vmcs_clear(vmx->loaded_vmcs);
Avi Kivity's avatar
Avi Kivity committed
1487

1488 1489 1490
	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
		vmcs_load(vmx->loaded_vmcs->vmcs);
Avi Kivity's avatar
Avi Kivity committed
1491 1492
	}

1493
	if (vmx->loaded_vmcs->cpu != cpu) {
1494
		struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
Avi Kivity's avatar
Avi Kivity committed
1495 1496
		unsigned long sysenter_esp;

1497
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1498
		local_irq_disable();
1499 1500
		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1501 1502
		local_irq_enable();

Avi Kivity's avatar
Avi Kivity committed
1503 1504 1505 1506
		/*
		 * Linux uses per-cpu TSS and GDT, so set these when switching
		 * processors.
		 */
1507
		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1508
		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
Avi Kivity's avatar
Avi Kivity committed
1509 1510 1511

		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1512
		vmx->loaded_vmcs->cpu = cpu;
Avi Kivity's avatar
Avi Kivity committed
1513 1514 1515 1516 1517
	}
}

static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
1518
	__vmx_load_host_state(to_vmx(vcpu));
1519
	if (!vmm_exclusive) {
1520 1521
		__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
		vcpu->cpu = -1;
1522 1523
		kvm_cpu_vmxoff();
	}
Avi Kivity's avatar
Avi Kivity committed
1524 1525
}

1526 1527
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
{
1528 1529
	ulong cr0;

1530 1531 1532
	if (vcpu->fpu_active)
		return;
	vcpu->fpu_active = 1;
1533 1534 1535 1536
	cr0 = vmcs_readl(GUEST_CR0);
	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
	vmcs_writel(GUEST_CR0, cr0);
1537
	update_exception_bitmap(vcpu);
1538
	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1539 1540 1541
	if (is_guest_mode(vcpu))
		vcpu->arch.cr0_guest_owned_bits &=
			~get_vmcs12(vcpu)->cr0_guest_host_mask;
1542
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1543 1544
}

1545 1546
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * Return the cr0 value that a nested guest would read. This is a combination
 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
 * its hypervisor (cr0_read_shadow).
 */
static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
{
	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
}
static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
{
	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
}

1563 1564
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
{
1565 1566 1567
	/* Note that there is no vcpu->fpu_active = 0 here. The caller must
	 * set this *before* calling this function.
	 */
1568
	vmx_decache_cr0_guest_bits(vcpu);
1569
	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1570
	update_exception_bitmap(vcpu);
1571 1572
	vcpu->arch.cr0_guest_owned_bits = 0;
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	if (is_guest_mode(vcpu)) {
		/*
		 * L1's specified read shadow might not contain the TS bit,
		 * so now that we turned on shadowing of this bit, we need to
		 * set this bit of the shadow. Like in nested_vmx_run we need
		 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
		 * up-to-date here because we just decached cr0.TS (and we'll
		 * only update vmcs12->guest_cr0 on nested exit).
		 */
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
		vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
			(vcpu->arch.cr0 & X86_CR0_TS);
		vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
	} else
		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1588 1589
}

Avi Kivity's avatar
Avi Kivity committed
1590 1591
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
1592
	unsigned long rflags, save_rflags;
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
		rflags = vmcs_readl(GUEST_RFLAGS);
		if (to_vmx(vcpu)->rmode.vm86_active) {
			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
		}
		to_vmx(vcpu)->rflags = rflags;
1603
	}
1604
	return to_vmx(vcpu)->rflags;
Avi Kivity's avatar
Avi Kivity committed
1605 1606 1607 1608
}

static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
1609
	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
Avi Kivity's avatar
Avi Kivity committed
1610
	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1611
	to_vmx(vcpu)->rflags = rflags;
1612 1613
	if (to_vmx(vcpu)->rmode.vm86_active) {
		to_vmx(vcpu)->rmode.save_rflags = rflags;
1614
		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1615
	}
Avi Kivity's avatar
Avi Kivity committed
1616 1617 1618
	vmcs_writel(GUEST_RFLAGS, rflags);
}

1619 1620 1621 1622 1623 1624
static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
	int ret = 0;

	if (interruptibility & GUEST_INTR_STATE_STI)
1625
		ret |= KVM_X86_SHADOW_INT_STI;
1626
	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1627
		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

	return ret & mask;
}

static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
	u32 interruptibility = interruptibility_old;

	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);

1639
	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1640
		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1641
	else if (mask & KVM_X86_SHADOW_INT_STI)
1642 1643 1644 1645 1646 1647
		interruptibility |= GUEST_INTR_STATE_STI;

	if ((interruptibility != interruptibility_old))
		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
}

Avi Kivity's avatar
Avi Kivity committed
1648 1649 1650 1651
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
	unsigned long rip;

1652
	rip = kvm_rip_read(vcpu);
Avi Kivity's avatar
Avi Kivity committed
1653
	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1654
	kvm_rip_write(vcpu, rip);
Avi Kivity's avatar
Avi Kivity committed
1655

1656 1657
	/* skipping an emulated instruction also counts */
	vmx_set_interrupt_shadow(vcpu, 0);
Avi Kivity's avatar
Avi Kivity committed
1658 1659
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
/*
 * KVM wants to inject page-faults which it got to the guest. This function
 * checks whether in a nested guest, we need to inject them to L1 or L2.
 * This function assumes it is called with the exit reason in vmcs02 being
 * a #PF exception (this is the only case in which KVM injects a #PF when L2
 * is running).
 */
static int nested_pf_handled(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	/* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1672
	if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1673 1674 1675 1676 1677 1678
		return 0;

	nested_vmx_vmexit(vcpu);
	return 1;
}

1679
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1680 1681
				bool has_error_code, u32 error_code,
				bool reinject)
1682
{
1683
	struct vcpu_vmx *vmx = to_vmx(vcpu);
1684
	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1685

1686 1687 1688 1689
	if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
		nested_pf_handled(vcpu))
		return;

1690
	if (has_error_code) {
1691
		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1692 1693
		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
	}
1694

1695
	if (vmx->rmode.vm86_active) {
1696 1697 1698 1699
		int inc_eip = 0;
		if (kvm_exception_is_soft(nr))
			inc_eip = vcpu->arch.event_exit_inst_len;
		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1700
			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1701 1702 1703
		return;
	}

1704 1705 1706
	if (kvm_exception_is_soft(nr)) {
		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
			     vmx->vcpu.arch.event_exit_inst_len);
1707 1708 1709 1710 1711
		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
	} else
		intr_info |= INTR_TYPE_HARD_EXCEPTION;

	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1712 1713
}

1714 1715 1716 1717 1718
static bool vmx_rdtscp_supported(void)
{
	return cpu_has_vmx_rdtscp();
}

1719 1720 1721
/*
 * Swap MSR entry in host/guest MSR entry array.
 */
1722
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1723
{
1724
	struct shared_msr_entry tmp;
1725 1726 1727 1728

	tmp = vmx->guest_msrs[to];
	vmx->guest_msrs[to] = vmx->guest_msrs[from];
	vmx->guest_msrs[from] = tmp;
1729 1730
}

1731 1732 1733 1734 1735
/*
 * Set up the vmcs to automatically save and restore system
 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
 * mode, as fiddling with msrs is very expensive.
 */
1736
static void setup_msrs(struct vcpu_vmx *vmx)
1737
{
1738
	int save_nmsrs, index;
1739
	unsigned long *msr_bitmap;
1740

1741 1742
	save_nmsrs = 0;
#ifdef CONFIG_X86_64
1743 1744
	if (is_long_mode(&vmx->vcpu)) {
		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1745
		if (index >= 0)
1746 1747
			move_msr_up(vmx, index, save_nmsrs++);
		index = __find_msr_index(vmx, MSR_LSTAR);
1748
		if (index >= 0)
1749 1750
			move_msr_up(vmx, index, save_nmsrs++);
		index = __find_msr_index(vmx, MSR_CSTAR);
1751
		if (index >= 0)
1752
			move_msr_up(vmx, index, save_nmsrs++);
1753 1754 1755
		index = __find_msr_index(vmx, MSR_TSC_AUX);
		if (index >= 0 && vmx->rdtscp_enabled)
			move_msr_up(vmx, index, save_nmsrs++);
1756
		/*
Brian Gerst's avatar
Brian Gerst committed
1757
		 * MSR_STAR is only needed on long mode guests, and only
1758 1759
		 * if efer.sce is enabled.
		 */
Brian Gerst's avatar
Brian Gerst committed
1760
		index = __find_msr_index(vmx, MSR_STAR);
1761
		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1762
			move_msr_up(vmx, index, save_nmsrs++);
1763 1764
	}
#endif
1765 1766
	index = __find_msr_index(vmx, MSR_EFER);
	if (index >= 0 && update_transition_efer(vmx, index))
1767
		move_msr_up(vmx, index, save_nmsrs++);
1768

1769
	vmx->save_nmsrs = save_nmsrs;
1770 1771 1772 1773 1774 1775 1776 1777 1778

	if (cpu_has_vmx_msr_bitmap()) {
		if (is_long_mode(&vmx->vcpu))
			msr_bitmap = vmx_msr_bitmap_longmode;
		else
			msr_bitmap = vmx_msr_bitmap_legacy;

		vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
	}
1779 1780
}

Avi Kivity's avatar
Avi Kivity committed
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
/*
 * reads and returns guest's timestamp counter "register"
 * guest_tsc = host_tsc + tsc_offset    -- 21.3
 */
static u64 guest_read_tsc(void)
{
	u64 host_tsc, tsc_offset;

	rdtscll(host_tsc);
	tsc_offset = vmcs_read64(TSC_OFFSET);
	return host_tsc + tsc_offset;
}

Nadav Har'El's avatar
Nadav Har'El committed
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
/*
 * Like guest_read_tsc, but always returns L1's notion of the timestamp
 * counter, even if a nested guest (L2) is currently running.
 */
u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
{
	u64 host_tsc, tsc_offset;

	rdtscll(host_tsc);
	tsc_offset = is_guest_mode(vcpu) ?
		to_vmx(vcpu)->nested.vmcs01_tsc_offset :
		vmcs_read64(TSC_OFFSET);
	return host_tsc + tsc_offset;
}

1809
/*
1810 1811
 * Engage any workarounds for mis-matched TSC rates.  Currently limited to
 * software catchup for faster rates on slower CPUs.
1812
 */
1813
static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1814
{
1815 1816 1817 1818 1819 1820 1821 1822
	if (!scale)
		return;

	if (user_tsc_khz > tsc_khz) {
		vcpu->arch.tsc_catchup = 1;
		vcpu->arch.tsc_always_catchup = 1;
	} else
		WARN(1, "user requested TSC rate below hardware speed\n");
1823 1824
}

Avi Kivity's avatar
Avi Kivity committed
1825
/*
1826
 * writes 'offset' into guest's timestamp counter offset register
Avi Kivity's avatar
Avi Kivity committed
1827
 */
1828
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
Avi Kivity's avatar
Avi Kivity committed
1829
{
1830
	if (is_guest_mode(vcpu)) {
1831
		/*
1832 1833 1834 1835
		 * We're here if L1 chose not to trap WRMSR to TSC. According
		 * to the spec, this should set L1's TSC; The offset that L1
		 * set for L2 remains unchanged, and still needs to be added
		 * to the newly set TSC to get L2's TSC.
1836
		 */
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
		struct vmcs12 *vmcs12;
		to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
		/* recalculate vmcs02.TSC_OFFSET: */
		vmcs12 = get_vmcs12(vcpu);
		vmcs_write64(TSC_OFFSET, offset +
			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
			 vmcs12->tsc_offset : 0));
	} else {
		vmcs_write64(TSC_OFFSET, offset);
	}
Avi Kivity's avatar
Avi Kivity committed
1847 1848
}

1849
static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
Zachary Amsden's avatar
Zachary Amsden committed
1850 1851 1852
{
	u64 offset = vmcs_read64(TSC_OFFSET);
	vmcs_write64(TSC_OFFSET, offset + adjustment);
1853 1854 1855 1856
	if (is_guest_mode(vcpu)) {
		/* Even when running L2, the adjustment needs to apply to L1 */
		to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
	}
Zachary Amsden's avatar
Zachary Amsden committed
1857 1858
}

1859 1860 1861 1862 1863
static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
{
	return target_tsc - native_read_tsc();
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
	return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
}

/*
 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
 * all guests if the "nested" module option is off, and can also be disabled
 * for a single guest by disabling its VMX cpuid bit.
 */
static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
{
	return nested && guest_cpuid_has_vmx(vcpu);
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/*
 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
 * returned for the various VMX controls MSRs when nested VMX is enabled.
 * The same values should also be used to verify that vmcs12 control fields are
 * valid during nested entry from L1 to L2.
 * Each of these control msrs has a low and high 32-bit half: A low bit is on
 * if the corresponding bit in the (32-bit) control field *must* be on, and a
 * bit in the high half is on if the corresponding bit in the control field
 * may be on. See also vmx_control_verify().
 * TODO: allow these variables to be modified (downgraded) by module options
 * or other means.
 */
static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
static __init void nested_vmx_setup_ctls_msrs(void)
{
	/*
	 * Note that as a general rule, the high half of the MSRs (bits in
	 * the control fields which may be 1) should be initialized by the
	 * intersection of the underlying hardware's MSR (i.e., features which
	 * can be supported) and the list of features we want to expose -
	 * because they are known to be properly supported in our code.
	 * Also, usually, the low half of the MSRs (bits which must be 1) can
	 * be set to 0, meaning that L1 may turn off any of these bits. The
	 * reason is that if one of these bits is necessary, it will appear
	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
	 * fields of vmcs01 and vmcs02, will turn these bits off - and
	 * nested_vmx_exit_handled() will not pass related exits to L1.
	 * These rules have exceptions below.
	 */

	/* pin-based controls */
	/*
	 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
	 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
	 */
	nested_vmx_pinbased_ctls_low = 0x16 ;
	nested_vmx_pinbased_ctls_high = 0x16 |
		PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
		PIN_BASED_VIRTUAL_NMIS;

	/* exit controls */
	nested_vmx_exit_ctls_low = 0;
1927
	/* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
#ifdef CONFIG_X86_64
	nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
#else
	nested_vmx_exit_ctls_high = 0;
#endif

	/* entry controls */
	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
		nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
	nested_vmx_entry_ctls_low = 0;
	nested_vmx_entry_ctls_high &=
		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;

	/* cpu-based controls */
	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
		nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
	nested_vmx_procbased_ctls_low = 0;
	nested_vmx_procbased_ctls_high &=
		CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
		CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
Avi Kivity's avatar
Avi Kivity committed
1955
		CPU_BASED_RDPMC_EXITING |
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
	/*
	 * We can allow some features even when not supported by the
	 * hardware. For example, L1 can specify an MSR bitmap - and we
	 * can use it to avoid exits to L1 - even when L0 runs L2
	 * without MSR bitmaps.
	 */
	nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;

	/* secondary cpu-based controls */
	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
		nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
	nested_vmx_secondary_ctls_low = 0;
	nested_vmx_secondary_ctls_high &=
		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}

static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
	/*
	 * Bits 0 in high must be 0, and bits 1 in low must be 1.
	 */
	return ((control & high) | low) == control;
}

static inline u64 vmx_control_msr(u32 low, u32 high)
{
	return low | ((u64)high << 32);
}

/*
 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
 * also let it use VMX-specific MSRs.
 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
 * like all other MSRs).
 */
static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
		     msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
		/*
		 * According to the spec, processors which do not support VMX
		 * should throw a #GP(0) when VMX capability MSRs are read.
		 */
		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
		return 1;
	}

	switch (msr_index) {
	case MSR_IA32_FEATURE_CONTROL:
		*pdata = 0;
		break;
	case MSR_IA32_VMX_BASIC:
		/*
		 * This MSR reports some information about VMX support. We
		 * should return information about the VMX we emulate for the
		 * guest, and the VMCS structure we give it - not about the
		 * VMX support of the underlying hardware.
		 */
		*pdata = VMCS12_REVISION |
			   ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
			   (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
		break;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_PINBASED_CTLS:
		*pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
					nested_vmx_pinbased_ctls_high);
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
		*pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
					nested_vmx_procbased_ctls_high);
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
		*pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
					nested_vmx_exit_ctls_high);
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		*pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
					nested_vmx_entry_ctls_high);
		break;
	case MSR_IA32_VMX_MISC:
		*pdata = 0;
		break;
	/*
	 * These MSRs specify bits which the guest must keep fixed (on or off)
	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
	 * We picked the standard core2 setting.
	 */
#define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON	X86_CR4_VMXE
	case MSR_IA32_VMX_CR0_FIXED0:
		*pdata = VMXON_CR0_ALWAYSON;
		break;
	case MSR_IA32_VMX_CR0_FIXED1:
		*pdata = -1ULL;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		*pdata = VMXON_CR4_ALWAYSON;
		break;
	case MSR_IA32_VMX_CR4_FIXED1:
		*pdata = -1ULL;
		break;
	case MSR_IA32_VMX_VMCS_ENUM:
		*pdata = 0x1f;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		*pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
					nested_vmx_secondary_ctls_high);
		break;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		/* Currently, no nested ept or nested vpid */
		*pdata = 0;
		break;
	default:
		return 0;
	}

	return 1;
}

static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	if (!nested_vmx_allowed(vcpu))
		return 0;

	if (msr_index == MSR_IA32_FEATURE_CONTROL)
		/* TODO: the right thing. */
		return 1;
	/*
	 * No need to treat VMX capability MSRs specially: If we don't handle
	 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
	 */
	return 0;
}

Avi Kivity's avatar
Avi Kivity committed
2095 2096 2097 2098 2099 2100 2101 2102
/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	u64 data;
2103
	struct shared_msr_entry *msr;
Avi Kivity's avatar
Avi Kivity committed
2104 2105 2106 2107 2108 2109 2110

	if (!pdata) {
		printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
		return -EINVAL;
	}

	switch (msr_index) {
2111
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
2112 2113 2114 2115 2116 2117
	case MSR_FS_BASE:
		data = vmcs_readl(GUEST_FS_BASE);
		break;
	case MSR_GS_BASE:
		data = vmcs_readl(GUEST_GS_BASE);
		break;
2118 2119 2120 2121
	case MSR_KERNEL_GS_BASE:
		vmx_load_host_state(to_vmx(vcpu));
		data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
		break;
2122
#endif
Avi Kivity's avatar
Avi Kivity committed
2123
	case MSR_EFER:
2124
		return kvm_get_msr_common(vcpu, msr_index, pdata);
2125
	case MSR_IA32_TSC:
Avi Kivity's avatar
Avi Kivity committed
2126 2127 2128 2129 2130 2131
		data = guest_read_tsc();
		break;
	case MSR_IA32_SYSENTER_CS:
		data = vmcs_read32(GUEST_SYSENTER_CS);
		break;
	case MSR_IA32_SYSENTER_EIP:
Avi Kivity's avatar
Avi Kivity committed
2132
		data = vmcs_readl(GUEST_SYSENTER_EIP);
Avi Kivity's avatar
Avi Kivity committed
2133 2134
		break;
	case MSR_IA32_SYSENTER_ESP:
Avi Kivity's avatar
Avi Kivity committed
2135
		data = vmcs_readl(GUEST_SYSENTER_ESP);
Avi Kivity's avatar
Avi Kivity committed
2136
		break;
2137 2138 2139 2140
	case MSR_TSC_AUX:
		if (!to_vmx(vcpu)->rdtscp_enabled)
			return 1;
		/* Otherwise falls through */
Avi Kivity's avatar
Avi Kivity committed
2141
	default:
2142 2143
		if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
			return 0;
2144
		msr = find_msr_entry(to_vmx(vcpu), msr_index);
2145 2146 2147
		if (msr) {
			data = msr->data;
			break;
Avi Kivity's avatar
Avi Kivity committed
2148
		}
2149
		return kvm_get_msr_common(vcpu, msr_index, pdata);
Avi Kivity's avatar
Avi Kivity committed
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	}

	*pdata = data;
	return 0;
}

/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
2163
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2164
	struct shared_msr_entry *msr;
2165 2166
	int ret = 0;

Avi Kivity's avatar
Avi Kivity committed
2167
	switch (msr_index) {
2168
	case MSR_EFER:
2169 2170
		ret = kvm_set_msr_common(vcpu, msr_index, data);
		break;
2171
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
2172
	case MSR_FS_BASE:
2173
		vmx_segment_cache_clear(vmx);
Avi Kivity's avatar
Avi Kivity committed
2174 2175 2176
		vmcs_writel(GUEST_FS_BASE, data);
		break;
	case MSR_GS_BASE:
2177
		vmx_segment_cache_clear(vmx);
Avi Kivity's avatar
Avi Kivity committed
2178 2179
		vmcs_writel(GUEST_GS_BASE, data);
		break;
2180 2181 2182 2183
	case MSR_KERNEL_GS_BASE:
		vmx_load_host_state(vmx);
		vmx->msr_guest_kernel_gs_base = data;
		break;
Avi Kivity's avatar
Avi Kivity committed
2184 2185 2186 2187 2188
#endif
	case MSR_IA32_SYSENTER_CS:
		vmcs_write32(GUEST_SYSENTER_CS, data);
		break;
	case MSR_IA32_SYSENTER_EIP:
Avi Kivity's avatar
Avi Kivity committed
2189
		vmcs_writel(GUEST_SYSENTER_EIP, data);
Avi Kivity's avatar
Avi Kivity committed
2190 2191
		break;
	case MSR_IA32_SYSENTER_ESP:
Avi Kivity's avatar
Avi Kivity committed
2192
		vmcs_writel(GUEST_SYSENTER_ESP, data);
Avi Kivity's avatar
Avi Kivity committed
2193
		break;
2194
	case MSR_IA32_TSC:
2195
		kvm_write_tsc(vcpu, data);
Avi Kivity's avatar
Avi Kivity committed
2196
		break;
Sheng Yang's avatar
Sheng Yang committed
2197 2198 2199 2200 2201 2202
	case MSR_IA32_CR_PAT:
		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
			vmcs_write64(GUEST_IA32_PAT, data);
			vcpu->arch.pat = data;
			break;
		}
2203 2204 2205 2206 2207 2208 2209 2210 2211
		ret = kvm_set_msr_common(vcpu, msr_index, data);
		break;
	case MSR_TSC_AUX:
		if (!vmx->rdtscp_enabled)
			return 1;
		/* Check reserved bit, higher 32 bits should be zero */
		if ((data >> 32) != 0)
			return 1;
		/* Otherwise falls through */
Avi Kivity's avatar
Avi Kivity committed
2212
	default:
2213 2214
		if (vmx_set_vmx_msr(vcpu, msr_index, data))
			break;
2215
		msr = find_msr_entry(vmx, msr_index);
2216
		if (msr) {
2217
			u64 old_msr_data = msr->data;
2218
			msr->data = data;
2219 2220
			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
				preempt_disable();
2221 2222
				ret = kvm_set_shared_msr(msr->index, msr->data,
							 msr->mask);
2223
				preempt_enable();
2224 2225
				if (ret)
					msr->data = old_msr_data;
2226
			}
2227
			break;
Avi Kivity's avatar
Avi Kivity committed
2228
		}
2229
		ret = kvm_set_msr_common(vcpu, msr_index, data);
Avi Kivity's avatar
Avi Kivity committed
2230 2231
	}

2232
	return ret;
Avi Kivity's avatar
Avi Kivity committed
2233 2234
}

2235
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
Avi Kivity's avatar
Avi Kivity committed
2236
{
2237 2238 2239 2240 2241 2242 2243 2244
	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
	switch (reg) {
	case VCPU_REGS_RSP:
		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
		break;
	case VCPU_REGS_RIP:
		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
		break;
Avi Kivity's avatar
Avi Kivity committed
2245 2246 2247 2248
	case VCPU_EXREG_PDPTR:
		if (enable_ept)
			ept_save_pdptrs(vcpu);
		break;
2249 2250 2251
	default:
		break;
	}
Avi Kivity's avatar
Avi Kivity committed
2252 2253
}

2254
static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
Avi Kivity's avatar
Avi Kivity committed
2255
{
2256 2257 2258 2259 2260
	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
		vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
	else
		vmcs_writel(GUEST_DR7, vcpu->arch.dr7);

2261
	update_exception_bitmap(vcpu);
Avi Kivity's avatar
Avi Kivity committed
2262 2263 2264 2265
}

static __init int cpu_has_kvm_support(void)
{
2266
	return cpu_has_vmx();
Avi Kivity's avatar
Avi Kivity committed
2267 2268 2269 2270 2271 2272 2273
}

static __init int vmx_disabled_by_bios(void)
{
	u64 msr;

	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2274
	if (msr & FEATURE_CONTROL_LOCKED) {
2275
		/* launched w/ TXT and VMX disabled */
2276 2277 2278
		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
			&& tboot_enabled())
			return 1;
2279
		/* launched w/o TXT and VMX only enabled w/ TXT */
2280
		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2281
			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2282 2283
			&& !tboot_enabled()) {
			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2284
				"activate TXT before enabling KVM\n");
2285
			return 1;
2286
		}
2287 2288 2289 2290
		/* launched w/o TXT and VMX disabled */
		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
			&& !tboot_enabled())
			return 1;
2291 2292 2293
	}

	return 0;
Avi Kivity's avatar
Avi Kivity committed
2294 2295
}

2296 2297 2298 2299 2300 2301 2302
static void kvm_cpu_vmxon(u64 addr)
{
	asm volatile (ASM_VMX_VMXON_RAX
			: : "a"(&addr), "m"(addr)
			: "memory", "cc");
}

2303
static int hardware_enable(void *garbage)
Avi Kivity's avatar
Avi Kivity committed
2304 2305 2306
{
	int cpu = raw_smp_processor_id();
	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2307
	u64 old, test_bits;
Avi Kivity's avatar
Avi Kivity committed
2308

2309 2310 2311
	if (read_cr4() & X86_CR4_VMXE)
		return -EBUSY;

2312
	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
Avi Kivity's avatar
Avi Kivity committed
2313
	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2314 2315 2316 2317 2318 2319 2320

	test_bits = FEATURE_CONTROL_LOCKED;
	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
	if (tboot_enabled())
		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;

	if ((old & test_bits) != test_bits) {
Avi Kivity's avatar
Avi Kivity committed
2321
		/* enable and lock */
2322 2323
		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
	}
2324
	write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2325

2326 2327 2328 2329
	if (vmm_exclusive) {
		kvm_cpu_vmxon(phys_addr);
		ept_sync_global();
	}
2330

2331 2332
	store_gdt(&__get_cpu_var(host_gdt));

2333
	return 0;
Avi Kivity's avatar
Avi Kivity committed
2334 2335
}

2336
static void vmclear_local_loaded_vmcss(void)
2337 2338
{
	int cpu = raw_smp_processor_id();
2339
	struct loaded_vmcs *v, *n;
2340

2341 2342 2343
	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
				 loaded_vmcss_on_cpu_link)
		__loaded_vmcs_clear(v);
2344 2345
}

2346 2347 2348 2349 2350

/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
 * tricks.
 */
static void kvm_cpu_vmxoff(void)
Avi Kivity's avatar
Avi Kivity committed
2351
{
2352
	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
Avi Kivity's avatar
Avi Kivity committed
2353 2354
}

2355 2356
static void hardware_disable(void *garbage)
{
2357
	if (vmm_exclusive) {
2358
		vmclear_local_loaded_vmcss();
2359 2360
		kvm_cpu_vmxoff();
	}
2361
	write_cr4(read_cr4() & ~X86_CR4_VMXE);
2362 2363
}

2364
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
Mike Day's avatar
Mike Day committed
2365
				      u32 msr, u32 *result)
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
{
	u32 vmx_msr_low, vmx_msr_high;
	u32 ctl = ctl_min | ctl_opt;

	rdmsr(msr, vmx_msr_low, vmx_msr_high);

	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */

	/* Ensure minimum (required) set of control bits are supported. */
	if (ctl_min & ~ctl)
2377
		return -EIO;
2378 2379 2380 2381 2382

	*result = ctl;
	return 0;
}

2383 2384 2385 2386 2387 2388 2389 2390
static __init bool allow_1_setting(u32 msr, u32 ctl)
{
	u32 vmx_msr_low, vmx_msr_high;

	rdmsr(msr, vmx_msr_low, vmx_msr_high);
	return vmx_msr_high & ctl;
}

2391
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
Avi Kivity's avatar
Avi Kivity committed
2392 2393
{
	u32 vmx_msr_low, vmx_msr_high;
Sheng Yang's avatar
Sheng Yang committed
2394
	u32 min, opt, min2, opt2;
2395 2396
	u32 _pin_based_exec_control = 0;
	u32 _cpu_based_exec_control = 0;
2397
	u32 _cpu_based_2nd_exec_control = 0;
2398 2399 2400 2401
	u32 _vmexit_control = 0;
	u32 _vmentry_control = 0;

	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2402
	opt = PIN_BASED_VIRTUAL_NMIS;
2403 2404
	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
				&_pin_based_exec_control) < 0)
2405
		return -EIO;
2406

2407
	min = CPU_BASED_HLT_EXITING |
2408 2409 2410 2411
#ifdef CONFIG_X86_64
	      CPU_BASED_CR8_LOAD_EXITING |
	      CPU_BASED_CR8_STORE_EXITING |
#endif
Sheng Yang's avatar
Sheng Yang committed
2412 2413
	      CPU_BASED_CR3_LOAD_EXITING |
	      CPU_BASED_CR3_STORE_EXITING |
2414 2415
	      CPU_BASED_USE_IO_BITMAPS |
	      CPU_BASED_MOV_DR_EXITING |
Marcelo Tosatti's avatar
Marcelo Tosatti committed
2416
	      CPU_BASED_USE_TSC_OFFSETING |
2417 2418
	      CPU_BASED_MWAIT_EXITING |
	      CPU_BASED_MONITOR_EXITING |
Avi Kivity's avatar
Avi Kivity committed
2419 2420
	      CPU_BASED_INVLPG_EXITING |
	      CPU_BASED_RDPMC_EXITING;
2421

2422
	opt = CPU_BASED_TPR_SHADOW |
2423
	      CPU_BASED_USE_MSR_BITMAPS |
2424
	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2425 2426
	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
				&_cpu_based_exec_control) < 0)
2427
		return -EIO;
2428 2429 2430 2431 2432
#ifdef CONFIG_X86_64
	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
					   ~CPU_BASED_CR8_STORE_EXITING;
#endif
2433
	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
Sheng Yang's avatar
Sheng Yang committed
2434 2435
		min2 = 0;
		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2436
			SECONDARY_EXEC_WBINVD_EXITING |
Sheng Yang's avatar
Sheng Yang committed
2437
			SECONDARY_EXEC_ENABLE_VPID |
2438
			SECONDARY_EXEC_ENABLE_EPT |
2439
			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2440 2441
			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
			SECONDARY_EXEC_RDTSCP;
Sheng Yang's avatar
Sheng Yang committed
2442 2443
		if (adjust_vmx_controls(min2, opt2,
					MSR_IA32_VMX_PROCBASED_CTLS2,
2444 2445 2446 2447 2448 2449 2450 2451
					&_cpu_based_2nd_exec_control) < 0)
			return -EIO;
	}
#ifndef CONFIG_X86_64
	if (!(_cpu_based_2nd_exec_control &
				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
Sheng Yang's avatar
Sheng Yang committed
2452
	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
Marcelo Tosatti's avatar
Marcelo Tosatti committed
2453 2454
		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
		   enabled */
2455 2456 2457
		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
					     CPU_BASED_CR3_STORE_EXITING |
					     CPU_BASED_INVLPG_EXITING);
Sheng Yang's avatar
Sheng Yang committed
2458 2459 2460
		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
		      vmx_capability.ept, vmx_capability.vpid);
	}
2461 2462 2463 2464 2465

	min = 0;
#ifdef CONFIG_X86_64
	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
#endif
Sheng Yang's avatar
Sheng Yang committed
2466
	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2467 2468
	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
				&_vmexit_control) < 0)
2469
		return -EIO;
2470

Sheng Yang's avatar
Sheng Yang committed
2471 2472
	min = 0;
	opt = VM_ENTRY_LOAD_IA32_PAT;
2473 2474
	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
				&_vmentry_control) < 0)
2475
		return -EIO;
Avi Kivity's avatar
Avi Kivity committed
2476

2477
	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2478 2479 2480

	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2481
		return -EIO;
2482 2483 2484 2485

#ifdef CONFIG_X86_64
	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
	if (vmx_msr_high & (1u<<16))
2486
		return -EIO;
2487 2488 2489 2490
#endif

	/* Require Write-Back (WB) memory type for VMCS accesses. */
	if (((vmx_msr_high >> 18) & 15) != 6)
2491
		return -EIO;
2492

2493 2494 2495
	vmcs_conf->size = vmx_msr_high & 0x1fff;
	vmcs_conf->order = get_order(vmcs_config.size);
	vmcs_conf->revision_id = vmx_msr_low;
2496

2497 2498
	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2499
	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2500 2501
	vmcs_conf->vmexit_ctrl         = _vmexit_control;
	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2502

2503 2504 2505 2506 2507 2508
	cpu_has_load_ia32_efer =
		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
				VM_ENTRY_LOAD_IA32_EFER)
		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
				   VM_EXIT_LOAD_IA32_EFER);

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	cpu_has_load_perf_global_ctrl =
		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);

	/*
	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
	 * but due to arrata below it can't be used. Workaround is to use
	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
	 *
	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
	 *
	 * AAK155             (model 26)
	 * AAP115             (model 30)
	 * AAT100             (model 37)
	 * BC86,AAY89,BD102   (model 44)
	 * BA97               (model 46)
	 *
	 */
	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
		switch (boot_cpu_data.x86_model) {
		case 26:
		case 30:
		case 37:
		case 44:
		case 46:
			cpu_has_load_perf_global_ctrl = false;
			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
					"does not work properly. Using workaround\n");
			break;
		default:
			break;
		}
	}

2545
	return 0;
2546
}
Avi Kivity's avatar
Avi Kivity committed
2547 2548 2549 2550 2551 2552 2553

static struct vmcs *alloc_vmcs_cpu(int cpu)
{
	int node = cpu_to_node(cpu);
	struct page *pages;
	struct vmcs *vmcs;

2554
	pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
Avi Kivity's avatar
Avi Kivity committed
2555 2556 2557
	if (!pages)
		return NULL;
	vmcs = page_address(pages);
2558 2559
	memset(vmcs, 0, vmcs_config.size);
	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
Avi Kivity's avatar
Avi Kivity committed
2560 2561 2562 2563 2564
	return vmcs;
}

static struct vmcs *alloc_vmcs(void)
{
2565
	return alloc_vmcs_cpu(raw_smp_processor_id());
Avi Kivity's avatar
Avi Kivity committed
2566 2567 2568 2569
}

static void free_vmcs(struct vmcs *vmcs)
{
2570
	free_pages((unsigned long)vmcs, vmcs_config.order);
Avi Kivity's avatar
Avi Kivity committed
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
/*
 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
 */
static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
	if (!loaded_vmcs->vmcs)
		return;
	loaded_vmcs_clear(loaded_vmcs);
	free_vmcs(loaded_vmcs->vmcs);
	loaded_vmcs->vmcs = NULL;
}

2585
static void free_kvm_area(void)
Avi Kivity's avatar
Avi Kivity committed
2586 2587 2588
{
	int cpu;

Zachary Amsden's avatar
Zachary Amsden committed
2589
	for_each_possible_cpu(cpu) {
Avi Kivity's avatar
Avi Kivity committed
2590
		free_vmcs(per_cpu(vmxarea, cpu));
Zachary Amsden's avatar
Zachary Amsden committed
2591 2592
		per_cpu(vmxarea, cpu) = NULL;
	}
Avi Kivity's avatar
Avi Kivity committed
2593 2594 2595 2596 2597 2598
}

static __init int alloc_kvm_area(void)
{
	int cpu;

Zachary Amsden's avatar
Zachary Amsden committed
2599
	for_each_possible_cpu(cpu) {
Avi Kivity's avatar
Avi Kivity committed
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
		struct vmcs *vmcs;

		vmcs = alloc_vmcs_cpu(cpu);
		if (!vmcs) {
			free_kvm_area();
			return -ENOMEM;
		}

		per_cpu(vmxarea, cpu) = vmcs;
	}
	return 0;
}

static __init int hardware_setup(void)
{
2615 2616
	if (setup_vmcs_config(&vmcs_config) < 0)
		return -EIO;
2617 2618 2619 2620

	if (boot_cpu_has(X86_FEATURE_NX))
		kvm_enable_efer_bits(EFER_NX);

Sheng Yang's avatar
Sheng Yang committed
2621 2622 2623
	if (!cpu_has_vmx_vpid())
		enable_vpid = 0;

2624 2625
	if (!cpu_has_vmx_ept() ||
	    !cpu_has_vmx_ept_4levels()) {
Sheng Yang's avatar
Sheng Yang committed
2626
		enable_ept = 0;
2627 2628 2629 2630 2631
		enable_unrestricted_guest = 0;
	}

	if (!cpu_has_vmx_unrestricted_guest())
		enable_unrestricted_guest = 0;
Sheng Yang's avatar
Sheng Yang committed
2632 2633 2634 2635

	if (!cpu_has_vmx_flexpriority())
		flexpriority_enabled = 0;

2636 2637 2638
	if (!cpu_has_vmx_tpr_shadow())
		kvm_x86_ops->update_cr8_intercept = NULL;

2639 2640 2641
	if (enable_ept && !cpu_has_vmx_ept_2m_page())
		kvm_disable_largepages();

2642 2643 2644
	if (!cpu_has_vmx_ple())
		ple_gap = 0;

2645 2646 2647
	if (nested)
		nested_vmx_setup_ctls_msrs();

Avi Kivity's avatar
Avi Kivity committed
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	return alloc_kvm_area();
}

static __exit void hardware_unsetup(void)
{
	free_kvm_area();
}

static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
{
	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];

2660
	if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
Avi Kivity's avatar
Avi Kivity committed
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
		vmcs_write16(sf->selector, save->selector);
		vmcs_writel(sf->base, save->base);
		vmcs_write32(sf->limit, save->limit);
		vmcs_write32(sf->ar_bytes, save->ar);
	} else {
		u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
			<< AR_DPL_SHIFT;
		vmcs_write32(sf->ar_bytes, 0x93 | dpl);
	}
}

static void enter_pmode(struct kvm_vcpu *vcpu)
{
	unsigned long flags;
2675
	struct vcpu_vmx *vmx = to_vmx(vcpu);
Avi Kivity's avatar
Avi Kivity committed
2676

2677
	vmx->emulation_required = 1;
2678
	vmx->rmode.vm86_active = 0;
Avi Kivity's avatar
Avi Kivity committed
2679

2680 2681
	vmx_segment_cache_clear(vmx);

2682
	vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2683 2684 2685
	vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
	vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
	vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
Avi Kivity's avatar
Avi Kivity committed
2686 2687

	flags = vmcs_readl(GUEST_RFLAGS);
2688 2689
	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
Avi Kivity's avatar
Avi Kivity committed
2690 2691
	vmcs_writel(GUEST_RFLAGS, flags);

2692 2693
	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
Avi Kivity's avatar
Avi Kivity committed
2694 2695 2696

	update_exception_bitmap(vcpu);

2697 2698 2699
	if (emulate_invalid_guest_state)
		return;

2700 2701 2702 2703
	fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
	fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
	fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
	fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
Avi Kivity's avatar
Avi Kivity committed
2704

2705 2706
	vmx_segment_cache_clear(vmx);

Avi Kivity's avatar
Avi Kivity committed
2707 2708 2709 2710 2711 2712 2713 2714
	vmcs_write16(GUEST_SS_SELECTOR, 0);
	vmcs_write32(GUEST_SS_AR_BYTES, 0x93);

	vmcs_write16(GUEST_CS_SELECTOR,
		     vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
	vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
}

Mike Day's avatar
Mike Day committed
2715
static gva_t rmode_tss_base(struct kvm *kvm)
Avi Kivity's avatar
Avi Kivity committed
2716
{
2717
	if (!kvm->arch.tss_addr) {
2718
		struct kvm_memslots *slots;
2719
		struct kvm_memory_slot *slot;
2720 2721
		gfn_t base_gfn;

2722
		slots = kvm_memslots(kvm);
2723 2724 2725
		slot = id_to_memslot(slots, 0);
		base_gfn = slot->base_gfn + slot->npages - 3;

2726 2727
		return base_gfn << PAGE_SHIFT;
	}
2728
	return kvm->arch.tss_addr;
Avi Kivity's avatar
Avi Kivity committed
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
}

static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
{
	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];

	save->selector = vmcs_read16(sf->selector);
	save->base = vmcs_readl(sf->base);
	save->limit = vmcs_read32(sf->limit);
	save->ar = vmcs_read32(sf->ar_bytes);
2739
	vmcs_write16(sf->selector, save->base >> 4);
2740
	vmcs_write32(sf->base, save->base & 0xffff0);
Avi Kivity's avatar
Avi Kivity committed
2741 2742
	vmcs_write32(sf->limit, 0xffff);
	vmcs_write32(sf->ar_bytes, 0xf3);
2743 2744 2745 2746
	if (save->base & 0xf)
		printk_once(KERN_WARNING "kvm: segment base is not paragraph"
			    " aligned when entering protected mode (seg=%d)",
			    seg);
Avi Kivity's avatar
Avi Kivity committed
2747 2748 2749 2750 2751
}

static void enter_rmode(struct kvm_vcpu *vcpu)
{
	unsigned long flags;
2752
	struct vcpu_vmx *vmx = to_vmx(vcpu);
Avi Kivity's avatar
Avi Kivity committed
2753

2754 2755 2756
	if (enable_unrestricted_guest)
		return;

2757
	vmx->emulation_required = 1;
2758
	vmx->rmode.vm86_active = 1;
Avi Kivity's avatar
Avi Kivity committed
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	/*
	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
	 * vcpu. Call it here with phys address pointing 16M below 4G.
	 */
	if (!vcpu->kvm->arch.tss_addr) {
		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
			     "called before entering vcpu\n");
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
		vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
	}

2772 2773
	vmx_segment_cache_clear(vmx);

2774
	vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2775
	vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
Avi Kivity's avatar
Avi Kivity committed
2776 2777
	vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));

2778
	vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
Avi Kivity's avatar
Avi Kivity committed
2779 2780
	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);

2781
	vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
Avi Kivity's avatar
Avi Kivity committed
2782 2783 2784
	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);

	flags = vmcs_readl(GUEST_RFLAGS);
2785
	vmx->rmode.save_rflags = flags;
Avi Kivity's avatar
Avi Kivity committed
2786

2787
	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
Avi Kivity's avatar
Avi Kivity committed
2788 2789

	vmcs_writel(GUEST_RFLAGS, flags);
2790
	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
Avi Kivity's avatar
Avi Kivity committed
2791 2792
	update_exception_bitmap(vcpu);

2793 2794 2795
	if (emulate_invalid_guest_state)
		goto continue_rmode;

Avi Kivity's avatar
Avi Kivity committed
2796 2797 2798 2799 2800
	vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
	vmcs_write32(GUEST_SS_LIMIT, 0xffff);
	vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);

	vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2801
	vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2802 2803
	if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
		vmcs_writel(GUEST_CS_BASE, 0xf0000);
Avi Kivity's avatar
Avi Kivity committed
2804 2805
	vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);

2806 2807 2808 2809
	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2810

2811
continue_rmode:
2812
	kvm_mmu_reset_context(vcpu);
Avi Kivity's avatar
Avi Kivity committed
2813 2814
}

2815 2816 2817
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2818 2819 2820 2821
	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);

	if (!msr)
		return;
2822

2823 2824 2825 2826 2827
	/*
	 * Force kernel_gs_base reloading before EFER changes, as control
	 * of this msr depends on is_long_mode().
	 */
	vmx_load_host_state(to_vmx(vcpu));
2828
	vcpu->arch.efer = efer;
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	if (efer & EFER_LMA) {
		vmcs_write32(VM_ENTRY_CONTROLS,
			     vmcs_read32(VM_ENTRY_CONTROLS) |
			     VM_ENTRY_IA32E_MODE);
		msr->data = efer;
	} else {
		vmcs_write32(VM_ENTRY_CONTROLS,
			     vmcs_read32(VM_ENTRY_CONTROLS) &
			     ~VM_ENTRY_IA32E_MODE);

		msr->data = efer & ~EFER_LME;
	}
	setup_msrs(vmx);
}

2844
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
2845 2846 2847 2848 2849

static void enter_lmode(struct kvm_vcpu *vcpu)
{
	u32 guest_tr_ar;

2850 2851
	vmx_segment_cache_clear(to_vmx(vcpu));

Avi Kivity's avatar
Avi Kivity committed
2852 2853
	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
	if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2854 2855
		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
				     __func__);
Avi Kivity's avatar
Avi Kivity committed
2856 2857 2858 2859
		vmcs_write32(GUEST_TR_AR_BYTES,
			     (guest_tr_ar & ~AR_TYPE_MASK)
			     | AR_TYPE_BUSY_64_TSS);
	}
2860
	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
Avi Kivity's avatar
Avi Kivity committed
2861 2862 2863 2864 2865 2866
}

static void exit_lmode(struct kvm_vcpu *vcpu)
{
	vmcs_write32(VM_ENTRY_CONTROLS,
		     vmcs_read32(VM_ENTRY_CONTROLS)
2867
		     & ~VM_ENTRY_IA32E_MODE);
2868
	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
Avi Kivity's avatar
Avi Kivity committed
2869 2870 2871 2872
}

#endif

2873 2874
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
2875
	vpid_sync_context(to_vmx(vcpu));
2876 2877 2878
	if (enable_ept) {
		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
			return;
2879
		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2880
	}
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;

	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
}

2891 2892 2893 2894 2895 2896 2897
static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
{
	if (enable_ept && is_paging(vcpu))
		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}

2898
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2899
{
2900 2901 2902 2903
	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;

	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2904 2905
}

2906 2907
static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
{
Avi Kivity's avatar
Avi Kivity committed
2908 2909 2910 2911
	if (!test_bit(VCPU_EXREG_PDPTR,
		      (unsigned long *)&vcpu->arch.regs_dirty))
		return;

2912
	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2913 2914 2915 2916
		vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
		vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
		vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
		vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2917 2918 2919
	}
}

2920 2921 2922
static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
{
	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2923 2924 2925 2926
		vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
		vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
		vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
		vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2927
	}
Avi Kivity's avatar
Avi Kivity committed
2928 2929 2930 2931 2932

	__set_bit(VCPU_EXREG_PDPTR,
		  (unsigned long *)&vcpu->arch.regs_avail);
	__set_bit(VCPU_EXREG_PDPTR,
		  (unsigned long *)&vcpu->arch.regs_dirty);
2933 2934
}

2935
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2936 2937 2938 2939 2940

static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
					unsigned long cr0,
					struct kvm_vcpu *vcpu)
{
2941 2942
	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
		vmx_decache_cr3(vcpu);
2943 2944 2945
	if (!(cr0 & X86_CR0_PG)) {
		/* From paging/starting to nonpaging */
		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2946
			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2947 2948 2949
			     (CPU_BASED_CR3_LOAD_EXITING |
			      CPU_BASED_CR3_STORE_EXITING));
		vcpu->arch.cr0 = cr0;
2950
		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2951 2952 2953
	} else if (!is_paging(vcpu)) {
		/* From nonpaging to paging */
		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2954
			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2955 2956 2957
			     ~(CPU_BASED_CR3_LOAD_EXITING |
			       CPU_BASED_CR3_STORE_EXITING));
		vcpu->arch.cr0 = cr0;
2958
		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2959
	}
2960 2961 2962

	if (!(cr0 & X86_CR0_WP))
		*hw_cr0 &= ~X86_CR0_WP;
2963 2964
}

Avi Kivity's avatar
Avi Kivity committed
2965 2966
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
2967
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2968 2969 2970 2971 2972 2973 2974
	unsigned long hw_cr0;

	if (enable_unrestricted_guest)
		hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
			| KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
	else
		hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2975

2976
	if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
Avi Kivity's avatar
Avi Kivity committed
2977 2978
		enter_pmode(vcpu);

2979
	if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
Avi Kivity's avatar
Avi Kivity committed
2980 2981
		enter_rmode(vcpu);

2982
#ifdef CONFIG_X86_64
2983
	if (vcpu->arch.efer & EFER_LME) {
2984
		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
Avi Kivity's avatar
Avi Kivity committed
2985
			enter_lmode(vcpu);
2986
		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
Avi Kivity's avatar
Avi Kivity committed
2987 2988 2989 2990
			exit_lmode(vcpu);
	}
#endif

2991
	if (enable_ept)
2992 2993
		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);

2994
	if (!vcpu->fpu_active)
2995
		hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2996

Avi Kivity's avatar
Avi Kivity committed
2997
	vmcs_writel(CR0_READ_SHADOW, cr0);
2998
	vmcs_writel(GUEST_CR0, hw_cr0);
2999
	vcpu->arch.cr0 = cr0;
Avi Kivity's avatar
Avi Kivity committed
3000
	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
Avi Kivity's avatar
Avi Kivity committed
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
static u64 construct_eptp(unsigned long root_hpa)
{
	u64 eptp;

	/* TODO write the value reading from MSR */
	eptp = VMX_EPT_DEFAULT_MT |
		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
	eptp |= (root_hpa & PAGE_MASK);

	return eptp;
}

Avi Kivity's avatar
Avi Kivity committed
3015 3016
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
3017 3018 3019 3020
	unsigned long guest_cr3;
	u64 eptp;

	guest_cr3 = cr3;
3021
	if (enable_ept) {
3022 3023
		eptp = construct_eptp(cr3);
		vmcs_write64(EPT_POINTER, eptp);
3024
		guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3025
			vcpu->kvm->arch.ept_identity_map_addr;
3026
		ept_load_pdptrs(vcpu);
3027 3028
	}

3029
	vmx_flush_tlb(vcpu);
3030
	vmcs_writel(GUEST_CR3, guest_cr3);
Avi Kivity's avatar
Avi Kivity committed
3031 3032
}

3033
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
Avi Kivity's avatar
Avi Kivity committed
3034
{
3035
	unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3036 3037
		    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	if (cr4 & X86_CR4_VMXE) {
		/*
		 * To use VMXON (and later other VMX instructions), a guest
		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
		 * So basically the check on whether to allow nested VMX
		 * is here.
		 */
		if (!nested_vmx_allowed(vcpu))
			return 1;
	} else if (to_vmx(vcpu)->nested.vmxon)
		return 1;

3050
	vcpu->arch.cr4 = cr4;
3051 3052 3053 3054 3055 3056 3057 3058
	if (enable_ept) {
		if (!is_paging(vcpu)) {
			hw_cr4 &= ~X86_CR4_PAE;
			hw_cr4 |= X86_CR4_PSE;
		} else if (!(cr4 & X86_CR4_PAE)) {
			hw_cr4 &= ~X86_CR4_PAE;
		}
	}
3059 3060 3061

	vmcs_writel(CR4_READ_SHADOW, cr4);
	vmcs_writel(GUEST_CR4, hw_cr4);
3062
	return 0;
Avi Kivity's avatar
Avi Kivity committed
3063 3064 3065 3066 3067
}

static void vmx_get_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
3068 3069
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct kvm_save_segment *save;
Avi Kivity's avatar
Avi Kivity committed
3070 3071
	u32 ar;

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	if (vmx->rmode.vm86_active
	    && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
		|| seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
		|| seg == VCPU_SREG_GS)
	    && !emulate_invalid_guest_state) {
		switch (seg) {
		case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
		case VCPU_SREG_ES: save = &vmx->rmode.es; break;
		case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
		case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
		case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
		default: BUG();
		}
		var->selector = save->selector;
		var->base = save->base;
		var->limit = save->limit;
		ar = save->ar;
		if (seg == VCPU_SREG_TR
3090
		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3091 3092
			goto use_saved_rmode_seg;
	}
3093 3094 3095 3096
	var->base = vmx_read_guest_seg_base(vmx, seg);
	var->limit = vmx_read_guest_seg_limit(vmx, seg);
	var->selector = vmx_read_guest_seg_selector(vmx, seg);
	ar = vmx_read_guest_seg_ar(vmx, seg);
3097
use_saved_rmode_seg:
3098
	if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
Avi Kivity's avatar
Avi Kivity committed
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		ar = 0;
	var->type = ar & 15;
	var->s = (ar >> 4) & 1;
	var->dpl = (ar >> 5) & 3;
	var->present = (ar >> 7) & 1;
	var->avl = (ar >> 12) & 1;
	var->l = (ar >> 13) & 1;
	var->db = (ar >> 14) & 1;
	var->g = (ar >> 15) & 1;
	var->unusable = (ar >> 16) & 1;
}

3111 3112 3113 3114 3115 3116 3117 3118
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment s;

	if (to_vmx(vcpu)->rmode.vm86_active) {
		vmx_get_segment(vcpu, &s, seg);
		return s.base;
	}
3119
	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3120 3121
}

Avi Kivity's avatar
Avi Kivity committed
3122
static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3123
{
3124
	if (!is_protmode(vcpu))
3125 3126
		return 0;

Avi Kivity's avatar
Avi Kivity committed
3127 3128
	if (!is_long_mode(vcpu)
	    && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3129 3130
		return 3;

3131
	return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3132 3133
}

Avi Kivity's avatar
Avi Kivity committed
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
static int vmx_get_cpl(struct kvm_vcpu *vcpu)
{
	if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
		__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
		to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
	}
	return to_vmx(vcpu)->cpl;
}


3144
static u32 vmx_segment_access_rights(struct kvm_segment *var)
Avi Kivity's avatar
Avi Kivity committed
3145 3146 3147
{
	u32 ar;

3148
	if (var->unusable)
Avi Kivity's avatar
Avi Kivity committed
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		ar = 1 << 16;
	else {
		ar = var->type & 15;
		ar |= (var->s & 1) << 4;
		ar |= (var->dpl & 3) << 5;
		ar |= (var->present & 1) << 7;
		ar |= (var->avl & 1) << 12;
		ar |= (var->l & 1) << 13;
		ar |= (var->db & 1) << 14;
		ar |= (var->g & 1) << 15;
	}
3160 3161
	if (ar == 0) /* a 0 value means unusable */
		ar = AR_UNUSABLE_MASK;
3162 3163 3164 3165 3166 3167 3168

	return ar;
}

static void vmx_set_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
3169
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3170 3171 3172
	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
	u32 ar;

3173 3174
	vmx_segment_cache_clear(vmx);

3175
	if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3176
		vmcs_write16(sf->selector, var->selector);
3177 3178 3179 3180
		vmx->rmode.tr.selector = var->selector;
		vmx->rmode.tr.base = var->base;
		vmx->rmode.tr.limit = var->limit;
		vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3181 3182 3183 3184 3185
		return;
	}
	vmcs_writel(sf->base, var->base);
	vmcs_write32(sf->limit, var->limit);
	vmcs_write16(sf->selector, var->selector);
3186
	if (vmx->rmode.vm86_active && var->s) {
3187 3188 3189 3190 3191 3192 3193 3194
		/*
		 * Hack real-mode segments into vm86 compatibility.
		 */
		if (var->base == 0xffff0000 && var->selector == 0xf000)
			vmcs_writel(sf->base, 0xf0000);
		ar = 0xf3;
	} else
		ar = vmx_segment_access_rights(var);
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

	/*
	 *   Fix the "Accessed" bit in AR field of segment registers for older
	 * qemu binaries.
	 *   IA32 arch specifies that at the time of processor reset the
	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
	 * is setting it to 0 in the usedland code. This causes invalid guest
	 * state vmexit when "unrestricted guest" mode is turned on.
	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
	 * tree. Newer qemu binaries with that qemu fix would not need this
	 * kvm hack.
	 */
	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
		ar |= 0x1; /* Accessed */

Avi Kivity's avatar
Avi Kivity committed
3210
	vmcs_write32(sf->ar_bytes, ar);
Avi Kivity's avatar
Avi Kivity committed
3211
	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
Avi Kivity's avatar
Avi Kivity committed
3212 3213 3214 3215
}

static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
3216
	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
Avi Kivity's avatar
Avi Kivity committed
3217 3218 3219 3220 3221

	*db = (ar >> 14) & 1;
	*l = (ar >> 13) & 1;
}

3222
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
Avi Kivity's avatar
Avi Kivity committed
3223
{
3224 3225
	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
	dt->address = vmcs_readl(GUEST_IDTR_BASE);
Avi Kivity's avatar
Avi Kivity committed
3226 3227
}

3228
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
Avi Kivity's avatar
Avi Kivity committed
3229
{
3230 3231
	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
	vmcs_writel(GUEST_IDTR_BASE, dt->address);
Avi Kivity's avatar
Avi Kivity committed
3232 3233
}

3234
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
Avi Kivity's avatar
Avi Kivity committed
3235
{
3236 3237
	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
	dt->address = vmcs_readl(GUEST_GDTR_BASE);
Avi Kivity's avatar
Avi Kivity committed
3238 3239
}

3240
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
Avi Kivity's avatar
Avi Kivity committed
3241
{
3242 3243
	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
	vmcs_writel(GUEST_GDTR_BASE, dt->address);
Avi Kivity's avatar
Avi Kivity committed
3244 3245
}

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment var;
	u32 ar;

	vmx_get_segment(vcpu, &var, seg);
	ar = vmx_segment_access_rights(&var);

	if (var.base != (var.selector << 4))
		return false;
	if (var.limit != 0xffff)
		return false;
	if (ar != 0xf3)
		return false;

	return true;
}

static bool code_segment_valid(struct kvm_vcpu *vcpu)
{
	struct kvm_segment cs;
	unsigned int cs_rpl;

	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
	cs_rpl = cs.selector & SELECTOR_RPL_MASK;

3272 3273
	if (cs.unusable)
		return false;
3274 3275 3276 3277
	if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
		return false;
	if (!cs.s)
		return false;
3278
	if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3279 3280
		if (cs.dpl > cs_rpl)
			return false;
3281
	} else {
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
		if (cs.dpl != cs_rpl)
			return false;
	}
	if (!cs.present)
		return false;

	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
	return true;
}

static bool stack_segment_valid(struct kvm_vcpu *vcpu)
{
	struct kvm_segment ss;
	unsigned int ss_rpl;

	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
	ss_rpl = ss.selector & SELECTOR_RPL_MASK;

3300 3301 3302
	if (ss.unusable)
		return true;
	if (ss.type != 3 && ss.type != 7)
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
		return false;
	if (!ss.s)
		return false;
	if (ss.dpl != ss_rpl) /* DPL != RPL */
		return false;
	if (!ss.present)
		return false;

	return true;
}

static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment var;
	unsigned int rpl;

	vmx_get_segment(vcpu, &var, seg);
	rpl = var.selector & SELECTOR_RPL_MASK;

3322 3323
	if (var.unusable)
		return true;
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	if (!var.s)
		return false;
	if (!var.present)
		return false;
	if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
		if (var.dpl < rpl) /* DPL < RPL */
			return false;
	}

	/* TODO: Add other members to kvm_segment_field to allow checking for other access
	 * rights flags
	 */
	return true;
}

static bool tr_valid(struct kvm_vcpu *vcpu)
{
	struct kvm_segment tr;

	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);

3345 3346
	if (tr.unusable)
		return false;
3347 3348
	if (tr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
		return false;
3349
	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		return false;
	if (!tr.present)
		return false;

	return true;
}

static bool ldtr_valid(struct kvm_vcpu *vcpu)
{
	struct kvm_segment ldtr;

	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);

3363 3364
	if (ldtr.unusable)
		return true;
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	if (ldtr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
		return false;
	if (ldtr.type != 2)
		return false;
	if (!ldtr.present)
		return false;

	return true;
}

static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
{
	struct kvm_segment cs, ss;

	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);

	return ((cs.selector & SELECTOR_RPL_MASK) ==
		 (ss.selector & SELECTOR_RPL_MASK));
}

/*
 * Check if guest state is valid. Returns true if valid, false if
 * not.
 * We assume that registers are always usable
 */
static bool guest_state_valid(struct kvm_vcpu *vcpu)
{
	/* real mode guest state checks */
3394
	if (!is_protmode(vcpu)) {
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
			return false;
	} else {
	/* protected mode guest state checks */
		if (!cs_ss_rpl_check(vcpu))
			return false;
		if (!code_segment_valid(vcpu))
			return false;
		if (!stack_segment_valid(vcpu))
			return false;
		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
			return false;
		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
			return false;
		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
			return false;
		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
			return false;
		if (!tr_valid(vcpu))
			return false;
		if (!ldtr_valid(vcpu))
			return false;
	}
	/* TODO:
	 * - Add checks on RIP
	 * - Add checks on RFLAGS
	 */

	return true;
}

Mike Day's avatar
Mike Day committed
3436
static int init_rmode_tss(struct kvm *kvm)
Avi Kivity's avatar
Avi Kivity committed
3437
{
3438
	gfn_t fn;
3439
	u16 data = 0;
3440
	int r, idx, ret = 0;
Avi Kivity's avatar
Avi Kivity committed
3441

3442 3443
	idx = srcu_read_lock(&kvm->srcu);
	fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3444 3445
	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
	if (r < 0)
3446
		goto out;
3447
	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3448 3449
	r = kvm_write_guest_page(kvm, fn++, &data,
			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3450
	if (r < 0)
3451
		goto out;
3452 3453
	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
	if (r < 0)
3454
		goto out;
3455 3456
	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
	if (r < 0)
3457
		goto out;
3458
	data = ~0;
3459 3460 3461
	r = kvm_write_guest_page(kvm, fn, &data,
				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
				 sizeof(u8));
3462
	if (r < 0)
3463 3464 3465 3466
		goto out;

	ret = 1;
out:
3467
	srcu_read_unlock(&kvm->srcu, idx);
3468
	return ret;
Avi Kivity's avatar
Avi Kivity committed
3469 3470
}

3471 3472
static int init_rmode_identity_map(struct kvm *kvm)
{
3473
	int i, idx, r, ret;
3474 3475 3476
	pfn_t identity_map_pfn;
	u32 tmp;

3477
	if (!enable_ept)
3478 3479 3480 3481 3482 3483 3484 3485 3486
		return 1;
	if (unlikely(!kvm->arch.ept_identity_pagetable)) {
		printk(KERN_ERR "EPT: identity-mapping pagetable "
			"haven't been allocated!\n");
		return 0;
	}
	if (likely(kvm->arch.ept_identity_pagetable_done))
		return 1;
	ret = 0;
3487
	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3488
	idx = srcu_read_lock(&kvm->srcu);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
	if (r < 0)
		goto out;
	/* Set up identity-mapping pagetable for EPT in real mode */
	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
		r = kvm_write_guest_page(kvm, identity_map_pfn,
				&tmp, i * sizeof(tmp), sizeof(tmp));
		if (r < 0)
			goto out;
	}
	kvm->arch.ept_identity_pagetable_done = true;
	ret = 1;
out:
3504
	srcu_read_unlock(&kvm->srcu, idx);
3505 3506 3507
	return ret;
}

Avi Kivity's avatar
Avi Kivity committed
3508 3509 3510
static void seg_setup(int seg)
{
	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3511
	unsigned int ar;
Avi Kivity's avatar
Avi Kivity committed
3512 3513 3514 3515

	vmcs_write16(sf->selector, 0);
	vmcs_writel(sf->base, 0);
	vmcs_write32(sf->limit, 0xffff);
3516 3517 3518 3519 3520 3521 3522 3523
	if (enable_unrestricted_guest) {
		ar = 0x93;
		if (seg == VCPU_SREG_CS)
			ar |= 0x08; /* code segment */
	} else
		ar = 0xf3;

	vmcs_write32(sf->ar_bytes, ar);
Avi Kivity's avatar
Avi Kivity committed
3524 3525
}

3526 3527 3528 3529 3530
static int alloc_apic_access_page(struct kvm *kvm)
{
	struct kvm_userspace_memory_region kvm_userspace_mem;
	int r = 0;

3531
	mutex_lock(&kvm->slots_lock);
3532
	if (kvm->arch.apic_access_page)
3533 3534 3535 3536 3537 3538 3539 3540
		goto out;
	kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
	kvm_userspace_mem.flags = 0;
	kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
	kvm_userspace_mem.memory_size = PAGE_SIZE;
	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
	if (r)
		goto out;
3541

3542
	kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3543
out:
3544
	mutex_unlock(&kvm->slots_lock);
3545 3546 3547
	return r;
}

3548 3549 3550 3551 3552
static int alloc_identity_pagetable(struct kvm *kvm)
{
	struct kvm_userspace_memory_region kvm_userspace_mem;
	int r = 0;

3553
	mutex_lock(&kvm->slots_lock);
3554 3555 3556 3557
	if (kvm->arch.ept_identity_pagetable)
		goto out;
	kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
	kvm_userspace_mem.flags = 0;
3558 3559
	kvm_userspace_mem.guest_phys_addr =
		kvm->arch.ept_identity_map_addr;
3560 3561 3562 3563 3564 3565
	kvm_userspace_mem.memory_size = PAGE_SIZE;
	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
	if (r)
		goto out;

	kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3566
			kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3567
out:
3568
	mutex_unlock(&kvm->slots_lock);
3569 3570 3571
	return r;
}

3572 3573 3574 3575 3576
static void allocate_vpid(struct vcpu_vmx *vmx)
{
	int vpid;

	vmx->vpid = 0;
3577
	if (!enable_vpid)
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		return;
	spin_lock(&vmx_vpid_lock);
	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
	if (vpid < VMX_NR_VPIDS) {
		vmx->vpid = vpid;
		__set_bit(vpid, vmx_vpid_bitmap);
	}
	spin_unlock(&vmx_vpid_lock);
}

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
static void free_vpid(struct vcpu_vmx *vmx)
{
	if (!enable_vpid)
		return;
	spin_lock(&vmx_vpid_lock);
	if (vmx->vpid != 0)
		__clear_bit(vmx->vpid, vmx_vpid_bitmap);
	spin_unlock(&vmx_vpid_lock);
}

3598
static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3599
{
3600
	int f = sizeof(unsigned long);
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

	if (!cpu_has_vmx_msr_bitmap())
		return;

	/*
	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
	 * have the write-low and read-high bitmap offsets the wrong way round.
	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
	 */
	if (msr <= 0x1fff) {
3611 3612
		__clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
		__clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3613 3614
	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
		msr &= 0x1fff;
3615 3616
		__clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
		__clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3617 3618 3619
	}
}

3620 3621 3622 3623 3624 3625 3626
static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
{
	if (!longmode_only)
		__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
}

3627 3628 3629 3630 3631 3632
/*
 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
 * will not change in the lifetime of the guest.
 * Note that host-state that does change is set elsewhere. E.g., host-state
 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
 */
3633
static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3634 3635 3636 3637
{
	u32 low32, high32;
	unsigned long tmpl;
	struct desc_ptr dt;
3638
	unsigned long cr4;
3639

3640
	vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
3641 3642
	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */

3643 3644 3645 3646 3647
	/* Save the most likely value for this task's CR4 in the VMCS. */
	cr4 = read_cr4();
	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
	vmx->host_state.vmcs_host_cr4 = cr4;

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */

	native_store_idt(&dt);
	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */

	asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
	vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */

	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */

	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
		rdmsr(MSR_IA32_CR_PAT, low32, high32);
		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
	}
}

3671 3672 3673 3674 3675
static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
{
	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
	if (enable_ept)
		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3676 3677 3678
	if (is_guest_mode(&vmx->vcpu))
		vmx->vcpu.arch.cr4_guest_owned_bits &=
			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
}

static u32 vmx_exec_control(struct vcpu_vmx *vmx)
{
	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
	if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
		exec_control &= ~CPU_BASED_TPR_SHADOW;
#ifdef CONFIG_X86_64
		exec_control |= CPU_BASED_CR8_STORE_EXITING |
				CPU_BASED_CR8_LOAD_EXITING;
#endif
	}
	if (!enable_ept)
		exec_control |= CPU_BASED_CR3_STORE_EXITING |
				CPU_BASED_CR3_LOAD_EXITING  |
				CPU_BASED_INVLPG_EXITING;
	return exec_control;
}

static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
{
	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
	if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
	if (vmx->vpid == 0)
		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
	if (!enable_ept) {
		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
		enable_unrestricted_guest = 0;
	}
	if (!enable_unrestricted_guest)
		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
	if (!ple_gap)
		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
	return exec_control;
}

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
static void ept_set_mmio_spte_mask(void)
{
	/*
	 * EPT Misconfigurations can be generated if the value of bits 2:0
	 * of an EPT paging-structure entry is 110b (write/execute).
	 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
	 * spte.
	 */
	kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
}

Avi Kivity's avatar
Avi Kivity committed
3728 3729 3730
/*
 * Sets up the vmcs for emulated real mode.
 */
3731
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
Avi Kivity's avatar
Avi Kivity committed
3732
{
3733
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
3734
	unsigned long a;
3735
#endif
Avi Kivity's avatar
Avi Kivity committed
3736 3737 3738
	int i;

	/* I/O */
3739 3740
	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
Avi Kivity's avatar
Avi Kivity committed
3741

3742
	if (cpu_has_vmx_msr_bitmap())
3743
		vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3744

Avi Kivity's avatar
Avi Kivity committed
3745 3746 3747
	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */

	/* Control */
3748 3749
	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
		vmcs_config.pin_based_exec_ctrl);
3750

3751
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
Avi Kivity's avatar
Avi Kivity committed
3752

3753
	if (cpu_has_secondary_exec_ctrls()) {
3754 3755
		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
				vmx_secondary_exec_control(vmx));
3756
	}
3757

3758 3759 3760 3761 3762
	if (ple_gap) {
		vmcs_write32(PLE_GAP, ple_gap);
		vmcs_write32(PLE_WINDOW, ple_window);
	}

3763 3764
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
Avi Kivity's avatar
Avi Kivity committed
3765 3766
	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */

3767 3768
	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
3769
	vmx_set_constant_host_state(vmx);
3770
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
3771 3772 3773 3774 3775 3776 3777 3778 3779
	rdmsrl(MSR_FS_BASE, a);
	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
	rdmsrl(MSR_GS_BASE, a);
	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
#else
	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif

3780 3781
	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3782
	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3783
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3784
	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
Avi Kivity's avatar
Avi Kivity committed
3785

Sheng Yang's avatar
Sheng Yang committed
3786
	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3787 3788
		u32 msr_low, msr_high;
		u64 host_pat;
Sheng Yang's avatar
Sheng Yang committed
3789 3790 3791 3792 3793 3794 3795 3796
		rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
		host_pat = msr_low | ((u64) msr_high << 32);
		/* Write the default value follow host pat */
		vmcs_write64(GUEST_IA32_PAT, host_pat);
		/* Keep arch.pat sync with GUEST_IA32_PAT */
		vmx->vcpu.arch.pat = host_pat;
	}

Avi Kivity's avatar
Avi Kivity committed
3797 3798 3799
	for (i = 0; i < NR_VMX_MSR; ++i) {
		u32 index = vmx_msr_index[i];
		u32 data_low, data_high;
3800
		int j = vmx->nmsrs;
Avi Kivity's avatar
Avi Kivity committed
3801 3802 3803

		if (rdmsr_safe(index, &data_low, &data_high) < 0)
			continue;
3804 3805
		if (wrmsr_safe(index, data_low, data_high) < 0)
			continue;
3806 3807
		vmx->guest_msrs[j].index = i;
		vmx->guest_msrs[j].data = 0;
3808
		vmx->guest_msrs[j].mask = -1ull;
3809
		++vmx->nmsrs;
Avi Kivity's avatar
Avi Kivity committed
3810 3811
	}

3812
	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
Avi Kivity's avatar
Avi Kivity committed
3813 3814

	/* 22.2.1, 20.8.1 */
3815 3816
	vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);

3817
	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3818
	set_cr4_guest_host_mask(vmx);
3819

3820
	kvm_write_tsc(&vmx->vcpu, 0);
3821

3822 3823 3824 3825 3826 3827 3828
	return 0;
}

static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u64 msr;
3829
	int ret;
3830

3831
	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3832

3833
	vmx->rmode.vm86_active = 0;
3834

3835 3836
	vmx->soft_vnmi_blocked = 0;

3837
	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3838
	kvm_set_cr8(&vmx->vcpu, 0);
3839
	msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3840
	if (kvm_vcpu_is_bsp(&vmx->vcpu))
3841 3842 3843
		msr |= MSR_IA32_APICBASE_BSP;
	kvm_set_apic_base(&vmx->vcpu, msr);

3844 3845 3846
	ret = fx_init(&vmx->vcpu);
	if (ret != 0)
		goto out;
3847

3848 3849
	vmx_segment_cache_clear(vmx);

3850
	seg_setup(VCPU_SREG_CS);
3851 3852 3853 3854
	/*
	 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
	 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
	 */
3855
	if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3856 3857 3858
		vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
		vmcs_writel(GUEST_CS_BASE, 0x000f0000);
	} else {
3859 3860
		vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
		vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	}

	seg_setup(VCPU_SREG_DS);
	seg_setup(VCPU_SREG_ES);
	seg_setup(VCPU_SREG_FS);
	seg_setup(VCPU_SREG_GS);
	seg_setup(VCPU_SREG_SS);

	vmcs_write16(GUEST_TR_SELECTOR, 0);
	vmcs_writel(GUEST_TR_BASE, 0);
	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);

	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
	vmcs_writel(GUEST_LDTR_BASE, 0);
	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);

	vmcs_write32(GUEST_SYSENTER_CS, 0);
	vmcs_writel(GUEST_SYSENTER_ESP, 0);
	vmcs_writel(GUEST_SYSENTER_EIP, 0);

	vmcs_writel(GUEST_RFLAGS, 0x02);
3884
	if (kvm_vcpu_is_bsp(&vmx->vcpu))
3885
		kvm_rip_write(vcpu, 0xfff0);
3886
	else
3887 3888
		kvm_rip_write(vcpu, 0);
	kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3889 3890 3891 3892 3893 3894 3895 3896 3897

	vmcs_writel(GUEST_DR7, 0x400);

	vmcs_writel(GUEST_GDTR_BASE, 0);
	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);

	vmcs_writel(GUEST_IDTR_BASE, 0);
	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);

3898
	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3899 3900 3901 3902 3903 3904 3905 3906
	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);

	/* Special registers */
	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);

	setup_msrs(vmx);

Avi Kivity's avatar
Avi Kivity committed
3907 3908
	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */

3909 3910 3911 3912
	if (cpu_has_vmx_tpr_shadow()) {
		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
		if (vm_need_tpr_shadow(vmx->vcpu.kvm))
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3913
				     __pa(vmx->vcpu.arch.apic->regs));
3914 3915 3916 3917 3918
		vmcs_write32(TPR_THRESHOLD, 0);
	}

	if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
		vmcs_write64(APIC_ACCESS_ADDR,
3919
			     page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
Avi Kivity's avatar
Avi Kivity committed
3920

3921 3922 3923
	if (vmx->vpid != 0)
		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);

3924
	vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3925
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3926
	vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3927
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3928 3929 3930 3931
	vmx_set_cr4(&vmx->vcpu, 0);
	vmx_set_efer(&vmx->vcpu, 0);
	vmx_fpu_activate(&vmx->vcpu);
	update_exception_bitmap(&vmx->vcpu);
Avi Kivity's avatar
Avi Kivity committed
3932

3933
	vpid_sync_context(vmx);
3934

3935
	ret = 0;
Avi Kivity's avatar
Avi Kivity committed
3936

3937 3938 3939
	/* HACK: Don't enable emulation on guest boot/reset */
	vmx->emulation_required = 0;

Avi Kivity's avatar
Avi Kivity committed
3940 3941 3942 3943
out:
	return ret;
}

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
/*
 * In nested virtualization, check if L1 asked to exit on external interrupts.
 * For most existing hypervisors, this will always return true.
 */
static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
{
	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
		PIN_BASED_EXT_INTR_MASK;
}

3954 3955 3956
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
	u32 cpu_based_vm_exec_control;
3957 3958 3959 3960 3961
	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
		/*
		 * We get here if vmx_interrupt_allowed() said we can't
		 * inject to L1 now because L2 must run. Ask L2 to exit
		 * right after entry, so we can inject to L1 more promptly.
3962
		 */
3963
		kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
3964
		return;
3965
	}
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980

	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
}

static void enable_nmi_window(struct kvm_vcpu *vcpu)
{
	u32 cpu_based_vm_exec_control;

	if (!cpu_has_virtual_nmis()) {
		enable_irq_window(vcpu);
		return;
	}

3981 3982 3983 3984
	if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
		enable_irq_window(vcpu);
		return;
	}
3985 3986 3987 3988 3989
	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
}

3990
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3991
{
3992
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3993 3994
	uint32_t intr;
	int irq = vcpu->arch.interrupt.nr;
3995

3996
	trace_kvm_inj_virq(irq);
Feng (Eric) Liu's avatar
Feng (Eric) Liu committed
3997

3998
	++vcpu->stat.irq_injections;
3999
	if (vmx->rmode.vm86_active) {
4000 4001 4002 4003
		int inc_eip = 0;
		if (vcpu->arch.interrupt.soft)
			inc_eip = vcpu->arch.event_exit_inst_len;
		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4004
			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4005 4006
		return;
	}
4007 4008 4009 4010 4011 4012 4013 4014
	intr = irq | INTR_INFO_VALID_MASK;
	if (vcpu->arch.interrupt.soft) {
		intr |= INTR_TYPE_SOFT_INTR;
		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
			     vmx->vcpu.arch.event_exit_inst_len);
	} else
		intr |= INTR_TYPE_EXT_INTR;
	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4015 4016
}

4017 4018
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
{
4019 4020
	struct vcpu_vmx *vmx = to_vmx(vcpu);

4021 4022 4023
	if (is_guest_mode(vcpu))
		return;

4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
	if (!cpu_has_virtual_nmis()) {
		/*
		 * Tracking the NMI-blocked state in software is built upon
		 * finding the next open IRQ window. This, in turn, depends on
		 * well-behaving guests: They have to keep IRQs disabled at
		 * least as long as the NMI handler runs. Otherwise we may
		 * cause NMI nesting, maybe breaking the guest. But as this is
		 * highly unlikely, we can live with the residual risk.
		 */
		vmx->soft_vnmi_blocked = 1;
		vmx->vnmi_blocked_time = 0;
	}

4037
	++vcpu->stat.nmi_injections;
4038
	vmx->nmi_known_unmasked = false;
4039
	if (vmx->rmode.vm86_active) {
4040
		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4041
			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4042 4043
		return;
	}
4044 4045 4046 4047
	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
}

4048
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4049
{
4050
	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4051
		return 0;
4052

4053
	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4054 4055
		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
		   | GUEST_INTR_STATE_NMI));
4056 4057
}

4058 4059 4060 4061
static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
{
	if (!cpu_has_virtual_nmis())
		return to_vmx(vcpu)->soft_vnmi_blocked;
4062 4063
	if (to_vmx(vcpu)->nmi_known_unmasked)
		return false;
4064
	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI;
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
}

static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!cpu_has_virtual_nmis()) {
		if (vmx->soft_vnmi_blocked != masked) {
			vmx->soft_vnmi_blocked = masked;
			vmx->vnmi_blocked_time = 0;
		}
	} else {
4077
		vmx->nmi_known_unmasked = !masked;
4078 4079 4080 4081 4082 4083 4084 4085 4086
		if (masked)
			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
				      GUEST_INTR_STATE_NMI);
		else
			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
					GUEST_INTR_STATE_NMI);
	}
}

4087 4088
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
{
4089
	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4090 4091 4092 4093
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
		if (to_vmx(vcpu)->nested.nested_run_pending ||
		    (vmcs12->idt_vectoring_info_field &
		     VECTORING_INFO_VALID_MASK))
4094 4095 4096 4097 4098 4099 4100
			return 0;
		nested_vmx_vmexit(vcpu);
		vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
		vmcs12->vm_exit_intr_info = 0;
		/* fall through to normal code, but now in L1, not L2 */
	}

4101 4102 4103
	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4104 4105
}

4106 4107 4108 4109
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
	int ret;
	struct kvm_userspace_memory_region tss_mem = {
4110
		.slot = TSS_PRIVATE_MEMSLOT,
4111 4112 4113 4114 4115 4116 4117 4118
		.guest_phys_addr = addr,
		.memory_size = PAGE_SIZE * 3,
		.flags = 0,
	};

	ret = kvm_set_memory_region(kvm, &tss_mem, 0);
	if (ret)
		return ret;
4119
	kvm->arch.tss_addr = addr;
4120 4121 4122
	if (!init_rmode_tss(kvm))
		return  -ENOMEM;

4123 4124 4125
	return 0;
}

Avi Kivity's avatar
Avi Kivity committed
4126 4127 4128
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
				  int vec, u32 err_code)
{
4129 4130 4131 4132 4133
	/*
	 * Instruction with address size override prefix opcode 0x67
	 * Cause the #SS fault with 0 error code in VM86 mode.
	 */
	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4134
		if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
Avi Kivity's avatar
Avi Kivity committed
4135
			return 1;
4136 4137 4138 4139 4140 4141 4142
	/*
	 * Forward all other exceptions that are valid in real mode.
	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
	 *        the required debugging infrastructure rework.
	 */
	switch (vec) {
	case DB_VECTOR:
Jan Kiszka's avatar
Jan Kiszka committed
4143 4144 4145 4146 4147
		if (vcpu->guest_debug &
		    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
			return 0;
		kvm_queue_exception(vcpu, vec);
		return 1;
4148
	case BP_VECTOR:
4149 4150 4151 4152 4153 4154
		/*
		 * Update instruction length as we may reinject the exception
		 * from user space while in guest debugging mode.
		 */
		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
Jan Kiszka's avatar
Jan Kiszka committed
4155 4156 4157 4158
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
			return 0;
		/* fall through */
	case DE_VECTOR:
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
	case OF_VECTOR:
	case BR_VECTOR:
	case UD_VECTOR:
	case DF_VECTOR:
	case SS_VECTOR:
	case GP_VECTOR:
	case MF_VECTOR:
		kvm_queue_exception(vcpu, vec);
		return 1;
	}
Avi Kivity's avatar
Avi Kivity committed
4169 4170 4171
	return 0;
}

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
/*
 * Trigger machine check on the host. We assume all the MSRs are already set up
 * by the CPU and that we still run on the same CPU as the MCE occurred on.
 * We pass a fake environment to the machine check handler because we want
 * the guest to be always treated like user space, no matter what context
 * it used internally.
 */
static void kvm_machine_check(void)
{
#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
	struct pt_regs regs = {
		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
		.flags = X86_EFLAGS_IF,
	};

	do_machine_check(&regs, 0);
#endif
}

Avi Kivity's avatar
Avi Kivity committed
4191
static int handle_machine_check(struct kvm_vcpu *vcpu)
4192 4193 4194 4195 4196
{
	/* already handled by vcpu_run */
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4197
static int handle_exception(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4198
{
4199
	struct vcpu_vmx *vmx = to_vmx(vcpu);
Avi Kivity's avatar
Avi Kivity committed
4200
	struct kvm_run *kvm_run = vcpu->run;
Jan Kiszka's avatar
Jan Kiszka committed
4201
	u32 intr_info, ex_no, error_code;
4202
	unsigned long cr2, rip, dr6;
Avi Kivity's avatar
Avi Kivity committed
4203 4204 4205
	u32 vect_info;
	enum emulation_result er;

4206
	vect_info = vmx->idt_vectoring_info;
4207
	intr_info = vmx->exit_intr_info;
Avi Kivity's avatar
Avi Kivity committed
4208

4209
	if (is_machine_check(intr_info))
Avi Kivity's avatar
Avi Kivity committed
4210
		return handle_machine_check(vcpu);
4211

Avi Kivity's avatar
Avi Kivity committed
4212
	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4213 4214 4215 4216 4217 4218 4219 4220
	    !is_page_fault(intr_info)) {
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
		vcpu->run->internal.ndata = 2;
		vcpu->run->internal.data[0] = vect_info;
		vcpu->run->internal.data[1] = intr_info;
		return 0;
	}
Avi Kivity's avatar
Avi Kivity committed
4221

4222
	if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4223
		return 1;  /* already handled by vmx_vcpu_run() */
4224 4225

	if (is_no_device(intr_info)) {
4226
		vmx_fpu_activate(vcpu);
4227 4228 4229
		return 1;
	}

4230
	if (is_invalid_opcode(intr_info)) {
4231
		er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4232
		if (er != EMULATE_DONE)
4233
			kvm_queue_exception(vcpu, UD_VECTOR);
4234 4235 4236
		return 1;
	}

Avi Kivity's avatar
Avi Kivity committed
4237
	error_code = 0;
4238
	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
Avi Kivity's avatar
Avi Kivity committed
4239 4240
		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
	if (is_page_fault(intr_info)) {
4241
		/* EPT won't cause page fault directly */
Julia Lawall's avatar
Julia Lawall committed
4242
		BUG_ON(enable_ept);
Avi Kivity's avatar
Avi Kivity committed
4243
		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4244 4245
		trace_kvm_page_fault(cr2, error_code);

4246
		if (kvm_event_needs_reinjection(vcpu))
4247
			kvm_mmu_unprotect_page_virt(vcpu, cr2);
4248
		return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
Avi Kivity's avatar
Avi Kivity committed
4249 4250
	}

4251
	if (vmx->rmode.vm86_active &&
Avi Kivity's avatar
Avi Kivity committed
4252
	    handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4253
								error_code)) {
4254 4255
		if (vcpu->arch.halt_request) {
			vcpu->arch.halt_request = 0;
4256 4257
			return kvm_emulate_halt(vcpu);
		}
Avi Kivity's avatar
Avi Kivity committed
4258
		return 1;
4259
	}
Avi Kivity's avatar
Avi Kivity committed
4260

Jan Kiszka's avatar
Jan Kiszka committed
4261
	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4262
	switch (ex_no) {
4263 4264 4265
	case AC_VECTOR:
		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
		return 1;
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
	case DB_VECTOR:
		dr6 = vmcs_readl(EXIT_QUALIFICATION);
		if (!(vcpu->guest_debug &
		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
			vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
			kvm_queue_exception(vcpu, DB_VECTOR);
			return 1;
		}
		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
		/* fall through */
	case BP_VECTOR:
4278 4279 4280 4281 4282 4283 4284
		/*
		 * Update instruction length as we may reinject #BP from
		 * user space while in guest debugging mode. Reading it for
		 * #DB as well causes no harm, it is not used in that case.
		 */
		vmx->vcpu.arch.event_exit_inst_len =
			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
Avi Kivity's avatar
Avi Kivity committed
4285
		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4286
		rip = kvm_rip_read(vcpu);
Jan Kiszka's avatar
Jan Kiszka committed
4287 4288
		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
		kvm_run->debug.arch.exception = ex_no;
4289 4290
		break;
	default:
Jan Kiszka's avatar
Jan Kiszka committed
4291 4292 4293
		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
		kvm_run->ex.exception = ex_no;
		kvm_run->ex.error_code = error_code;
4294
		break;
Avi Kivity's avatar
Avi Kivity committed
4295 4296 4297 4298
	}
	return 0;
}

Avi Kivity's avatar
Avi Kivity committed
4299
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4300
{
Avi Kivity's avatar
Avi Kivity committed
4301
	++vcpu->stat.irq_exits;
Avi Kivity's avatar
Avi Kivity committed
4302 4303 4304
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4305
static int handle_triple_fault(struct kvm_vcpu *vcpu)
4306
{
Avi Kivity's avatar
Avi Kivity committed
4307
	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4308 4309
	return 0;
}
Avi Kivity's avatar
Avi Kivity committed
4310

Avi Kivity's avatar
Avi Kivity committed
4311
static int handle_io(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4312
{
4313
	unsigned long exit_qualification;
4314
	int size, in, string;
4315
	unsigned port;
Avi Kivity's avatar
Avi Kivity committed
4316

4317
	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4318
	string = (exit_qualification & 16) != 0;
4319
	in = (exit_qualification & 8) != 0;
4320

4321
	++vcpu->stat.io_exits;
4322

4323
	if (string || in)
4324
		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4325

4326 4327
	port = exit_qualification >> 16;
	size = (exit_qualification & 7) + 1;
4328
	skip_emulated_instruction(vcpu);
4329 4330

	return kvm_fast_pio_out(vcpu, size, port);
Avi Kivity's avatar
Avi Kivity committed
4331 4332
}

Ingo Molnar's avatar
Ingo Molnar committed
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
static void
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
	/*
	 * Patch in the VMCALL instruction:
	 */
	hypercall[0] = 0x0f;
	hypercall[1] = 0x01;
	hypercall[2] = 0xc1;
}

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
/* called to set cr0 as approriate for a mov-to-cr0 exit. */
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
{
	if (to_vmx(vcpu)->nested.vmxon &&
	    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
		return 1;

	if (is_guest_mode(vcpu)) {
		/*
		 * We get here when L2 changed cr0 in a way that did not change
		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
		 * but did change L0 shadowed bits. This can currently happen
		 * with the TS bit: L0 may want to leave TS on (for lazy fpu
		 * loading) while pretending to allow the guest to change it.
		 */
		if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
			 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
			return 1;
		vmcs_writel(CR0_READ_SHADOW, val);
		return 0;
	} else
		return kvm_set_cr0(vcpu, val);
}

static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
{
	if (is_guest_mode(vcpu)) {
		if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
			 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
			return 1;
		vmcs_writel(CR4_READ_SHADOW, val);
		return 0;
	} else
		return kvm_set_cr4(vcpu, val);
}

/* called to set cr0 as approriate for clts instruction exit. */
static void handle_clts(struct kvm_vcpu *vcpu)
{
	if (is_guest_mode(vcpu)) {
		/*
		 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
		 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
		 * just pretend it's off (also in arch.cr0 for fpu_activate).
		 */
		vmcs_writel(CR0_READ_SHADOW,
			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
		vcpu->arch.cr0 &= ~X86_CR0_TS;
	} else
		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
}

Avi Kivity's avatar
Avi Kivity committed
4396
static int handle_cr(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4397
{
4398
	unsigned long exit_qualification, val;
Avi Kivity's avatar
Avi Kivity committed
4399 4400
	int cr;
	int reg;
4401
	int err;
Avi Kivity's avatar
Avi Kivity committed
4402

4403
	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
Avi Kivity's avatar
Avi Kivity committed
4404 4405 4406 4407
	cr = exit_qualification & 15;
	reg = (exit_qualification >> 8) & 15;
	switch ((exit_qualification >> 4) & 3) {
	case 0: /* mov to cr */
4408 4409
		val = kvm_register_read(vcpu, reg);
		trace_kvm_cr_write(cr, val);
Avi Kivity's avatar
Avi Kivity committed
4410 4411
		switch (cr) {
		case 0:
4412
			err = handle_set_cr0(vcpu, val);
4413
			kvm_complete_insn_gp(vcpu, err);
Avi Kivity's avatar
Avi Kivity committed
4414 4415
			return 1;
		case 3:
4416
			err = kvm_set_cr3(vcpu, val);
4417
			kvm_complete_insn_gp(vcpu, err);
Avi Kivity's avatar
Avi Kivity committed
4418 4419
			return 1;
		case 4:
4420
			err = handle_set_cr4(vcpu, val);
4421
			kvm_complete_insn_gp(vcpu, err);
Avi Kivity's avatar
Avi Kivity committed
4422
			return 1;
4423 4424 4425
		case 8: {
				u8 cr8_prev = kvm_get_cr8(vcpu);
				u8 cr8 = kvm_register_read(vcpu, reg);
Andre Przywara's avatar
Andre Przywara committed
4426
				err = kvm_set_cr8(vcpu, cr8);
4427
				kvm_complete_insn_gp(vcpu, err);
4428 4429 4430 4431
				if (irqchip_in_kernel(vcpu->kvm))
					return 1;
				if (cr8_prev <= cr8)
					return 1;
Avi Kivity's avatar
Avi Kivity committed
4432
				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4433 4434
				return 0;
			}
Avi Kivity's avatar
Avi Kivity committed
4435 4436
		};
		break;
4437
	case 2: /* clts */
4438
		handle_clts(vcpu);
4439
		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4440
		skip_emulated_instruction(vcpu);
Avi Kivity's avatar
Avi Kivity committed
4441
		vmx_fpu_activate(vcpu);
4442
		return 1;
Avi Kivity's avatar
Avi Kivity committed
4443 4444 4445
	case 1: /*mov from cr*/
		switch (cr) {
		case 3:
4446 4447 4448
			val = kvm_read_cr3(vcpu);
			kvm_register_write(vcpu, reg, val);
			trace_kvm_cr_read(cr, val);
Avi Kivity's avatar
Avi Kivity committed
4449 4450 4451
			skip_emulated_instruction(vcpu);
			return 1;
		case 8:
4452 4453 4454
			val = kvm_get_cr8(vcpu);
			kvm_register_write(vcpu, reg, val);
			trace_kvm_cr_read(cr, val);
Avi Kivity's avatar
Avi Kivity committed
4455 4456 4457 4458 4459
			skip_emulated_instruction(vcpu);
			return 1;
		}
		break;
	case 3: /* lmsw */
4460
		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4461
		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4462
		kvm_lmsw(vcpu, val);
Avi Kivity's avatar
Avi Kivity committed
4463 4464 4465 4466 4467 4468

		skip_emulated_instruction(vcpu);
		return 1;
	default:
		break;
	}
Avi Kivity's avatar
Avi Kivity committed
4469
	vcpu->run->exit_reason = 0;
4470
	pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
Avi Kivity's avatar
Avi Kivity committed
4471 4472 4473 4474
	       (int)(exit_qualification >> 4) & 3, cr);
	return 0;
}

Avi Kivity's avatar
Avi Kivity committed
4475
static int handle_dr(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4476
{
4477
	unsigned long exit_qualification;
Avi Kivity's avatar
Avi Kivity committed
4478 4479
	int dr, reg;

4480
	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4481 4482
	if (!kvm_require_cpl(vcpu, 0))
		return 1;
4483 4484 4485 4486 4487 4488 4489 4490
	dr = vmcs_readl(GUEST_DR7);
	if (dr & DR7_GD) {
		/*
		 * As the vm-exit takes precedence over the debug trap, we
		 * need to emulate the latter, either for the host or the
		 * guest debugging itself.
		 */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
Avi Kivity's avatar
Avi Kivity committed
4491 4492 4493
			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
			vcpu->run->debug.arch.dr7 = dr;
			vcpu->run->debug.arch.pc =
4494 4495
				vmcs_readl(GUEST_CS_BASE) +
				vmcs_readl(GUEST_RIP);
Avi Kivity's avatar
Avi Kivity committed
4496 4497
			vcpu->run->debug.arch.exception = DB_VECTOR;
			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
			return 0;
		} else {
			vcpu->arch.dr7 &= ~DR7_GD;
			vcpu->arch.dr6 |= DR6_BD;
			vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
			kvm_queue_exception(vcpu, DB_VECTOR);
			return 1;
		}
	}

4508
	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4509 4510 4511
	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
	if (exit_qualification & TYPE_MOV_FROM_DR) {
4512 4513 4514 4515 4516
		unsigned long val;
		if (!kvm_get_dr(vcpu, dr, &val))
			kvm_register_write(vcpu, reg, val);
	} else
		kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
Avi Kivity's avatar
Avi Kivity committed
4517 4518 4519 4520
	skip_emulated_instruction(vcpu);
	return 1;
}

4521 4522 4523 4524 4525
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
{
	vmcs_writel(GUEST_DR7, val);
}

Avi Kivity's avatar
Avi Kivity committed
4526
static int handle_cpuid(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4527
{
4528 4529
	kvm_emulate_cpuid(vcpu);
	return 1;
Avi Kivity's avatar
Avi Kivity committed
4530 4531
}

Avi Kivity's avatar
Avi Kivity committed
4532
static int handle_rdmsr(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4533
{
4534
	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
Avi Kivity's avatar
Avi Kivity committed
4535 4536 4537
	u64 data;

	if (vmx_get_msr(vcpu, ecx, &data)) {
4538
		trace_kvm_msr_read_ex(ecx);
4539
		kvm_inject_gp(vcpu, 0);
Avi Kivity's avatar
Avi Kivity committed
4540 4541 4542
		return 1;
	}

4543
	trace_kvm_msr_read(ecx, data);
Feng (Eric) Liu's avatar
Feng (Eric) Liu committed
4544

Avi Kivity's avatar
Avi Kivity committed
4545
	/* FIXME: handling of bits 32:63 of rax, rdx */
4546 4547
	vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
	vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
Avi Kivity's avatar
Avi Kivity committed
4548 4549 4550 4551
	skip_emulated_instruction(vcpu);
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4552
static int handle_wrmsr(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4553
{
4554 4555 4556
	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
Avi Kivity's avatar
Avi Kivity committed
4557

4558
	if (kvm_set_msr(vcpu, ecx, data) != 0) {
4559
		trace_kvm_msr_write_ex(ecx, data);
4560
		kvm_inject_gp(vcpu, 0);
Avi Kivity's avatar
Avi Kivity committed
4561 4562 4563
		return 1;
	}

4564
	trace_kvm_msr_write(ecx, data);
Avi Kivity's avatar
Avi Kivity committed
4565 4566 4567 4568
	skip_emulated_instruction(vcpu);
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4569
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4570
{
4571
	kvm_make_request(KVM_REQ_EVENT, vcpu);
4572 4573 4574
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4575
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4576
{
4577 4578 4579 4580 4581 4582
	u32 cpu_based_vm_exec_control;

	/* clear pending irq */
	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
Feng (Eric) Liu's avatar
Feng (Eric) Liu committed
4583

4584 4585
	kvm_make_request(KVM_REQ_EVENT, vcpu);

4586
	++vcpu->stat.irq_window_exits;
Feng (Eric) Liu's avatar
Feng (Eric) Liu committed
4587

4588 4589 4590 4591
	/*
	 * If the user space waits to inject interrupts, exit as soon as
	 * possible
	 */
4592
	if (!irqchip_in_kernel(vcpu->kvm) &&
Avi Kivity's avatar
Avi Kivity committed
4593
	    vcpu->run->request_interrupt_window &&
4594
	    !kvm_cpu_has_interrupt(vcpu)) {
Avi Kivity's avatar
Avi Kivity committed
4595
		vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4596 4597
		return 0;
	}
Avi Kivity's avatar
Avi Kivity committed
4598 4599 4600
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4601
static int handle_halt(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
4602 4603
{
	skip_emulated_instruction(vcpu);
4604
	return kvm_emulate_halt(vcpu);
Avi Kivity's avatar
Avi Kivity committed
4605 4606
}

Avi Kivity's avatar
Avi Kivity committed
4607
static int handle_vmcall(struct kvm_vcpu *vcpu)
4608
{
4609
	skip_emulated_instruction(vcpu);
4610 4611
	kvm_emulate_hypercall(vcpu);
	return 1;
4612 4613
}

4614 4615
static int handle_invd(struct kvm_vcpu *vcpu)
{
4616
	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4617 4618
}

Avi Kivity's avatar
Avi Kivity committed
4619
static int handle_invlpg(struct kvm_vcpu *vcpu)
Marcelo Tosatti's avatar
Marcelo Tosatti committed
4620
{
4621
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
Marcelo Tosatti's avatar
Marcelo Tosatti committed
4622 4623 4624 4625 4626 4627

	kvm_mmu_invlpg(vcpu, exit_qualification);
	skip_emulated_instruction(vcpu);
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
static int handle_rdpmc(struct kvm_vcpu *vcpu)
{
	int err;

	err = kvm_rdpmc(vcpu);
	kvm_complete_insn_gp(vcpu, err);

	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4638
static int handle_wbinvd(struct kvm_vcpu *vcpu)
Eddie Dong's avatar
Eddie Dong committed
4639 4640
{
	skip_emulated_instruction(vcpu);
4641
	kvm_emulate_wbinvd(vcpu);
Eddie Dong's avatar
Eddie Dong committed
4642 4643 4644
	return 1;
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
static int handle_xsetbv(struct kvm_vcpu *vcpu)
{
	u64 new_bv = kvm_read_edx_eax(vcpu);
	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);

	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
		skip_emulated_instruction(vcpu);
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
4655
static int handle_apic_access(struct kvm_vcpu *vcpu)
4656
{
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	if (likely(fasteoi)) {
		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
		int access_type, offset;

		access_type = exit_qualification & APIC_ACCESS_TYPE;
		offset = exit_qualification & APIC_ACCESS_OFFSET;
		/*
		 * Sane guest uses MOV to write EOI, with written value
		 * not cared. So make a short-circuit here by avoiding
		 * heavy instruction emulation.
		 */
		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
		    (offset == APIC_EOI)) {
			kvm_lapic_set_eoi(vcpu);
			skip_emulated_instruction(vcpu);
			return 1;
		}
	}
4675
	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4676 4677
}

Avi Kivity's avatar
Avi Kivity committed
4678
static int handle_task_switch(struct kvm_vcpu *vcpu)
4679
{
4680
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4681
	unsigned long exit_qualification;
4682 4683
	bool has_error_code = false;
	u32 error_code = 0;
4684
	u16 tss_selector;
4685
	int reason, type, idt_v, idt_index;
4686 4687

	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4688
	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4689
	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4690 4691 4692 4693

	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);

	reason = (u32)exit_qualification >> 30;
4694 4695 4696 4697
	if (reason == TASK_SWITCH_GATE && idt_v) {
		switch (type) {
		case INTR_TYPE_NMI_INTR:
			vcpu->arch.nmi_injected = false;
4698
			vmx_set_nmi_mask(vcpu, true);
4699 4700
			break;
		case INTR_TYPE_EXT_INTR:
4701
		case INTR_TYPE_SOFT_INTR:
4702 4703 4704
			kvm_clear_interrupt_queue(vcpu);
			break;
		case INTR_TYPE_HARD_EXCEPTION:
4705 4706 4707 4708 4709 4710 4711
			if (vmx->idt_vectoring_info &
			    VECTORING_INFO_DELIVER_CODE_MASK) {
				has_error_code = true;
				error_code =
					vmcs_read32(IDT_VECTORING_ERROR_CODE);
			}
			/* fall through */
4712 4713 4714 4715 4716 4717
		case INTR_TYPE_SOFT_EXCEPTION:
			kvm_clear_exception_queue(vcpu);
			break;
		default:
			break;
		}
4718
	}
4719 4720
	tss_selector = exit_qualification;

4721 4722 4723 4724 4725
	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
		       type != INTR_TYPE_EXT_INTR &&
		       type != INTR_TYPE_NMI_INTR))
		skip_emulated_instruction(vcpu);

4726 4727 4728
	if (kvm_task_switch(vcpu, tss_selector,
			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
			    has_error_code, error_code) == EMULATE_FAIL) {
4729 4730 4731
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		vcpu->run->internal.ndata = 0;
4732
		return 0;
4733
	}
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743

	/* clear all local breakpoint enable flags */
	vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);

	/*
	 * TODO: What about debug traps on tss switch?
	 *       Are we supposed to inject them and update dr6?
	 */

	return 1;
4744 4745
}

Avi Kivity's avatar
Avi Kivity committed
4746
static int handle_ept_violation(struct kvm_vcpu *vcpu)
4747
{
4748
	unsigned long exit_qualification;
4749 4750 4751
	gpa_t gpa;
	int gla_validity;

4752
	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4753 4754 4755

	if (exit_qualification & (1 << 6)) {
		printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4756
		return -EINVAL;
4757 4758 4759 4760 4761 4762 4763
	}

	gla_validity = (exit_qualification >> 7) & 0x3;
	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
		printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4764
			vmcs_readl(GUEST_LINEAR_ADDRESS));
4765 4766
		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
			(long unsigned int)exit_qualification);
Avi Kivity's avatar
Avi Kivity committed
4767 4768
		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4769
		return 0;
4770 4771 4772
	}

	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4773
	trace_kvm_page_fault(gpa, exit_qualification);
4774
	return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4775 4776
}

4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
static u64 ept_rsvd_mask(u64 spte, int level)
{
	int i;
	u64 mask = 0;

	for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
		mask |= (1ULL << i);

	if (level > 2)
		/* bits 7:3 reserved */
		mask |= 0xf8;
	else if (level == 2) {
		if (spte & (1ULL << 7))
			/* 2MB ref, bits 20:12 reserved */
			mask |= 0x1ff000;
		else
			/* bits 6:3 reserved */
			mask |= 0x78;
	}

	return mask;
}

static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
				       int level)
{
	printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);

	/* 010b (write-only) */
	WARN_ON((spte & 0x7) == 0x2);

	/* 110b (write/execute) */
	WARN_ON((spte & 0x7) == 0x6);

	/* 100b (execute-only) and value not supported by logical processor */
	if (!cpu_has_vmx_ept_execute_only())
		WARN_ON((spte & 0x7) == 0x4);

	/* not 000b */
	if ((spte & 0x7)) {
		u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);

		if (rsvd_bits != 0) {
			printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
					 __func__, rsvd_bits);
			WARN_ON(1);
		}

		if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
			u64 ept_mem_type = (spte & 0x38) >> 3;

			if (ept_mem_type == 2 || ept_mem_type == 3 ||
			    ept_mem_type == 7) {
				printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
						__func__, ept_mem_type);
				WARN_ON(1);
			}
		}
	}
}

Avi Kivity's avatar
Avi Kivity committed
4838
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4839 4840
{
	u64 sptes[4];
4841
	int nr_sptes, i, ret;
4842 4843 4844 4845
	gpa_t gpa;

	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);

4846 4847 4848 4849 4850 4851 4852 4853
	ret = handle_mmio_page_fault_common(vcpu, gpa, true);
	if (likely(ret == 1))
		return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
					      EMULATE_DONE;
	if (unlikely(!ret))
		return 1;

	/* It is the real ept misconfig */
4854 4855 4856 4857 4858 4859 4860 4861
	printk(KERN_ERR "EPT: Misconfiguration.\n");
	printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);

	nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);

	for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
		ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);

Avi Kivity's avatar
Avi Kivity committed
4862 4863
	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4864 4865 4866 4867

	return 0;
}

Avi Kivity's avatar
Avi Kivity committed
4868
static int handle_nmi_window(struct kvm_vcpu *vcpu)
4869 4870 4871 4872 4873 4874 4875 4876
{
	u32 cpu_based_vm_exec_control;

	/* clear pending NMI */
	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
	++vcpu->stat.nmi_window_exits;
4877
	kvm_make_request(KVM_REQ_EVENT, vcpu);
4878 4879 4880 4881

	return 1;
}

4882
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4883
{
4884 4885
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	enum emulation_result err = EMULATE_DONE;
4886
	int ret = 1;
4887 4888 4889 4890 4891
	u32 cpu_exec_ctrl;
	bool intr_window_requested;

	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4892 4893

	while (!guest_state_valid(vcpu)) {
4894 4895 4896 4897
		if (intr_window_requested
		    && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
			return handle_interrupt_window(&vmx->vcpu);

4898
		err = emulate_instruction(vcpu, 0);
4899

4900 4901 4902 4903
		if (err == EMULATE_DO_MMIO) {
			ret = 0;
			goto out;
		}
4904

4905 4906
		if (err != EMULATE_DONE)
			return 0;
4907

4908 4909 4910 4911 4912 4913
		if (vcpu->arch.halt_request) {
			vcpu->arch.halt_request = 0;
			ret = kvm_emulate_halt(vcpu);
			goto out;
		}

4914
		if (signal_pending(current))
4915
			goto out;
4916 4917 4918 4919
		if (need_resched())
			schedule();
	}

4920 4921 4922
	vmx->emulation_required = 0;
out:
	return ret;
4923 4924
}

4925 4926 4927 4928
/*
 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
 */
4929
static int handle_pause(struct kvm_vcpu *vcpu)
4930 4931 4932 4933 4934 4935 4936
{
	skip_emulated_instruction(vcpu);
	kvm_vcpu_on_spin(vcpu);

	return 1;
}

4937 4938 4939 4940 4941 4942
static int handle_invalid_op(struct kvm_vcpu *vcpu)
{
	kvm_queue_exception(vcpu, UD_VECTOR);
	return 1;
}

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
/*
 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
 * We could reuse a single VMCS for all the L2 guests, but we also want the
 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
 * allows keeping them loaded on the processor, and in the future will allow
 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
 * every entry if they never change.
 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
 *
 * The following functions allocate and free a vmcs02 in this pool.
 */

/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
{
	struct vmcs02_list *item;
	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
		if (item->vmptr == vmx->nested.current_vmptr) {
			list_move(&item->list, &vmx->nested.vmcs02_pool);
			return &item->vmcs02;
		}

	if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
		/* Recycle the least recently used VMCS. */
		item = list_entry(vmx->nested.vmcs02_pool.prev,
			struct vmcs02_list, list);
		item->vmptr = vmx->nested.current_vmptr;
		list_move(&item->list, &vmx->nested.vmcs02_pool);
		return &item->vmcs02;
	}

	/* Create a new VMCS */
	item = (struct vmcs02_list *)
		kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
	if (!item)
		return NULL;
	item->vmcs02.vmcs = alloc_vmcs();
	if (!item->vmcs02.vmcs) {
		kfree(item);
		return NULL;
	}
	loaded_vmcs_init(&item->vmcs02);
	item->vmptr = vmx->nested.current_vmptr;
	list_add(&(item->list), &(vmx->nested.vmcs02_pool));
	vmx->nested.vmcs02_num++;
	return &item->vmcs02;
}

/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
{
	struct vmcs02_list *item;
	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
		if (item->vmptr == vmptr) {
			free_loaded_vmcs(&item->vmcs02);
			list_del(&item->list);
			kfree(item);
			vmx->nested.vmcs02_num--;
			return;
		}
}

/*
 * Free all VMCSs saved for this vcpu, except the one pointed by
 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
 * currently used, if running L2), and vmcs01 when running L2.
 */
static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
{
	struct vmcs02_list *item, *n;
	list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
		if (vmx->loaded_vmcs != &item->vmcs02)
			free_loaded_vmcs(&item->vmcs02);
		list_del(&item->list);
		kfree(item);
	}
	vmx->nested.vmcs02_num = 0;

	if (vmx->loaded_vmcs != &vmx->vmcs01)
		free_loaded_vmcs(&vmx->vmcs01);
}

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
/*
 * Emulate the VMXON instruction.
 * Currently, we just remember that VMX is active, and do not save or even
 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
 * do not currently need to store anything in that guest-allocated memory
 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
 * argument is different from the VMXON pointer (which the spec says they do).
 */
static int handle_vmon(struct kvm_vcpu *vcpu)
{
	struct kvm_segment cs;
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/* The Intel VMX Instruction Reference lists a bunch of bits that
	 * are prerequisite to running VMXON, most notably cr4.VMXE must be
	 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
	 * Otherwise, we should fail with #UD. We test these now:
	 */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
	    !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
	    (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
	if (is_long_mode(vcpu) && !cs.l) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

5062 5063 5064
	INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
	vmx->nested.vmcs02_num = 0;

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	vmx->nested.vmxon = true;

	skip_emulated_instruction(vcpu);
	return 1;
}

/*
 * Intel's VMX Instruction Reference specifies a common set of prerequisites
 * for running VMX instructions (except VMXON, whose prerequisites are
 * slightly different). It also specifies what exception to inject otherwise.
 */
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
	struct kvm_segment cs;
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!vmx->nested.vmxon) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
	if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
	    (is_long_mode(vcpu) && !cs.l)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 0;
	}

	return 1;
}

/*
 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 * just stops using VMX.
 */
static void free_nested(struct vcpu_vmx *vmx)
{
	if (!vmx->nested.vmxon)
		return;
	vmx->nested.vmxon = false;
5110 5111 5112 5113 5114 5115
	if (vmx->nested.current_vmptr != -1ull) {
		kunmap(vmx->nested.current_vmcs12_page);
		nested_release_page(vmx->nested.current_vmcs12_page);
		vmx->nested.current_vmptr = -1ull;
		vmx->nested.current_vmcs12 = NULL;
	}
5116 5117 5118 5119 5120
	/* Unpin physical memory we referred to in current vmcs02 */
	if (vmx->nested.apic_access_page) {
		nested_release_page(vmx->nested.apic_access_page);
		vmx->nested.apic_access_page = 0;
	}
5121 5122

	nested_free_all_saved_vmcss(vmx);
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
}

/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
	if (!nested_vmx_check_permission(vcpu))
		return 1;
	free_nested(to_vmx(vcpu));
	skip_emulated_instruction(vcpu);
	return 1;
}

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
/*
 * Decode the memory-address operand of a vmx instruction, as recorded on an
 * exit caused by such an instruction (run by a guest hypervisor).
 * On success, returns 0. When the operand is invalid, returns 1 and throws
 * #UD or #GP.
 */
static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
				 unsigned long exit_qualification,
				 u32 vmx_instruction_info, gva_t *ret)
{
	/*
	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
	 * Execution", on an exit, vmx_instruction_info holds most of the
	 * addressing components of the operand. Only the displacement part
	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
	 * For how an actual address is calculated from all these components,
	 * refer to Vol. 1, "Operand Addressing".
	 */
	int  scaling = vmx_instruction_info & 3;
	int  addr_size = (vmx_instruction_info >> 7) & 7;
	bool is_reg = vmx_instruction_info & (1u << 10);
	int  seg_reg = (vmx_instruction_info >> 15) & 7;
	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));

	if (is_reg) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* Addr = segment_base + offset */
	/* offset = base + [index * scale] + displacement */
	*ret = vmx_get_segment_base(vcpu, seg_reg);
	if (base_is_valid)
		*ret += kvm_register_read(vcpu, base_reg);
	if (index_is_valid)
		*ret += kvm_register_read(vcpu, index_reg)<<scaling;
	*ret += exit_qualification; /* holds the displacement */

	if (addr_size == 1) /* 32 bit */
		*ret &= 0xffffffff;

	/*
	 * TODO: throw #GP (and return 1) in various cases that the VM*
	 * instructions require it - e.g., offset beyond segment limit,
	 * unusable or unreadable/unwritable segment, non-canonical 64-bit
	 * address, and so on. Currently these are not checked.
	 */
	return 0;
}

5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
/*
 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 * set the success or error code of an emulated VMX instruction, as specified
 * by Vol 2B, VMX Instruction Reference, "Conventions".
 */
static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
}

static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_CF);
}

static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
					u32 vm_instruction_error)
{
	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
		/*
		 * failValid writes the error number to the current VMCS, which
		 * can't be done there isn't a current VMCS.
		 */
		nested_vmx_failInvalid(vcpu);
		return;
	}
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_ZF);
	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
}

Nadav Har'El's avatar
Nadav Har'El committed
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gva_t gva;
	gpa_t vmptr;
	struct vmcs12 *vmcs12;
	struct page *page;
	struct x86_exception e;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
			vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
		return 1;

	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
				sizeof(vmptr), &e)) {
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}

	if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
		skip_emulated_instruction(vcpu);
		return 1;
	}

	if (vmptr == vmx->nested.current_vmptr) {
		kunmap(vmx->nested.current_vmcs12_page);
		nested_release_page(vmx->nested.current_vmcs12_page);
		vmx->nested.current_vmptr = -1ull;
		vmx->nested.current_vmcs12 = NULL;
	}

	page = nested_get_page(vcpu, vmptr);
	if (page == NULL) {
		/*
		 * For accurate processor emulation, VMCLEAR beyond available
		 * physical memory should do nothing at all. However, it is
		 * possible that a nested vmx bug, not a guest hypervisor bug,
		 * resulted in this case, so let's shut down before doing any
		 * more damage:
		 */
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
		return 1;
	}
	vmcs12 = kmap(page);
	vmcs12->launch_state = 0;
	kunmap(page);
	nested_release_page(page);

	nested_free_vmcs02(vmx, vmptr);

	skip_emulated_instruction(vcpu);
	nested_vmx_succeed(vcpu);
	return 1;
}

5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);

/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
	return nested_vmx_run(vcpu, true);
}

/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{

	return nested_vmx_run(vcpu, false);
}

5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
enum vmcs_field_type {
	VMCS_FIELD_TYPE_U16 = 0,
	VMCS_FIELD_TYPE_U64 = 1,
	VMCS_FIELD_TYPE_U32 = 2,
	VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
};

static inline int vmcs_field_type(unsigned long field)
{
	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
		return VMCS_FIELD_TYPE_U32;
	return (field >> 13) & 0x3 ;
}

static inline int vmcs_field_readonly(unsigned long field)
{
	return (((field >> 10) & 0x3) == 1);
}

/*
 * Read a vmcs12 field. Since these can have varying lengths and we return
 * one type, we chose the biggest type (u64) and zero-extend the return value
 * to that size. Note that the caller, handle_vmread, might need to use only
 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
 * 64-bit fields are to be returned).
 */
static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
					unsigned long field, u64 *ret)
{
	short offset = vmcs_field_to_offset(field);
	char *p;

	if (offset < 0)
		return 0;

	p = ((char *)(get_vmcs12(vcpu))) + offset;

	switch (vmcs_field_type(field)) {
	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
		*ret = *((natural_width *)p);
		return 1;
	case VMCS_FIELD_TYPE_U16:
		*ret = *((u16 *)p);
		return 1;
	case VMCS_FIELD_TYPE_U32:
		*ret = *((u32 *)p);
		return 1;
	case VMCS_FIELD_TYPE_U64:
		*ret = *((u64 *)p);
		return 1;
	default:
		return 0; /* can never happen. */
	}
}

/*
 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
 * used before) all generate the same failure when it is missing.
 */
static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	if (vmx->nested.current_vmptr == -1ull) {
		nested_vmx_failInvalid(vcpu);
		skip_emulated_instruction(vcpu);
		return 0;
	}
	return 1;
}

static int handle_vmread(struct kvm_vcpu *vcpu)
{
	unsigned long field;
	u64 field_value;
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	gva_t gva = 0;

	if (!nested_vmx_check_permission(vcpu) ||
	    !nested_vmx_check_vmcs12(vcpu))
		return 1;

	/* Decode instruction info and find the field to read */
	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
	/* Read the field, zero-extended to a u64 field_value */
	if (!vmcs12_read_any(vcpu, field, &field_value)) {
		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
		skip_emulated_instruction(vcpu);
		return 1;
	}
	/*
	 * Now copy part of this value to register or memory, as requested.
	 * Note that the number of bits actually copied is 32 or 64 depending
	 * on the guest's mode (32 or 64 bit), not on the given field's length.
	 */
	if (vmx_instruction_info & (1u << 10)) {
		kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
			field_value);
	} else {
		if (get_vmx_mem_address(vcpu, exit_qualification,
				vmx_instruction_info, &gva))
			return 1;
		/* _system ok, as nested_vmx_check_permission verified cpl=0 */
		kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
			     &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
	}

	nested_vmx_succeed(vcpu);
	skip_emulated_instruction(vcpu);
	return 1;
}


static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
	unsigned long field;
	gva_t gva;
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	char *p;
	short offset;
	/* The value to write might be 32 or 64 bits, depending on L1's long
	 * mode, and eventually we need to write that into a field of several
	 * possible lengths. The code below first zero-extends the value to 64
	 * bit (field_value), and then copies only the approriate number of
	 * bits into the vmcs12 field.
	 */
	u64 field_value = 0;
	struct x86_exception e;

	if (!nested_vmx_check_permission(vcpu) ||
	    !nested_vmx_check_vmcs12(vcpu))
		return 1;

	if (vmx_instruction_info & (1u << 10))
		field_value = kvm_register_read(vcpu,
			(((vmx_instruction_info) >> 3) & 0xf));
	else {
		if (get_vmx_mem_address(vcpu, exit_qualification,
				vmx_instruction_info, &gva))
			return 1;
		if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
			   &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
			kvm_inject_page_fault(vcpu, &e);
			return 1;
		}
	}


	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
	if (vmcs_field_readonly(field)) {
		nested_vmx_failValid(vcpu,
			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
		skip_emulated_instruction(vcpu);
		return 1;
	}

	offset = vmcs_field_to_offset(field);
	if (offset < 0) {
		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
		skip_emulated_instruction(vcpu);
		return 1;
	}
	p = ((char *) get_vmcs12(vcpu)) + offset;

	switch (vmcs_field_type(field)) {
	case VMCS_FIELD_TYPE_U16:
		*(u16 *)p = field_value;
		break;
	case VMCS_FIELD_TYPE_U32:
		*(u32 *)p = field_value;
		break;
	case VMCS_FIELD_TYPE_U64:
		*(u64 *)p = field_value;
		break;
	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
		*(natural_width *)p = field_value;
		break;
	default:
		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
		skip_emulated_instruction(vcpu);
		return 1;
	}

	nested_vmx_succeed(vcpu);
	skip_emulated_instruction(vcpu);
	return 1;
}

Nadav Har'El's avatar
Nadav Har'El committed
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gva_t gva;
	gpa_t vmptr;
	struct x86_exception e;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
			vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
		return 1;

	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
				sizeof(vmptr), &e)) {
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}

	if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
		skip_emulated_instruction(vcpu);
		return 1;
	}

	if (vmx->nested.current_vmptr != vmptr) {
		struct vmcs12 *new_vmcs12;
		struct page *page;
		page = nested_get_page(vcpu, vmptr);
		if (page == NULL) {
			nested_vmx_failInvalid(vcpu);
			skip_emulated_instruction(vcpu);
			return 1;
		}
		new_vmcs12 = kmap(page);
		if (new_vmcs12->revision_id != VMCS12_REVISION) {
			kunmap(page);
			nested_release_page_clean(page);
			nested_vmx_failValid(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
			skip_emulated_instruction(vcpu);
			return 1;
		}
		if (vmx->nested.current_vmptr != -1ull) {
			kunmap(vmx->nested.current_vmcs12_page);
			nested_release_page(vmx->nested.current_vmcs12_page);
		}

		vmx->nested.current_vmptr = vmptr;
		vmx->nested.current_vmcs12 = new_vmcs12;
		vmx->nested.current_vmcs12_page = page;
	}

	nested_vmx_succeed(vcpu);
	skip_emulated_instruction(vcpu);
	return 1;
}

Nadav Har'El's avatar
Nadav Har'El committed
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	gva_t vmcs_gva;
	struct x86_exception e;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (get_vmx_mem_address(vcpu, exit_qualification,
			vmx_instruction_info, &vmcs_gva))
		return 1;
	/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
	if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
				 (void *)&to_vmx(vcpu)->nested.current_vmptr,
				 sizeof(u64), &e)) {
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}
	nested_vmx_succeed(vcpu);
	skip_emulated_instruction(vcpu);
	return 1;
}

Nadav Har'El's avatar
Nadav Har'El committed
5576 5577 5578 5579 5580 5581
static int handle_invept(struct kvm_vcpu *vcpu)
{
	kvm_queue_exception(vcpu, UD_VECTOR);
	return 1;
}

5582 5583 5584 5585 5586 5587
static int handle_invvpid(struct kvm_vcpu *vcpu)
{
	kvm_queue_exception(vcpu, UD_VECTOR);
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
5588 5589 5590 5591 5592
/*
 * The exit handlers return 1 if the exit was handled fully and guest execution
 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
 * to be done to userspace and return 0.
 */
Avi Kivity's avatar
Avi Kivity committed
5593
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
Avi Kivity's avatar
Avi Kivity committed
5594 5595
	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5596
	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5597
	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
Avi Kivity's avatar
Avi Kivity committed
5598 5599 5600 5601 5602 5603 5604 5605
	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
	[EXIT_REASON_CR_ACCESS]               = handle_cr,
	[EXIT_REASON_DR_ACCESS]               = handle_dr,
	[EXIT_REASON_CPUID]                   = handle_cpuid,
	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
	[EXIT_REASON_HLT]                     = handle_halt,
5606
	[EXIT_REASON_INVD]		      = handle_invd,
Marcelo Tosatti's avatar
Marcelo Tosatti committed
5607
	[EXIT_REASON_INVLPG]		      = handle_invlpg,
Avi Kivity's avatar
Avi Kivity committed
5608
	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5609
	[EXIT_REASON_VMCALL]                  = handle_vmcall,
Nadav Har'El's avatar
Nadav Har'El committed
5610
	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
5611
	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
Nadav Har'El's avatar
Nadav Har'El committed
5612
	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
Nadav Har'El's avatar
Nadav Har'El committed
5613
	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
5614
	[EXIT_REASON_VMREAD]                  = handle_vmread,
5615
	[EXIT_REASON_VMRESUME]                = handle_vmresume,
5616
	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
5617 5618
	[EXIT_REASON_VMOFF]                   = handle_vmoff,
	[EXIT_REASON_VMON]                    = handle_vmon,
5619 5620
	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
Eddie Dong's avatar
Eddie Dong committed
5621
	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5622
	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5623
	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5624
	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5625 5626
	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5627
	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5628 5629
	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_invalid_op,
	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
Nadav Har'El's avatar
Nadav Har'El committed
5630
	[EXIT_REASON_INVEPT]                  = handle_invept,
5631
	[EXIT_REASON_INVVPID]                 = handle_invvpid,
Avi Kivity's avatar
Avi Kivity committed
5632 5633 5634
};

static const int kvm_vmx_max_exit_handlers =
5635
	ARRAY_SIZE(kvm_vmx_exit_handlers);
Avi Kivity's avatar
Avi Kivity committed
5636

5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
/*
 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
 * disinterest in the current event (read or write a specific MSR) by using an
 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
 */
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12, u32 exit_reason)
{
	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
	gpa_t bitmap;

	if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
		return 1;

	/*
	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
	 * for the four combinations of read/write and low/high MSR numbers.
	 * First we need to figure out which of the four to use:
	 */
	bitmap = vmcs12->msr_bitmap;
	if (exit_reason == EXIT_REASON_MSR_WRITE)
		bitmap += 2048;
	if (msr_index >= 0xc0000000) {
		msr_index -= 0xc0000000;
		bitmap += 1024;
	}

	/* Then read the msr_index'th bit from this bitmap: */
	if (msr_index < 1024*8) {
		unsigned char b;
		kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
		return 1 & (b >> (msr_index & 7));
	} else
		return 1; /* let L1 handle the wrong parameter */
}

/*
 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
 * intercept (via guest_host_mask etc.) the current event.
 */
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12)
{
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	int cr = exit_qualification & 15;
	int reg = (exit_qualification >> 8) & 15;
	unsigned long val = kvm_register_read(vcpu, reg);

	switch ((exit_qualification >> 4) & 3) {
	case 0: /* mov to cr */
		switch (cr) {
		case 0:
			if (vmcs12->cr0_guest_host_mask &
			    (val ^ vmcs12->cr0_read_shadow))
				return 1;
			break;
		case 3:
			if ((vmcs12->cr3_target_count >= 1 &&
					vmcs12->cr3_target_value0 == val) ||
				(vmcs12->cr3_target_count >= 2 &&
					vmcs12->cr3_target_value1 == val) ||
				(vmcs12->cr3_target_count >= 3 &&
					vmcs12->cr3_target_value2 == val) ||
				(vmcs12->cr3_target_count >= 4 &&
					vmcs12->cr3_target_value3 == val))
				return 0;
			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
				return 1;
			break;
		case 4:
			if (vmcs12->cr4_guest_host_mask &
			    (vmcs12->cr4_read_shadow ^ val))
				return 1;
			break;
		case 8:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
				return 1;
			break;
		}
		break;
	case 2: /* clts */
		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
			return 1;
		break;
	case 1: /* mov from cr */
		switch (cr) {
		case 3:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR3_STORE_EXITING)
				return 1;
			break;
		case 8:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR8_STORE_EXITING)
				return 1;
			break;
		}
		break;
	case 3: /* lmsw */
		/*
		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
		 * cr0. Other attempted changes are ignored, with no exit.
		 */
		if (vmcs12->cr0_guest_host_mask & 0xe &
		    (val ^ vmcs12->cr0_read_shadow))
			return 1;
		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
		    !(vmcs12->cr0_read_shadow & 0x1) &&
		    (val & 0x1))
			return 1;
		break;
	}
	return 0;
}

/*
 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
 * should handle it ourselves in L0 (and then continue L2). Only call this
 * when in is_guest_mode (L2).
 */
static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
{
	u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	if (vmx->nested.nested_run_pending)
		return 0;

	if (unlikely(vmx->fail)) {
5771 5772
		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
				    vmcs_read32(VM_INSTRUCTION_ERROR));
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
		return 1;
	}

	switch (exit_reason) {
	case EXIT_REASON_EXCEPTION_NMI:
		if (!is_exception(intr_info))
			return 0;
		else if (is_page_fault(intr_info))
			return enable_ept;
		return vmcs12->exception_bitmap &
				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
	case EXIT_REASON_EXTERNAL_INTERRUPT:
		return 0;
	case EXIT_REASON_TRIPLE_FAULT:
		return 1;
	case EXIT_REASON_PENDING_INTERRUPT:
	case EXIT_REASON_NMI_WINDOW:
		/*
		 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
		 * (aka Interrupt Window Exiting) only when L1 turned it on,
		 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
		 * Same for NMI Window Exiting.
		 */
		return 1;
	case EXIT_REASON_TASK_SWITCH:
		return 1;
	case EXIT_REASON_CPUID:
		return 1;
	case EXIT_REASON_HLT:
		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
	case EXIT_REASON_INVD:
		return 1;
	case EXIT_REASON_INVLPG:
		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_RDPMC:
		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
	case EXIT_REASON_RDTSC:
		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
	case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5816
	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
		/*
		 * VMX instructions trap unconditionally. This allows L1 to
		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
		 */
		return 1;
	case EXIT_REASON_CR_ACCESS:
		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
	case EXIT_REASON_DR_ACCESS:
		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
	case EXIT_REASON_IO_INSTRUCTION:
		/* TODO: support IO bitmaps */
		return 1;
	case EXIT_REASON_MSR_READ:
	case EXIT_REASON_MSR_WRITE:
		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
	case EXIT_REASON_INVALID_STATE:
		return 1;
	case EXIT_REASON_MWAIT_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
	case EXIT_REASON_MONITOR_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
	case EXIT_REASON_PAUSE_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
			nested_cpu_has2(vmcs12,
				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
	case EXIT_REASON_MCE_DURING_VMENTRY:
		return 0;
	case EXIT_REASON_TPR_BELOW_THRESHOLD:
		return 1;
	case EXIT_REASON_APIC_ACCESS:
		return nested_cpu_has2(vmcs12,
			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
	case EXIT_REASON_EPT_VIOLATION:
	case EXIT_REASON_EPT_MISCONFIG:
		return 0;
	case EXIT_REASON_WBINVD:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
	case EXIT_REASON_XSETBV:
		return 1;
	default:
		return 1;
	}
}

5861 5862 5863 5864 5865 5866
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
	*info1 = vmcs_readl(EXIT_QUALIFICATION);
	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
}

Avi Kivity's avatar
Avi Kivity committed
5867 5868 5869 5870
/*
 * The guest has exited.  See if we can fix it or if we need userspace
 * assistance.
 */
Avi Kivity's avatar
Avi Kivity committed
5871
static int vmx_handle_exit(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
5872
{
5873
	struct vcpu_vmx *vmx = to_vmx(vcpu);
5874
	u32 exit_reason = vmx->exit_reason;
5875
	u32 vectoring_info = vmx->idt_vectoring_info;
5876

5877 5878 5879
	/* If guest state is invalid, start emulating */
	if (vmx->emulation_required && emulate_invalid_guest_state)
		return handle_invalid_guest_state(vcpu);
5880

5881 5882 5883 5884 5885 5886 5887 5888
	/*
	 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
	 * we did not inject a still-pending event to L1 now because of
	 * nested_run_pending, we need to re-enable this bit.
	 */
	if (vmx->nested.nested_run_pending)
		kvm_make_request(KVM_REQ_EVENT, vcpu);

5889 5890
	if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
	    exit_reason == EXIT_REASON_VMRESUME))
5891 5892 5893 5894 5895 5896 5897 5898 5899
		vmx->nested.nested_run_pending = 1;
	else
		vmx->nested.nested_run_pending = 0;

	if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
		nested_vmx_vmexit(vcpu);
		return 1;
	}

5900 5901 5902 5903 5904 5905 5906
	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
		vcpu->run->fail_entry.hardware_entry_failure_reason
			= exit_reason;
		return 0;
	}

5907
	if (unlikely(vmx->fail)) {
Avi Kivity's avatar
Avi Kivity committed
5908 5909
		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
		vcpu->run->fail_entry.hardware_entry_failure_reason
5910 5911 5912
			= vmcs_read32(VM_INSTRUCTION_ERROR);
		return 0;
	}
Avi Kivity's avatar
Avi Kivity committed
5913

Mike Day's avatar
Mike Day committed
5914
	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5915
			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5916 5917 5918 5919 5920
			exit_reason != EXIT_REASON_EPT_VIOLATION &&
			exit_reason != EXIT_REASON_TASK_SWITCH))
		printk(KERN_WARNING "%s: unexpected, valid vectoring info "
		       "(0x%x) and exit reason is 0x%x\n",
		       __func__, vectoring_info, exit_reason);
5921

5922 5923 5924
	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
	    !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
	                                get_vmcs12(vcpu), vcpu)))) {
5925
		if (vmx_interrupt_allowed(vcpu)) {
5926 5927
			vmx->soft_vnmi_blocked = 0;
		} else if (vmx->vnmi_blocked_time > 1000000000LL &&
5928
			   vcpu->arch.nmi_pending) {
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
			/*
			 * This CPU don't support us in finding the end of an
			 * NMI-blocked window if the guest runs with IRQs
			 * disabled. So we pull the trigger after 1 s of
			 * futile waiting, but inform the user about this.
			 */
			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
			       "state on VCPU %d after 1 s timeout\n",
			       __func__, vcpu->vcpu_id);
			vmx->soft_vnmi_blocked = 0;
		}
	}

Avi Kivity's avatar
Avi Kivity committed
5942 5943
	if (exit_reason < kvm_vmx_max_exit_handlers
	    && kvm_vmx_exit_handlers[exit_reason])
Avi Kivity's avatar
Avi Kivity committed
5944
		return kvm_vmx_exit_handlers[exit_reason](vcpu);
Avi Kivity's avatar
Avi Kivity committed
5945
	else {
5946 5947 5948
		WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
Avi Kivity's avatar
Avi Kivity committed
5949 5950 5951
	}
}

5952
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5953
{
5954
	if (irr == -1 || tpr < irr) {
5955 5956 5957 5958
		vmcs_write32(TPR_THRESHOLD, 0);
		return;
	}

5959
	vmcs_write32(TPR_THRESHOLD, irr);
5960 5961
}

5962
static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5963
{
5964 5965 5966 5967 5968 5969
	u32 exit_intr_info;

	if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
	      || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
		return;

5970
	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5971
	exit_intr_info = vmx->exit_intr_info;
5972 5973

	/* Handle machine checks before interrupts are enabled */
5974
	if (is_machine_check(exit_intr_info))
5975 5976
		kvm_machine_check();

5977
	/* We need to handle NMIs before interrupts are enabled */
5978
	if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5979 5980
	    (exit_intr_info & INTR_INFO_VALID_MASK)) {
		kvm_before_handle_nmi(&vmx->vcpu);
5981
		asm("int $2");
5982 5983
		kvm_after_handle_nmi(&vmx->vcpu);
	}
5984
}
5985

5986 5987
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
{
5988
	u32 exit_intr_info;
5989 5990 5991 5992 5993
	bool unblock_nmi;
	u8 vector;
	bool idtv_info_valid;

	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5994

5995
	if (cpu_has_virtual_nmis()) {
5996 5997
		if (vmx->nmi_known_unmasked)
			return;
5998 5999 6000 6001 6002
		/*
		 * Can't use vmx->exit_intr_info since we're not sure what
		 * the exit reason is.
		 */
		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6003 6004 6005
		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
		/*
6006
		 * SDM 3: 27.7.1.2 (September 2008)
6007 6008
		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
		 * a guest IRET fault.
6009 6010 6011 6012 6013
		 * SDM 3: 23.2.2 (September 2008)
		 * Bit 12 is undefined in any of the following cases:
		 *  If the VM exit sets the valid bit in the IDT-vectoring
		 *   information field.
		 *  If the VM exit is due to a double fault.
6014
		 */
6015 6016
		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
		    vector != DF_VECTOR && !idtv_info_valid)
6017 6018
			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
				      GUEST_INTR_STATE_NMI);
6019 6020 6021 6022
		else
			vmx->nmi_known_unmasked =
				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
				  & GUEST_INTR_STATE_NMI);
6023 6024 6025
	} else if (unlikely(vmx->soft_vnmi_blocked))
		vmx->vnmi_blocked_time +=
			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6026 6027
}

6028 6029 6030 6031
static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
				      u32 idt_vectoring_info,
				      int instr_len_field,
				      int error_code_field)
6032 6033 6034 6035 6036 6037
{
	u8 vector;
	int type;
	bool idtv_info_valid;

	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6038

6039 6040 6041 6042 6043 6044 6045
	vmx->vcpu.arch.nmi_injected = false;
	kvm_clear_exception_queue(&vmx->vcpu);
	kvm_clear_interrupt_queue(&vmx->vcpu);

	if (!idtv_info_valid)
		return;

6046 6047
	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);

6048 6049
	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6050

6051
	switch (type) {
6052 6053
	case INTR_TYPE_NMI_INTR:
		vmx->vcpu.arch.nmi_injected = true;
6054
		/*
6055
		 * SDM 3: 27.7.1.2 (September 2008)
6056 6057
		 * Clear bit "block by NMI" before VM entry if a NMI
		 * delivery faulted.
6058
		 */
6059
		vmx_set_nmi_mask(&vmx->vcpu, false);
6060 6061
		break;
	case INTR_TYPE_SOFT_EXCEPTION:
6062
		vmx->vcpu.arch.event_exit_inst_len =
6063
			vmcs_read32(instr_len_field);
6064 6065
		/* fall through */
	case INTR_TYPE_HARD_EXCEPTION:
6066
		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6067
			u32 err = vmcs_read32(error_code_field);
6068
			kvm_queue_exception_e(&vmx->vcpu, vector, err);
6069 6070
		} else
			kvm_queue_exception(&vmx->vcpu, vector);
6071
		break;
6072 6073
	case INTR_TYPE_SOFT_INTR:
		vmx->vcpu.arch.event_exit_inst_len =
6074
			vmcs_read32(instr_len_field);
6075
		/* fall through */
6076
	case INTR_TYPE_EXT_INTR:
6077 6078
		kvm_queue_interrupt(&vmx->vcpu, vector,
			type == INTR_TYPE_SOFT_INTR);
6079 6080 6081
		break;
	default:
		break;
6082
	}
6083 6084
}

6085 6086
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
{
6087 6088
	if (is_guest_mode(&vmx->vcpu))
		return;
6089 6090 6091 6092 6093
	__vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
				  VM_EXIT_INSTRUCTION_LEN,
				  IDT_VECTORING_ERROR_CODE);
}

6094 6095
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
{
6096 6097
	if (is_guest_mode(vcpu))
		return;
6098 6099 6100 6101 6102 6103 6104 6105
	__vmx_complete_interrupts(to_vmx(vcpu),
				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
				  VM_ENTRY_INSTRUCTION_LEN,
				  VM_ENTRY_EXCEPTION_ERROR_CODE);

	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}

6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
{
	int i, nr_msrs;
	struct perf_guest_switch_msr *msrs;

	msrs = perf_guest_get_msrs(&nr_msrs);

	if (!msrs)
		return;

	for (i = 0; i < nr_msrs; i++)
		if (msrs[i].host == msrs[i].guest)
			clear_atomic_switch_msr(vmx, msrs[i].msr);
		else
			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
					msrs[i].host);
}

6124 6125 6126 6127 6128 6129 6130 6131
#ifdef CONFIG_X86_64
#define R "r"
#define Q "q"
#else
#define R "e"
#define Q "l"
#endif

6132
static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
Avi Kivity's avatar
Avi Kivity committed
6133
{
6134
	struct vcpu_vmx *vmx = to_vmx(vcpu);
6135
	unsigned long cr4;
6136

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
	if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
		if (vmcs12->idt_vectoring_info_field &
				VECTORING_INFO_VALID_MASK) {
			vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
				vmcs12->idt_vectoring_info_field);
			vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
				vmcs12->vm_exit_instruction_len);
			if (vmcs12->idt_vectoring_info_field &
					VECTORING_INFO_DELIVER_CODE_MASK)
				vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
					vmcs12->idt_vectoring_error_code);
		}
	}

6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
	/* Record the guest's net vcpu time for enforced NMI injections. */
	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
		vmx->entry_time = ktime_get();

	/* Don't enter VMX if guest state is invalid, let the exit handler
	   start emulation until we arrive back to a valid state */
	if (vmx->emulation_required && emulate_invalid_guest_state)
		return;

	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);

6166 6167 6168 6169 6170 6171
	cr4 = read_cr4();
	if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
		vmcs_writel(HOST_CR4, cr4);
		vmx->host_state.vmcs_host_cr4 = cr4;
	}

6172 6173 6174 6175 6176 6177 6178 6179
	/* When single-stepping over STI and MOV SS, we must clear the
	 * corresponding interruptibility bits in the guest state. Otherwise
	 * vmentry fails as it then expects bit 14 (BS) in pending debug
	 * exceptions being set, but that's not correct for the guest debugging
	 * case. */
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
		vmx_set_interrupt_shadow(vcpu, 0);

6180 6181
	atomic_switch_perf_msrs(vmx);

6182
	vmx->__launched = vmx->loaded_vmcs->launched;
6183
	asm(
Avi Kivity's avatar
Avi Kivity committed
6184
		/* Store host registers */
6185
		"push %%"R"dx; push %%"R"bp;"
6186
		"push %%"R"cx \n\t" /* placeholder for guest rcx */
6187
		"push %%"R"cx \n\t"
6188 6189 6190
		"cmp %%"R"sp, %c[host_rsp](%0) \n\t"
		"je 1f \n\t"
		"mov %%"R"sp, %c[host_rsp](%0) \n\t"
6191
		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6192
		"1: \n\t"
6193 6194 6195 6196 6197 6198 6199
		/* Reload cr2 if changed */
		"mov %c[cr2](%0), %%"R"ax \n\t"
		"mov %%cr2, %%"R"dx \n\t"
		"cmp %%"R"ax, %%"R"dx \n\t"
		"je 2f \n\t"
		"mov %%"R"ax, %%cr2 \n\t"
		"2: \n\t"
Avi Kivity's avatar
Avi Kivity committed
6200
		/* Check if vmlaunch of vmresume is needed */
6201
		"cmpl $0, %c[launched](%0) \n\t"
Avi Kivity's avatar
Avi Kivity committed
6202
		/* Load guest registers.  Don't clobber flags. */
6203 6204 6205 6206 6207 6208
		"mov %c[rax](%0), %%"R"ax \n\t"
		"mov %c[rbx](%0), %%"R"bx \n\t"
		"mov %c[rdx](%0), %%"R"dx \n\t"
		"mov %c[rsi](%0), %%"R"si \n\t"
		"mov %c[rdi](%0), %%"R"di \n\t"
		"mov %c[rbp](%0), %%"R"bp \n\t"
6209
#ifdef CONFIG_X86_64
6210 6211 6212 6213 6214 6215 6216 6217
		"mov %c[r8](%0),  %%r8  \n\t"
		"mov %c[r9](%0),  %%r9  \n\t"
		"mov %c[r10](%0), %%r10 \n\t"
		"mov %c[r11](%0), %%r11 \n\t"
		"mov %c[r12](%0), %%r12 \n\t"
		"mov %c[r13](%0), %%r13 \n\t"
		"mov %c[r14](%0), %%r14 \n\t"
		"mov %c[r15](%0), %%r15 \n\t"
Avi Kivity's avatar
Avi Kivity committed
6218
#endif
6219 6220
		"mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */

Avi Kivity's avatar
Avi Kivity committed
6221
		/* Enter guest mode */
6222
		"jne .Llaunched \n\t"
6223
		__ex(ASM_VMX_VMLAUNCH) "\n\t"
6224
		"jmp .Lkvm_vmx_return \n\t"
6225
		".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6226
		".Lkvm_vmx_return: "
Avi Kivity's avatar
Avi Kivity committed
6227
		/* Save guest registers, load host registers, keep flags */
6228 6229
		"mov %0, %c[wordsize](%%"R"sp) \n\t"
		"pop %0 \n\t"
6230 6231
		"mov %%"R"ax, %c[rax](%0) \n\t"
		"mov %%"R"bx, %c[rbx](%0) \n\t"
6232
		"pop"Q" %c[rcx](%0) \n\t"
6233 6234 6235 6236
		"mov %%"R"dx, %c[rdx](%0) \n\t"
		"mov %%"R"si, %c[rsi](%0) \n\t"
		"mov %%"R"di, %c[rdi](%0) \n\t"
		"mov %%"R"bp, %c[rbp](%0) \n\t"
6237
#ifdef CONFIG_X86_64
6238 6239 6240 6241 6242 6243 6244 6245
		"mov %%r8,  %c[r8](%0) \n\t"
		"mov %%r9,  %c[r9](%0) \n\t"
		"mov %%r10, %c[r10](%0) \n\t"
		"mov %%r11, %c[r11](%0) \n\t"
		"mov %%r12, %c[r12](%0) \n\t"
		"mov %%r13, %c[r13](%0) \n\t"
		"mov %%r14, %c[r14](%0) \n\t"
		"mov %%r15, %c[r15](%0) \n\t"
Avi Kivity's avatar
Avi Kivity committed
6246
#endif
6247 6248 6249
		"mov %%cr2, %%"R"ax   \n\t"
		"mov %%"R"ax, %c[cr2](%0) \n\t"

6250
		"pop  %%"R"bp; pop  %%"R"dx \n\t"
6251 6252
		"setbe %c[fail](%0) \n\t"
	      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6253
		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6254
		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
6255
		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6256 6257 6258 6259 6260 6261 6262
		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6263
#ifdef CONFIG_X86_64
6264 6265 6266 6267 6268 6269 6270 6271
		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
Avi Kivity's avatar
Avi Kivity committed
6272
#endif
6273 6274
		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
		[wordsize]"i"(sizeof(ulong))
6275
	      : "cc", "memory"
6276
		, R"ax", R"bx", R"di", R"si"
6277 6278 6279 6280
#ifdef CONFIG_X86_64
		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
#endif
	      );
Avi Kivity's avatar
Avi Kivity committed
6281

Avi Kivity's avatar
Avi Kivity committed
6282
	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6283
				  | (1 << VCPU_EXREG_RFLAGS)
Avi Kivity's avatar
Avi Kivity committed
6284
				  | (1 << VCPU_EXREG_CPL)
6285
				  | (1 << VCPU_EXREG_PDPTR)
6286
				  | (1 << VCPU_EXREG_SEGMENTS)
6287
				  | (1 << VCPU_EXREG_CR3));
6288 6289
	vcpu->arch.regs_dirty = 0;

6290 6291
	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);

6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
	if (is_guest_mode(vcpu)) {
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
		vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
		if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
			vmcs12->idt_vectoring_error_code =
				vmcs_read32(IDT_VECTORING_ERROR_CODE);
			vmcs12->vm_exit_instruction_len =
				vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
		}
	}

Mike Day's avatar
Mike Day committed
6303
	asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6304
	vmx->loaded_vmcs->launched = 1;
6305

6306
	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6307
	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6308 6309 6310

	vmx_complete_atomic_exit(vmx);
	vmx_recover_nmi_blocking(vmx);
6311
	vmx_complete_interrupts(vmx);
Avi Kivity's avatar
Avi Kivity committed
6312 6313
}

6314 6315 6316
#undef R
#undef Q

Avi Kivity's avatar
Avi Kivity committed
6317 6318
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
6319 6320
	struct vcpu_vmx *vmx = to_vmx(vcpu);

6321
	free_vpid(vmx);
6322
	free_loaded_vmcs(vmx->loaded_vmcs);
6323
	free_nested(vmx);
6324 6325
	kfree(vmx->guest_msrs);
	kvm_vcpu_uninit(vcpu);
6326
	kmem_cache_free(kvm_vcpu_cache, vmx);
Avi Kivity's avatar
Avi Kivity committed
6327 6328
}

6329
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
Avi Kivity's avatar
Avi Kivity committed
6330
{
6331
	int err;
6332
	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6333
	int cpu;
Avi Kivity's avatar
Avi Kivity committed
6334

6335
	if (!vmx)
6336 6337
		return ERR_PTR(-ENOMEM);

6338 6339
	allocate_vpid(vmx);

6340 6341 6342
	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
	if (err)
		goto free_vcpu;
6343

6344
	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6345
	err = -ENOMEM;
6346 6347 6348
	if (!vmx->guest_msrs) {
		goto uninit_vcpu;
	}
6349

6350 6351 6352
	vmx->loaded_vmcs = &vmx->vmcs01;
	vmx->loaded_vmcs->vmcs = alloc_vmcs();
	if (!vmx->loaded_vmcs->vmcs)
6353
		goto free_msrs;
6354 6355 6356 6357 6358
	if (!vmm_exclusive)
		kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
	loaded_vmcs_init(vmx->loaded_vmcs);
	if (!vmm_exclusive)
		kvm_cpu_vmxoff();
6359

6360 6361
	cpu = get_cpu();
	vmx_vcpu_load(&vmx->vcpu, cpu);
Zachary Amsden's avatar
Zachary Amsden committed
6362
	vmx->vcpu.cpu = cpu;
6363
	err = vmx_vcpu_setup(vmx);
6364
	vmx_vcpu_put(&vmx->vcpu);
6365
	put_cpu();
6366 6367
	if (err)
		goto free_vmcs;
6368
	if (vm_need_virtualize_apic_accesses(kvm))
6369 6370
		err = alloc_apic_access_page(kvm);
		if (err)
6371
			goto free_vmcs;
6372

6373 6374 6375 6376
	if (enable_ept) {
		if (!kvm->arch.ept_identity_map_addr)
			kvm->arch.ept_identity_map_addr =
				VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6377
		err = -ENOMEM;
6378 6379
		if (alloc_identity_pagetable(kvm) != 0)
			goto free_vmcs;
6380 6381
		if (!init_rmode_identity_map(kvm))
			goto free_vmcs;
6382
	}
6383

6384 6385 6386
	vmx->nested.current_vmptr = -1ull;
	vmx->nested.current_vmcs12 = NULL;

6387 6388 6389
	return &vmx->vcpu;

free_vmcs:
6390
	free_vmcs(vmx->loaded_vmcs->vmcs);
6391 6392 6393 6394 6395
free_msrs:
	kfree(vmx->guest_msrs);
uninit_vcpu:
	kvm_vcpu_uninit(&vmx->vcpu);
free_vcpu:
6396
	free_vpid(vmx);
6397
	kmem_cache_free(kvm_vcpu_cache, vmx);
6398
	return ERR_PTR(err);
Avi Kivity's avatar
Avi Kivity committed
6399 6400
}

6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
static void __init vmx_check_processor_compat(void *rtn)
{
	struct vmcs_config vmcs_conf;

	*(int *)rtn = 0;
	if (setup_vmcs_config(&vmcs_conf) < 0)
		*(int *)rtn = -EIO;
	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
				smp_processor_id());
		*(int *)rtn = -EIO;
	}
}

6415 6416 6417 6418 6419
static int get_ept_level(void)
{
	return VMX_EPT_DEFAULT_GAW + 1;
}

6420
static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
Sheng Yang's avatar
Sheng Yang committed
6421
{
6422 6423
	u64 ret;

6424 6425 6426 6427 6428 6429 6430 6431
	/* For VT-d and EPT combination
	 * 1. MMIO: always map as UC
	 * 2. EPT with VT-d:
	 *   a. VT-d without snooping control feature: can't guarantee the
	 *	result, try to trust guest.
	 *   b. VT-d with snooping control feature: snooping control feature of
	 *	VT-d engine can guarantee the cache correctness. Just set it
	 *	to WB to keep consistent with host. So the same as item 3.
6432
	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6433 6434
	 *    consistent with host MTRR
	 */
6435 6436
	if (is_mmio)
		ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6437 6438 6439 6440
	else if (vcpu->kvm->arch.iommu_domain &&
		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
		ret = kvm_get_guest_memory_type(vcpu, gfn) <<
		      VMX_EPT_MT_EPTE_SHIFT;
6441
	else
6442
		ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6443
			| VMX_EPT_IPAT_BIT;
6444 6445

	return ret;
Sheng Yang's avatar
Sheng Yang committed
6446 6447
}

6448
static int vmx_get_lpage_level(void)
6449
{
6450 6451 6452 6453 6454
	if (enable_ept && !cpu_has_vmx_ept_1g_page())
		return PT_DIRECTORY_LEVEL;
	else
		/* For shadow and EPT supported 1GB page */
		return PT_PDPE_LEVEL;
6455 6456
}

6457 6458
static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
{
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
	struct kvm_cpuid_entry2 *best;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 exec_control;

	vmx->rdtscp_enabled = false;
	if (vmx_rdtscp_supported()) {
		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
		if (exec_control & SECONDARY_EXEC_RDTSCP) {
			best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
			if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
				vmx->rdtscp_enabled = true;
			else {
				exec_control &= ~SECONDARY_EXEC_RDTSCP;
				vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
						exec_control);
			}
		}
	}
6477 6478
}

6479 6480
static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
6481 6482
	if (func == 1 && nested)
		entry->ecx |= bit(X86_FEATURE_VMX);
6483 6484
}

6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
/*
 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
 * guest in a way that will both be appropriate to L1's requests, and our
 * needs. In addition to modifying the active vmcs (which is vmcs02), this
 * function also has additional necessary side-effects, like setting various
 * vcpu->arch fields.
 */
static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 exec_control;

	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);

	vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
		vmcs12->vm_entry_intr_info_field);
	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
		vmcs12->vm_entry_exception_error_code);
	vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
		vmcs12->vm_entry_instruction_len);
	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
		vmcs12->guest_interruptibility_info);
	vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
	vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
	vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
		vmcs12->guest_pending_dbg_exceptions);
	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);

	vmcs_write64(VMCS_LINK_POINTER, -1ull);

	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
		(vmcs_config.pin_based_exec_ctrl |
		 vmcs12->pin_based_vm_exec_control));

	/*
	 * Whether page-faults are trapped is determined by a combination of
	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
	 * If enable_ept, L0 doesn't care about page faults and we should
	 * set all of these to L1's desires. However, if !enable_ept, L0 does
	 * care about (at least some) page faults, and because it is not easy
	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
	 * to exit on each and every L2 page fault. This is done by setting
	 * MASK=MATCH=0 and (see below) EB.PF=1.
	 * Note that below we don't need special code to set EB.PF beyond the
	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
	 *
	 * A problem with this approach (when !enable_ept) is that L1 may be
	 * injected with more page faults than it asked for. This could have
	 * caused problems, but in practice existing hypervisors don't care.
	 * To fix this, we will need to emulate the PFEC checking (on the L1
	 * page tables), using walk_addr(), when injecting PFs to L1.
	 */
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
		enable_ept ? vmcs12->page_fault_error_code_match : 0);

	if (cpu_has_secondary_exec_ctrls()) {
		u32 exec_control = vmx_secondary_exec_control(vmx);
		if (!vmx->rdtscp_enabled)
			exec_control &= ~SECONDARY_EXEC_RDTSCP;
		/* Take the following fields only from vmcs12 */
		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
		if (nested_cpu_has(vmcs12,
				CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
			exec_control |= vmcs12->secondary_vm_exec_control;

		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
			/*
			 * Translate L1 physical address to host physical
			 * address for vmcs02. Keep the page pinned, so this
			 * physical address remains valid. We keep a reference
			 * to it so we can release it later.
			 */
			if (vmx->nested.apic_access_page) /* shouldn't happen */
				nested_release_page(vmx->nested.apic_access_page);
			vmx->nested.apic_access_page =
				nested_get_page(vcpu, vmcs12->apic_access_addr);
			/*
			 * If translation failed, no matter: This feature asks
			 * to exit when accessing the given address, and if it
			 * can never be accessed, this feature won't do
			 * anything anyway.
			 */
			if (!vmx->nested.apic_access_page)
				exec_control &=
				  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
			else
				vmcs_write64(APIC_ACCESS_ADDR,
				  page_to_phys(vmx->nested.apic_access_page));
		}

		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
	}


	/*
	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
	 * Some constant fields are set here by vmx_set_constant_host_state().
	 * Other fields are different per CPU, and will be set later when
	 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
	 */
6630
	vmx_set_constant_host_state(vmx);
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677

	/*
	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
	 * entry, but only if the current (host) sp changed from the value
	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
	 * here we just force the write to happen on entry.
	 */
	vmx->host_rsp = 0;

	exec_control = vmx_exec_control(vmx); /* L0's desires */
	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
	exec_control &= ~CPU_BASED_TPR_SHADOW;
	exec_control |= vmcs12->cpu_based_vm_exec_control;
	/*
	 * Merging of IO and MSR bitmaps not currently supported.
	 * Rather, exit every time.
	 */
	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
	exec_control |= CPU_BASED_UNCOND_IO_EXITING;

	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);

	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
	 * bitwise-or of what L1 wants to trap for L2, and what we want to
	 * trap. Note that CR0.TS also needs updating - we do this later.
	 */
	update_exception_bitmap(vcpu);
	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);

	/* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
	vmcs_write32(VM_EXIT_CONTROLS,
		vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
	vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));

	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
	else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);


	set_cr4_guest_host_mask(vmx);

6678 6679 6680 6681 6682
	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
		vmcs_write64(TSC_OFFSET,
			vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
	else
		vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724

	if (enable_vpid) {
		/*
		 * Trivially support vpid by letting L2s share their parent
		 * L1's vpid. TODO: move to a more elaborate solution, giving
		 * each L2 its own vpid and exposing the vpid feature to L1.
		 */
		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
		vmx_flush_tlb(vcpu);
	}

	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
		vcpu->arch.efer = vmcs12->guest_ia32_efer;
	if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
	else
		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
	vmx_set_efer(vcpu, vcpu->arch.efer);

	/*
	 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
	 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
	 * The CR0_READ_SHADOW is what L2 should have expected to read given
	 * the specifications by L1; It's not enough to take
	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
	 * have more bits than L1 expected.
	 */
	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));

	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));

	/* shadow page tables on either EPT or shadow page tables */
	kvm_set_cr3(vcpu, vmcs12->guest_cr3);
	kvm_mmu_reset_context(vcpu);

	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
}

6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
/*
 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
 * for running an L2 nested guest.
 */
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
	struct vmcs12 *vmcs12;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int cpu;
	struct loaded_vmcs *vmcs02;

	if (!nested_vmx_check_permission(vcpu) ||
	    !nested_vmx_check_vmcs12(vcpu))
		return 1;

	skip_emulated_instruction(vcpu);
	vmcs12 = get_vmcs12(vcpu);

6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
	/*
	 * The nested entry process starts with enforcing various prerequisites
	 * on vmcs12 as required by the Intel SDM, and act appropriately when
	 * they fail: As the SDM explains, some conditions should cause the
	 * instruction to fail, while others will cause the instruction to seem
	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
	 * To speed up the normal (success) code path, we should avoid checking
	 * for misconfigurations which will anyway be caught by the processor
	 * when using the merged vmcs02.
	 */
	if (vmcs12->launch_state == launch) {
		nested_vmx_failValid(vcpu,
			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
		return 1;
	}

	if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
			!IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
		/*TODO: Also verify bits beyond physical address width are 0*/
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
			!IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
		/*TODO: Also verify bits beyond physical address width are 0*/
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

	if (vmcs12->vm_entry_msr_load_count > 0 ||
	    vmcs12->vm_exit_msr_load_count > 0 ||
	    vmcs12->vm_exit_msr_store_count > 0) {
6777 6778
		pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
				    __func__);
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
	      nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
	      nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
	      nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
	    !vmx_control_verify(vmcs12->vm_exit_controls,
	      nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
	    !vmx_control_verify(vmcs12->vm_entry_controls,
	      nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
	{
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

	if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
	    ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
		nested_vmx_failValid(vcpu,
			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
		return 1;
	}

	if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
	    ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
		nested_vmx_entry_failure(vcpu, vmcs12,
			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
		return 1;
	}
	if (vmcs12->vmcs_link_pointer != -1ull) {
		nested_vmx_entry_failure(vcpu, vmcs12,
			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
		return 1;
	}

	/*
	 * We're finally done with prerequisite checking, and can start with
	 * the nested entry.
	 */

6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849
	vmcs02 = nested_get_current_vmcs02(vmx);
	if (!vmcs02)
		return -ENOMEM;

	enter_guest_mode(vcpu);

	vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);

	cpu = get_cpu();
	vmx->loaded_vmcs = vmcs02;
	vmx_vcpu_put(vcpu);
	vmx_vcpu_load(vcpu, cpu);
	vcpu->cpu = cpu;
	put_cpu();

	vmcs12->launch_state = 1;

	prepare_vmcs02(vcpu, vmcs12);

	/*
	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
	 * returned as far as L1 is concerned. It will only return (and set
	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
	 */
	return 1;
}

6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
/*
 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
 * This function returns the new value we should put in vmcs12.guest_cr0.
 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
 *     didn't trap the bit, because if L1 did, so would L0).
 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
 *     been modified by L2, and L1 knows it. So just leave the old value of
 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
 *     isn't relevant, because if L0 traps this bit it can set it to anything.
 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
 *     changed these bits, and therefore they need to be updated, but L0
 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
 */
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
			vcpu->arch.cr0_guest_owned_bits));
}

static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
			vcpu->arch.cr4_guest_owned_bits));
}

/*
 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
 * and this function updates it to reflect the changes to the guest state while
 * L2 was running (and perhaps made some exits which were handled directly by L0
 * without going back to L1), and to reflect the exit reason.
 * Note that we do not have to copy here all VMCS fields, just those that
 * could have changed by the L2 guest or the exit - i.e., the guest-state and
 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
 * which already writes to vmcs12 directly.
 */
void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	/* update guest state fields: */
	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);

	kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);

	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);

	vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
	vmcs12->guest_interruptibility_info =
		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
	vmcs12->guest_pending_dbg_exceptions =
		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);

	/* TODO: These cannot have changed unless we have MSR bitmaps and
	 * the relevant bit asks not to trap the change */
	vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
	if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);

	/* update exit information fields: */

	vmcs12->vm_exit_reason  = vmcs_read32(VM_EXIT_REASON);
	vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);

	vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
	vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
	vmcs12->idt_vectoring_info_field =
		vmcs_read32(IDT_VECTORING_INFO_FIELD);
	vmcs12->idt_vectoring_error_code =
		vmcs_read32(IDT_VECTORING_ERROR_CODE);
	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);

	/* clear vm-entry fields which are to be cleared on exit */
	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
}

/*
 * A part of what we need to when the nested L2 guest exits and we want to
 * run its L1 parent, is to reset L1's guest state to the host state specified
 * in vmcs12.
 * This function is to be called not only on normal nested exit, but also on
 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
 * Failures During or After Loading Guest State").
 * This function should be called when the active VMCS is L1's (vmcs01).
 */
void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
		vcpu->arch.efer = vmcs12->host_ia32_efer;
	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
	else
		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
	vmx_set_efer(vcpu, vcpu->arch.efer);

	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
	/*
	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
	 * actually changed, because it depends on the current state of
	 * fpu_active (which may have changed).
	 * Note that vmx_set_cr0 refers to efer set above.
	 */
	kvm_set_cr0(vcpu, vmcs12->host_cr0);
	/*
	 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
	 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
	 * but we also need to update cr0_guest_host_mask and exception_bitmap.
	 */
	update_exception_bitmap(vcpu);
	vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);

	/*
	 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
	 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
	 */
	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	kvm_set_cr4(vcpu, vmcs12->host_cr4);

	/* shadow page tables on either EPT or shadow page tables */
	kvm_set_cr3(vcpu, vmcs12->host_cr3);
	kvm_mmu_reset_context(vcpu);

	if (enable_vpid) {
		/*
		 * Trivially support vpid by letting L2s share their parent
		 * L1's vpid. TODO: move to a more elaborate solution, giving
		 * each L2 its own vpid and exposing the vpid feature to L1.
		 */
		vmx_flush_tlb(vcpu);
	}


	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
	vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
	vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
	vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
			vmcs12->host_ia32_perf_global_ctrl);
}

/*
 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
 * and modify vmcs12 to make it see what it would expect to see there if
 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
 */
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int cpu;
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	leave_guest_mode(vcpu);
	prepare_vmcs12(vcpu, vmcs12);

	cpu = get_cpu();
	vmx->loaded_vmcs = &vmx->vmcs01;
	vmx_vcpu_put(vcpu);
	vmx_vcpu_load(vcpu, cpu);
	vcpu->cpu = cpu;
	put_cpu();

	/* if no vmcs02 cache requested, remove the one we used */
	if (VMCS02_POOL_SIZE == 0)
		nested_free_vmcs02(vmx, vmx->nested.current_vmptr);

	load_vmcs12_host_state(vcpu, vmcs12);

7088
	/* Update TSC_OFFSET if TSC was changed while L2 ran */
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111
	vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);

	/* This is needed for same reason as it was needed in prepare_vmcs02 */
	vmx->host_rsp = 0;

	/* Unpin physical memory we referred to in vmcs02 */
	if (vmx->nested.apic_access_page) {
		nested_release_page(vmx->nested.apic_access_page);
		vmx->nested.apic_access_page = 0;
	}

	/*
	 * Exiting from L2 to L1, we're now back to L1 which thinks it just
	 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
	 * success or failure flag accordingly.
	 */
	if (unlikely(vmx->fail)) {
		vmx->fail = 0;
		nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
	} else
		nested_vmx_succeed(vcpu);
}

7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
/*
 * L1's failure to enter L2 is a subset of a normal exit, as explained in
 * 23.7 "VM-entry failures during or after loading guest state" (this also
 * lists the acceptable exit-reason and exit-qualification parameters).
 * It should only be called before L2 actually succeeded to run, and when
 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
 */
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
			struct vmcs12 *vmcs12,
			u32 reason, unsigned long qualification)
{
	load_vmcs12_host_state(vcpu, vmcs12);
	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
	vmcs12->exit_qualification = qualification;
	nested_vmx_succeed(vcpu);
}

7129 7130 7131 7132 7133 7134 7135
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
			       struct x86_instruction_info *info,
			       enum x86_intercept_stage stage)
{
	return X86EMUL_CONTINUE;
}

7136
static struct kvm_x86_ops vmx_x86_ops = {
Avi Kivity's avatar
Avi Kivity committed
7137 7138 7139 7140
	.cpu_has_kvm_support = cpu_has_kvm_support,
	.disabled_by_bios = vmx_disabled_by_bios,
	.hardware_setup = hardware_setup,
	.hardware_unsetup = hardware_unsetup,
7141
	.check_processor_compatibility = vmx_check_processor_compat,
Avi Kivity's avatar
Avi Kivity committed
7142 7143
	.hardware_enable = hardware_enable,
	.hardware_disable = hardware_disable,
7144
	.cpu_has_accelerated_tpr = report_flexpriority,
Avi Kivity's avatar
Avi Kivity committed
7145 7146 7147

	.vcpu_create = vmx_create_vcpu,
	.vcpu_free = vmx_free_vcpu,
7148
	.vcpu_reset = vmx_vcpu_reset,
Avi Kivity's avatar
Avi Kivity committed
7149

7150
	.prepare_guest_switch = vmx_save_host_state,
Avi Kivity's avatar
Avi Kivity committed
7151 7152 7153 7154 7155 7156 7157 7158 7159
	.vcpu_load = vmx_vcpu_load,
	.vcpu_put = vmx_vcpu_put,

	.set_guest_debug = set_guest_debug,
	.get_msr = vmx_get_msr,
	.set_msr = vmx_set_msr,
	.get_segment_base = vmx_get_segment_base,
	.get_segment = vmx_get_segment,
	.set_segment = vmx_set_segment,
7160
	.get_cpl = vmx_get_cpl,
Avi Kivity's avatar
Avi Kivity committed
7161
	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7162
	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7163
	.decache_cr3 = vmx_decache_cr3,
7164
	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
Avi Kivity's avatar
Avi Kivity committed
7165 7166 7167 7168 7169 7170 7171 7172
	.set_cr0 = vmx_set_cr0,
	.set_cr3 = vmx_set_cr3,
	.set_cr4 = vmx_set_cr4,
	.set_efer = vmx_set_efer,
	.get_idt = vmx_get_idt,
	.set_idt = vmx_set_idt,
	.get_gdt = vmx_get_gdt,
	.set_gdt = vmx_set_gdt,
7173
	.set_dr7 = vmx_set_dr7,
7174
	.cache_reg = vmx_cache_reg,
Avi Kivity's avatar
Avi Kivity committed
7175 7176
	.get_rflags = vmx_get_rflags,
	.set_rflags = vmx_set_rflags,
7177
	.fpu_activate = vmx_fpu_activate,
7178
	.fpu_deactivate = vmx_fpu_deactivate,
Avi Kivity's avatar
Avi Kivity committed
7179 7180 7181 7182

	.tlb_flush = vmx_flush_tlb,

	.run = vmx_vcpu_run,
7183
	.handle_exit = vmx_handle_exit,
Avi Kivity's avatar
Avi Kivity committed
7184
	.skip_emulated_instruction = skip_emulated_instruction,
7185 7186
	.set_interrupt_shadow = vmx_set_interrupt_shadow,
	.get_interrupt_shadow = vmx_get_interrupt_shadow,
Ingo Molnar's avatar
Ingo Molnar committed
7187
	.patch_hypercall = vmx_patch_hypercall,
Eddie Dong's avatar
Eddie Dong committed
7188
	.set_irq = vmx_inject_irq,
7189
	.set_nmi = vmx_inject_nmi,
7190
	.queue_exception = vmx_queue_exception,
7191
	.cancel_injection = vmx_cancel_injection,
7192
	.interrupt_allowed = vmx_interrupt_allowed,
7193
	.nmi_allowed = vmx_nmi_allowed,
7194 7195
	.get_nmi_mask = vmx_get_nmi_mask,
	.set_nmi_mask = vmx_set_nmi_mask,
7196 7197 7198 7199
	.enable_nmi_window = enable_nmi_window,
	.enable_irq_window = enable_irq_window,
	.update_cr8_intercept = update_cr8_intercept,

7200
	.set_tss_addr = vmx_set_tss_addr,
7201
	.get_tdp_level = get_ept_level,
7202
	.get_mt_mask = vmx_get_mt_mask,
7203

7204 7205
	.get_exit_info = vmx_get_exit_info,

7206
	.get_lpage_level = vmx_get_lpage_level,
7207 7208

	.cpuid_update = vmx_cpuid_update,
7209 7210

	.rdtscp_supported = vmx_rdtscp_supported,
7211 7212

	.set_supported_cpuid = vmx_set_supported_cpuid,
7213 7214

	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7215

7216
	.set_tsc_khz = vmx_set_tsc_khz,
7217
	.write_tsc_offset = vmx_write_tsc_offset,
Zachary Amsden's avatar
Zachary Amsden committed
7218
	.adjust_tsc_offset = vmx_adjust_tsc_offset,
7219
	.compute_tsc_offset = vmx_compute_tsc_offset,
Nadav Har'El's avatar
Nadav Har'El committed
7220
	.read_l1_tsc = vmx_read_l1_tsc,
7221 7222

	.set_tdp_cr3 = vmx_set_cr3,
7223 7224

	.check_intercept = vmx_check_intercept,
Avi Kivity's avatar
Avi Kivity committed
7225 7226 7227 7228
};

static int __init vmx_init(void)
{
7229 7230 7231 7232 7233 7234
	int r, i;

	rdmsrl_safe(MSR_EFER, &host_efer);

	for (i = 0; i < NR_VMX_MSR; ++i)
		kvm_define_shared_msr(i, vmx_msr_index[i]);
7235

7236
	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7237 7238 7239
	if (!vmx_io_bitmap_a)
		return -ENOMEM;

7240
	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7241 7242 7243 7244 7245
	if (!vmx_io_bitmap_b) {
		r = -ENOMEM;
		goto out;
	}

7246 7247
	vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
	if (!vmx_msr_bitmap_legacy) {
7248 7249 7250 7251
		r = -ENOMEM;
		goto out1;
	}

7252 7253 7254 7255 7256 7257
	vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
	if (!vmx_msr_bitmap_longmode) {
		r = -ENOMEM;
		goto out2;
	}

7258 7259 7260 7261
	/*
	 * Allow direct access to the PC debug port (it is often used for I/O
	 * delays, but the vmexits simply slow things down).
	 */
7262 7263
	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
	clear_bit(0x80, vmx_io_bitmap_a);
7264

7265
	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7266

7267 7268
	memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
	memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7269

7270 7271
	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */

7272 7273
	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7274
	if (r)
7275
		goto out3;
7276

7277 7278 7279 7280 7281 7282
	vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
	vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
	vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7283

7284
	if (enable_ept) {
7285
		kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7286
				VMX_EPT_EXECUTABLE_MASK);
7287
		ept_set_mmio_spte_mask();
7288 7289 7290
		kvm_enable_tdp();
	} else
		kvm_disable_tdp();
7291

7292 7293
	return 0;

7294 7295
out3:
	free_page((unsigned long)vmx_msr_bitmap_longmode);
7296
out2:
7297
	free_page((unsigned long)vmx_msr_bitmap_legacy);
7298
out1:
7299
	free_page((unsigned long)vmx_io_bitmap_b);
7300
out:
7301
	free_page((unsigned long)vmx_io_bitmap_a);
7302
	return r;
Avi Kivity's avatar
Avi Kivity committed
7303 7304 7305 7306
}

static void __exit vmx_exit(void)
{
7307 7308
	free_page((unsigned long)vmx_msr_bitmap_legacy);
	free_page((unsigned long)vmx_msr_bitmap_longmode);
7309 7310
	free_page((unsigned long)vmx_io_bitmap_b);
	free_page((unsigned long)vmx_io_bitmap_a);
7311

7312
	kvm_exit();
Avi Kivity's avatar
Avi Kivity committed
7313 7314 7315 7316
}

module_init(vmx_init)
module_exit(vmx_exit)