file-item.c 37.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
Chris Mason's avatar
Chris Mason committed
2 3 4 5
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

6
#include <linux/bio.h>
7
#include <linux/slab.h>
8 9
#include <linux/pagemap.h>
#include <linux/highmem.h>
10
#include <linux/sched/mm.h>
11
#include <crypto/hash.h>
12
#include "messages.h"
Chris Mason's avatar
Chris Mason committed
13
#include "ctree.h"
14
#include "disk-io.h"
15
#include "transaction.h"
16
#include "bio.h"
17
#include "compression.h"
18
#include "fs.h"
19
#include "accessors.h"
20
#include "file-item.h"
Chris Mason's avatar
Chris Mason committed
21

Chris Mason's avatar
Chris Mason committed
22 23 24
#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
				   sizeof(struct btrfs_item) * 2) / \
				  size) - 1))
25

26
#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27
				       PAGE_SIZE))
28

29 30
/*
 * Set inode's size according to filesystem options.
31 32 33
 *
 * @inode:      inode we want to update the disk_i_size for
 * @new_i_size: i_size we want to set to, 0 if we use i_size
34 35 36 37 38 39 40 41 42 43 44 45
 *
 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
 * returns as it is perfectly fine with a file that has holes without hole file
 * extent items.
 *
 * However without NO_HOLES we need to only return the area that is contiguous
 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
 * to an extent that has a gap in between.
 *
 * Finally new_i_size should only be set in the case of truncate where we're not
 * ready to use i_size_read() as the limiter yet.
 */
46
void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47 48 49 50
{
	u64 start, end, i_size;
	int ret;

51
	spin_lock(&inode->lock);
52
	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
53
	if (!inode->file_extent_tree) {
54
		inode->disk_i_size = i_size;
55
		goto out_unlock;
56 57
	}

58
	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
59
					 &end, EXTENT_DIRTY);
60 61 62 63
	if (!ret && start == 0)
		i_size = min(i_size, end + 1);
	else
		i_size = 0;
64
	inode->disk_i_size = i_size;
65
out_unlock:
66
	spin_unlock(&inode->lock);
67 68
}

69 70
/*
 * Mark range within a file as having a new extent inserted.
71 72 73 74
 *
 * @inode: inode being modified
 * @start: start file offset of the file extent we've inserted
 * @len:   logical length of the file extent item
75 76 77 78 79 80 81 82 83 84 85
 *
 * Call when we are inserting a new file extent where there was none before.
 * Does not need to call this in the case where we're replacing an existing file
 * extent, however if not sure it's fine to call this multiple times.
 *
 * The start and len must match the file extent item, so thus must be sectorsize
 * aligned.
 */
int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
				      u64 len)
{
86 87 88
	if (!inode->file_extent_tree)
		return 0;

89 90 91 92 93
	if (len == 0)
		return 0;

	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));

94
	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95
			      EXTENT_DIRTY, NULL);
96 97
}

98 99
/*
 * Mark an inode range as not having a backing extent.
100 101 102 103
 *
 * @inode: inode being modified
 * @start: start file offset of the file extent we've inserted
 * @len:   logical length of the file extent item
104 105 106 107 108 109 110 111 112 113 114
 *
 * Called when we drop a file extent, for example when we truncate.  Doesn't
 * need to be called for cases where we're replacing a file extent, like when
 * we've COWed a file extent.
 *
 * The start and len must match the file extent item, so thus must be sectorsize
 * aligned.
 */
int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
					u64 len)
{
115 116 117
	if (!inode->file_extent_tree)
		return 0;

118 119 120 121 122 123
	if (len == 0)
		return 0;

	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
	       len == (u64)-1);

124
	return clear_extent_bit(inode->file_extent_tree, start,
125
				start + len - 1, EXTENT_DIRTY, NULL);
126 127
}

128
static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
129
{
130
	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
}

static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
{
	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));

	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
}

static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
{
	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
				       fs_info->csum_size);

	return csum_size_to_bytes(fs_info, max_csum_size);
148
}
149

150 151 152 153 154 155
/*
 * Calculate the total size needed to allocate for an ordered sum structure
 * spanning @bytes in the file.
 */
static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
{
156
	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
157 158
}

159
int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
Sage Weil's avatar
Sage Weil committed
160
			     struct btrfs_root *root,
161
			     u64 objectid, u64 pos, u64 num_bytes)
162
{
163 164 165
	int ret = 0;
	struct btrfs_file_extent_item *item;
	struct btrfs_key file_key;
166
	struct btrfs_path *path;
167
	struct extent_buffer *leaf;
168

169
	path = btrfs_alloc_path();
Tsutomu Itoh's avatar
Tsutomu Itoh committed
170 171
	if (!path)
		return -ENOMEM;
172
	file_key.objectid = objectid;
Chris Mason's avatar
Chris Mason committed
173
	file_key.offset = pos;
174
	file_key.type = BTRFS_EXTENT_DATA_KEY;
175

176
	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
177
				      sizeof(*item));
178 179
	if (ret < 0)
		goto out;
180 181
	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0],
182
			      struct btrfs_file_extent_item);
183 184 185
	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
	btrfs_set_file_extent_offset(leaf, item, 0);
186
	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
187
	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
188 189
	btrfs_set_file_extent_generation(leaf, item, trans->transid);
	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
190 191 192
	btrfs_set_file_extent_compression(leaf, item, 0);
	btrfs_set_file_extent_encryption(leaf, item, 0);
	btrfs_set_file_extent_other_encoding(leaf, item, 0);
193

194
	btrfs_mark_buffer_dirty(trans, leaf);
195
out:
196
	btrfs_free_path(path);
197
	return ret;
198
}
199

200 201 202 203 204
static struct btrfs_csum_item *
btrfs_lookup_csum(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct btrfs_path *path,
		  u64 bytenr, int cow)
205
{
206
	struct btrfs_fs_info *fs_info = root->fs_info;
207 208 209 210
	int ret;
	struct btrfs_key file_key;
	struct btrfs_key found_key;
	struct btrfs_csum_item *item;
211
	struct extent_buffer *leaf;
212
	u64 csum_offset = 0;
213
	const u32 csum_size = fs_info->csum_size;
214
	int csums_in_item;
215

216 217
	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	file_key.offset = bytenr;
218
	file_key.type = BTRFS_EXTENT_CSUM_KEY;
Chris Mason's avatar
Chris Mason committed
219
	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
220 221
	if (ret < 0)
		goto fail;
222
	leaf = path->nodes[0];
223 224
	if (ret > 0) {
		ret = 1;
225
		if (path->slots[0] == 0)
226 227
			goto fail;
		path->slots[0]--;
228
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
229
		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
230
			goto fail;
231 232

		csum_offset = (bytenr - found_key.offset) >>
233
				fs_info->sectorsize_bits;
234
		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
235
		csums_in_item /= csum_size;
236

237
		if (csum_offset == csums_in_item) {
238
			ret = -EFBIG;
239
			goto fail;
240 241
		} else if (csum_offset > csums_in_item) {
			goto fail;
242 243 244
		}
	}
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
245
	item = (struct btrfs_csum_item *)((unsigned char *)item +
246
					  csum_offset * csum_size);
247 248 249
	return item;
fail:
	if (ret > 0)
Chris Mason's avatar
Chris Mason committed
250
		ret = -ENOENT;
251 252 253
	return ERR_PTR(ret);
}

254 255 256
int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root,
			     struct btrfs_path *path, u64 objectid,
257
			     u64 offset, int mod)
258 259 260 261 262 263
{
	struct btrfs_key file_key;
	int ins_len = mod < 0 ? -1 : 0;
	int cow = mod != 0;

	file_key.objectid = objectid;
264
	file_key.offset = offset;
265
	file_key.type = BTRFS_EXTENT_DATA_KEY;
266 267

	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
268
}
Chris Mason's avatar
Chris Mason committed
269

270 271
/*
 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
272
 * store the result to @dst.
273 274 275 276 277 278 279 280 281 282
 *
 * Return >0 for the number of sectors we found.
 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 * for it. Caller may want to try next sector until one range is hit.
 * Return <0 for fatal error.
 */
static int search_csum_tree(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 disk_bytenr,
			    u64 len, u8 *dst)
{
283
	struct btrfs_root *csum_root;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	struct btrfs_csum_item *item = NULL;
	struct btrfs_key key;
	const u32 sectorsize = fs_info->sectorsize;
	const u32 csum_size = fs_info->csum_size;
	u32 itemsize;
	int ret;
	u64 csum_start;
	u64 csum_len;

	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
	       IS_ALIGNED(len, sectorsize));

	/* Check if the current csum item covers disk_bytenr */
	if (path->nodes[0]) {
		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_csum_item);
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
301
		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
302 303 304 305 306 307 308 309 310 311

		csum_start = key.offset;
		csum_len = (itemsize / csum_size) * sectorsize;

		if (in_range(disk_bytenr, csum_start, csum_len))
			goto found;
	}

	/* Current item doesn't contain the desired range, search again */
	btrfs_release_path(path);
312 313
	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
314 315 316 317 318
	if (IS_ERR(item)) {
		ret = PTR_ERR(item);
		goto out;
	}
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
319
	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
320 321 322 323 324 325 326 327 328 329 330

	csum_start = key.offset;
	csum_len = (itemsize / csum_size) * sectorsize;
	ASSERT(in_range(disk_bytenr, csum_start, csum_len));

found:
	ret = (min(csum_start + csum_len, disk_bytenr + len) -
		   disk_bytenr) >> fs_info->sectorsize_bits;
	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
			ret * csum_size);
out:
331
	if (ret == -ENOENT || ret == -EFBIG)
332 333 334 335
		ret = 0;
	return ret;
}

336
/*
337
 * Lookup the checksum for the read bio in csum tree.
338
 *
339 340
 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 */
341
blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
342
{
343 344 345
	struct btrfs_inode *inode = bbio->inode;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio = &bbio->bio;
346
	struct btrfs_path *path;
347 348 349 350 351
	const u32 sectorsize = fs_info->sectorsize;
	const u32 csum_size = fs_info->csum_size;
	u32 orig_len = bio->bi_iter.bi_size;
	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
352
	blk_status_t ret = BLK_STS_OK;
353
	u32 bio_offset = 0;
354

355
	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
356
	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
357 358
		return BLK_STS_OK;

359 360 361 362 363 364 365
	/*
	 * This function is only called for read bio.
	 *
	 * This means two things:
	 * - All our csums should only be in csum tree
	 *   No ordered extents csums, as ordered extents are only for write
	 *   path.
366 367 368 369
	 * - No need to bother any other info from bvec
	 *   Since we're looking up csums, the only important info is the
	 *   disk_bytenr and the length, which can be extracted from bi_iter
	 *   directly.
370 371
	 */
	ASSERT(bio_op(bio) == REQ_OP_READ);
372
	path = btrfs_alloc_path();
373
	if (!path)
374
		return BLK_STS_RESOURCE;
375

376 377 378 379 380
	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
		if (!bbio->csum) {
			btrfs_free_path(path);
			return BLK_STS_RESOURCE;
381 382
		}
	} else {
383
		bbio->csum = bbio->csum_inline;
384 385
	}

386 387 388 389 390
	/*
	 * If requested number of sectors is larger than one leaf can contain,
	 * kick the readahead for csum tree.
	 */
	if (nblocks > fs_info->csums_per_leaf)
391
		path->reada = READA_FORWARD;
392

393 394 395 396 397 398
	/*
	 * the free space stuff is only read when it hasn't been
	 * updated in the current transaction.  So, we can safely
	 * read from the commit root and sidestep a nasty deadlock
	 * between reading the free space cache and updating the csum tree.
	 */
399
	if (btrfs_is_free_space_inode(inode)) {
400
		path->search_commit_root = 1;
401 402
		path->skip_locking = 1;
	}
403

404 405 406 407 408
	while (bio_offset < orig_len) {
		int count;
		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
		u8 *csum_dst = bbio->csum +
			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
409 410

		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
411
					 orig_len - bio_offset, csum_dst);
412 413
		if (count < 0) {
			ret = errno_to_blk_status(count);
414 415 416
			if (bbio->csum != bbio->csum_inline)
				kfree(bbio->csum);
			bbio->csum = NULL;
417 418 419 420 421 422 423 424 425 426 427 428 429 430
			break;
		}

		/*
		 * We didn't find a csum for this range.  We need to make sure
		 * we complain loudly about this, because we are not NODATASUM.
		 *
		 * However for the DATA_RELOC inode we could potentially be
		 * relocating data extents for a NODATASUM inode, so the inode
		 * itself won't be marked with NODATASUM, but the extent we're
		 * copying is in fact NODATASUM.  If we don't find a csum we
		 * assume this is the case.
		 */
		if (count == 0) {
431 432 433
			memset(csum_dst, 0, csum_size);
			count = 1;

434
			if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
435
				u64 file_offset = bbio->file_offset + bio_offset;
436

437 438
				set_extent_bit(&inode->io_tree, file_offset,
					       file_offset + sectorsize - 1,
439
					       EXTENT_NODATASUM, NULL);
440 441 442 443 444
			} else {
				btrfs_warn_rl(fs_info,
			"csum hole found for disk bytenr range [%llu, %llu)",
				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
			}
445
		}
446
		bio_offset += count * sectorsize;
447
	}
448

449
	btrfs_free_path(path);
450
	return ret;
451 452
}

453 454 455 456 457 458 459
/*
 * Search for checksums for a given logical range.
 *
 * @root:		The root where to look for checksums.
 * @start:		Logical address of target checksum range.
 * @end:		End offset (inclusive) of the target checksum range.
 * @list:		List for adding each checksum that was found.
460 461
 *			Can be NULL in case the caller only wants to check if
 *			there any checksums for the range.
462 463
 * @nowait:		Indicate if the search must be non-blocking or not.
 *
464 465
 * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
 * found.
466
 */
467
int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
468
			    struct list_head *list, bool nowait)
469
{
470
	struct btrfs_fs_info *fs_info = root->fs_info;
471 472 473 474 475 476
	struct btrfs_key key;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_ordered_sum *sums;
	struct btrfs_csum_item *item;
	int ret;
477
	bool found_csums = false;
478

479 480
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(end + 1, fs_info->sectorsize));
481

482
	path = btrfs_alloc_path();
483 484
	if (!path)
		return -ENOMEM;
485

486
	path->nowait = nowait;
Arne Jansen's avatar
Arne Jansen committed
487

488 489 490 491
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.offset = start;
	key.type = BTRFS_EXTENT_CSUM_KEY;

492
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
493
	if (ret < 0)
494
		goto out;
495 496 497
	if (ret > 0 && path->slots[0] > 0) {
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

		/*
		 * There are two cases we can hit here for the previous csum
		 * item:
		 *
		 *		|<- search range ->|
		 *	|<- csum item ->|
		 *
		 * Or
		 *				|<- search range ->|
		 *	|<- csum item ->|
		 *
		 * Check if the previous csum item covers the leading part of
		 * the search range.  If so we have to start from previous csum
		 * item.
		 */
514 515
		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
		    key.type == BTRFS_EXTENT_CSUM_KEY) {
516
			if (bytes_to_csum_size(fs_info, start - key.offset) <
517
			    btrfs_item_size(leaf, path->slots[0] - 1))
518 519 520 521 522
				path->slots[0]--;
		}
	}

	while (start <= end) {
523 524
		u64 csum_end;

525 526
		leaf = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
527
			ret = btrfs_next_leaf(root, path);
528
			if (ret < 0)
529
				goto out;
530 531 532 533 534 535 536
			if (ret > 0)
				break;
			leaf = path->nodes[0];
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
537 538
		    key.type != BTRFS_EXTENT_CSUM_KEY ||
		    key.offset > end)
539 540 541 542 543
			break;

		if (key.offset > start)
			start = key.offset;

544 545
		csum_end = key.offset + csum_size_to_bytes(fs_info,
					btrfs_item_size(leaf, path->slots[0]));
546 547 548 549
		if (csum_end <= start) {
			path->slots[0]++;
			continue;
		}
550

551 552 553 554
		found_csums = true;
		if (!list)
			goto out;

555
		csum_end = min(csum_end, end + 1);
556 557
		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_csum_item);
558
		while (start < csum_end) {
559 560 561
			unsigned long offset;
			size_t size;

562
			size = min_t(size_t, csum_end - start,
563
				     max_ordered_sum_bytes(fs_info));
564
			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
565
				       GFP_NOFS);
566 567
			if (!sums) {
				ret = -ENOMEM;
568
				goto out;
569
			}
570

571
			sums->logical = start;
572
			sums->len = size;
573

574
			offset = bytes_to_csum_size(fs_info, start - key.offset);
575

576 577 578
			read_extent_buffer(path->nodes[0],
					   sums->sums,
					   ((unsigned long)item) + offset,
579
					   bytes_to_csum_size(fs_info, size));
580

581
			start += size;
582
			list_add_tail(&sums->list, list);
583
		}
584 585
		path->slots[0]++;
	}
586
out:
587
	btrfs_free_path(path);
588
	if (ret < 0) {
589 590 591 592 593 594
		if (list) {
			struct btrfs_ordered_sum *tmp_sums;

			list_for_each_entry_safe(sums, tmp_sums, list, list)
				kfree(sums);
		}
595

596
		return ret;
597 598
	}

599
	return found_csums ? 1 : 0;
600 601
}

602 603 604 605 606 607 608 609 610
/*
 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
 * we return the result.
 *
 * This version will set the corresponding bits in @csum_bitmap to represent
 * that there is a csum found.
 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
 * in is large enough to contain all csums.
 */
611 612 613
int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
			      u64 start, u64 end, u8 *csum_buf,
			      unsigned long *csum_bitmap)
614 615 616 617 618 619
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_key key;
	struct extent_buffer *leaf;
	struct btrfs_csum_item *item;
	const u64 orig_start = start;
620
	bool free_path = false;
621 622 623 624 625
	int ret;

	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(end + 1, fs_info->sectorsize));

626 627 628 629 630 631
	if (!path) {
		path = btrfs_alloc_path();
		if (!path)
			return -ENOMEM;
		free_path = true;
	}
632

633 634 635 636 637 638 639 640 641
	/* Check if we can reuse the previous path. */
	if (path->nodes[0]) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);

		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
		    key.type == BTRFS_EXTENT_CSUM_KEY &&
		    key.offset <= start)
			goto search_forward;
		btrfs_release_path(path);
642 643
	}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = start;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto fail;
	if (ret > 0 && path->slots[0] > 0) {
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);

		/*
		 * There are two cases we can hit here for the previous csum
		 * item:
		 *
		 *		|<- search range ->|
		 *	|<- csum item ->|
		 *
		 * Or
		 *				|<- search range ->|
		 *	|<- csum item ->|
		 *
		 * Check if the previous csum item covers the leading part of
		 * the search range.  If so we have to start from previous csum
		 * item.
		 */
		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
		    key.type == BTRFS_EXTENT_CSUM_KEY) {
			if (bytes_to_csum_size(fs_info, start - key.offset) <
			    btrfs_item_size(leaf, path->slots[0] - 1))
				path->slots[0]--;
		}
	}

678
search_forward:
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	while (start <= end) {
		u64 csum_end;

		leaf = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto fail;
			if (ret > 0)
				break;
			leaf = path->nodes[0];
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
		    key.type != BTRFS_EXTENT_CSUM_KEY ||
		    key.offset > end)
			break;

		if (key.offset > start)
			start = key.offset;

		csum_end = key.offset + csum_size_to_bytes(fs_info,
					btrfs_item_size(leaf, path->slots[0]));
		if (csum_end <= start) {
			path->slots[0]++;
			continue;
		}

		csum_end = min(csum_end, end + 1);
		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_csum_item);
		while (start < csum_end) {
			unsigned long offset;
			size_t size;
			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
						start - orig_start);

			size = min_t(size_t, csum_end - start, end + 1 - start);

			offset = bytes_to_csum_size(fs_info, start - key.offset);

			read_extent_buffer(path->nodes[0], csum_dest,
					   ((unsigned long)item) + offset,
					   bytes_to_csum_size(fs_info, size));

			bitmap_set(csum_bitmap,
				(start - orig_start) >> fs_info->sectorsize_bits,
				size >> fs_info->sectorsize_bits);

			start += size;
		}
		path->slots[0]++;
	}
	ret = 0;
fail:
735 736
	if (free_path)
		btrfs_free_path(path);
737 738 739
	return ret;
}

740 741
/*
 * Calculate checksums of the data contained inside a bio.
742
 */
743
blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
744
{
745
	struct btrfs_ordered_extent *ordered = bbio->ordered;
746
	struct btrfs_inode *inode = bbio->inode;
747
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
748
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
749
	struct bio *bio = &bbio->bio;
750
	struct btrfs_ordered_sum *sums;
751
	char *data;
752 753
	struct bvec_iter iter;
	struct bio_vec bvec;
754
	int index;
755
	unsigned int blockcount;
756
	int i;
757 758 759 760 761 762
	unsigned nofs_flag;

	nofs_flag = memalloc_nofs_save();
	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
		       GFP_KERNEL);
	memalloc_nofs_restore(nofs_flag);
763 764

	if (!sums)
765
		return BLK_STS_RESOURCE;
766

767
	sums->len = bio->bi_iter.bi_size;
768
	INIT_LIST_HEAD(&sums->list);
769

770
	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
771
	index = 0;
772

773 774
	shash->tfm = fs_info->csum_shash;

775
	bio_for_each_segment(bvec, bio, iter) {
776
		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
777
						 bvec.bv_len + fs_info->sectorsize
778
						 - 1);
779

780
		for (i = 0; i < blockcount; i++) {
781 782 783
			data = bvec_kmap_local(&bvec);
			crypto_shash_digest(shash,
					    data + (i * fs_info->sectorsize),
784 785
					    fs_info->sectorsize,
					    sums->sums + index);
786
			kunmap_local(data);
787
			index += fs_info->csum_size;
788 789
		}

790
	}
791 792

	bbio->sums = sums;
793
	btrfs_add_ordered_sum(ordered, sums);
794 795 796
	return 0;
}

797 798 799 800 801 802 803 804 805 806 807 808
/*
 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
 * record the updated logical address on Zone Append completion.
 * Allocate just the structure with an empty sums array here for that case.
 */
blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
{
	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
	if (!bbio->sums)
		return BLK_STS_RESOURCE;
	bbio->sums->len = bbio->bio.bi_iter.bi_size;
	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
809
	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
810 811 812
	return 0;
}

813
/*
814 815 816 817
 * Remove one checksum overlapping a range.
 *
 * This expects the key to describe the csum pointed to by the path, and it
 * expects the csum to overlap the range [bytenr, len]
818
 *
819 820
 * The csum should not be entirely contained in the range and the range should
 * not be entirely contained in the csum.
821
 *
822 823
 * This calls btrfs_truncate_item with the correct args based on the overlap,
 * and fixes up the key as required.
824
 */
825
static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
826 827 828
				       struct btrfs_path *path,
				       struct btrfs_key *key,
				       u64 bytenr, u64 len)
829
{
830
	struct btrfs_fs_info *fs_info = trans->fs_info;
831
	struct extent_buffer *leaf;
832
	const u32 csum_size = fs_info->csum_size;
833 834
	u64 csum_end;
	u64 end_byte = bytenr + len;
835
	u32 blocksize_bits = fs_info->sectorsize_bits;
836 837

	leaf = path->nodes[0];
838
	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
839
	csum_end <<= blocksize_bits;
840 841 842 843 844 845 846 847 848 849 850
	csum_end += key->offset;

	if (key->offset < bytenr && csum_end <= end_byte) {
		/*
		 *         [ bytenr - len ]
		 *         [   ]
		 *   [csum     ]
		 *   A simple truncate off the end of the item
		 */
		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
		new_size *= csum_size;
851
		btrfs_truncate_item(trans, path, new_size, 1);
852 853 854 855 856 857 858 859 860 861 862
	} else if (key->offset >= bytenr && csum_end > end_byte &&
		   end_byte > key->offset) {
		/*
		 *         [ bytenr - len ]
		 *                 [ ]
		 *                 [csum     ]
		 * we need to truncate from the beginning of the csum
		 */
		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
		new_size *= csum_size;

863
		btrfs_truncate_item(trans, path, new_size, 0);
864 865

		key->offset = end_byte;
866
		btrfs_set_item_key_safe(trans, path, key);
867 868 869 870 871 872
	} else {
		BUG();
	}
}

/*
873
 * Delete the csum items from the csum tree for a given range of bytes.
874 875
 */
int btrfs_del_csums(struct btrfs_trans_handle *trans,
876
		    struct btrfs_root *root, u64 bytenr, u64 len)
877
{
878
	struct btrfs_fs_info *fs_info = trans->fs_info;
879 880 881 882 883
	struct btrfs_path *path;
	struct btrfs_key key;
	u64 end_byte = bytenr + len;
	u64 csum_end;
	struct extent_buffer *leaf;
884
	int ret = 0;
885
	const u32 csum_size = fs_info->csum_size;
886
	u32 blocksize_bits = fs_info->sectorsize_bits;
887

888 889
	ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
	       btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
890

891
	path = btrfs_alloc_path();
892 893
	if (!path)
		return -ENOMEM;
894

895
	while (1) {
896 897 898 899 900 901
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.offset = end_byte - 1;
		key.type = BTRFS_EXTENT_CSUM_KEY;

		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
		if (ret > 0) {
902
			ret = 0;
903
			if (path->slots[0] == 0)
904
				break;
905
			path->slots[0]--;
906
		} else if (ret < 0) {
907
			break;
908
		}
909

910 911 912 913 914 915 916 917 918 919 920
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
		    key.type != BTRFS_EXTENT_CSUM_KEY) {
			break;
		}

		if (key.offset >= end_byte)
			break;

921
		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
922 923 924 925 926 927 928 929 930
		csum_end <<= blocksize_bits;
		csum_end += key.offset;

		/* this csum ends before we start, we're done */
		if (csum_end <= bytenr)
			break;

		/* delete the entire item, it is inside our range */
		if (key.offset >= bytenr && csum_end <= end_byte) {
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
			int del_nr = 1;

			/*
			 * Check how many csum items preceding this one in this
			 * leaf correspond to our range and then delete them all
			 * at once.
			 */
			if (key.offset > bytenr && path->slots[0] > 0) {
				int slot = path->slots[0] - 1;

				while (slot >= 0) {
					struct btrfs_key pk;

					btrfs_item_key_to_cpu(leaf, &pk, slot);
					if (pk.offset < bytenr ||
					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
					    pk.objectid !=
					    BTRFS_EXTENT_CSUM_OBJECTID)
						break;
					path->slots[0] = slot;
					del_nr++;
					key.offset = pk.offset;
					slot--;
				}
			}
			ret = btrfs_del_items(trans, root, path,
					      path->slots[0], del_nr);
958
			if (ret)
959
				break;
960 961
			if (key.offset == bytenr)
				break;
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
		} else if (key.offset < bytenr && csum_end > end_byte) {
			unsigned long offset;
			unsigned long shift_len;
			unsigned long item_offset;
			/*
			 *        [ bytenr - len ]
			 *     [csum                ]
			 *
			 * Our bytes are in the middle of the csum,
			 * we need to split this item and insert a new one.
			 *
			 * But we can't drop the path because the
			 * csum could change, get removed, extended etc.
			 *
			 * The trick here is the max size of a csum item leaves
			 * enough room in the tree block for a single
			 * item header.  So, we split the item in place,
			 * adding a new header pointing to the existing
			 * bytes.  Then we loop around again and we have
			 * a nicely formed csum item that we can neatly
			 * truncate.
			 */
			offset = (bytenr - key.offset) >> blocksize_bits;
			offset *= csum_size;

			shift_len = (len >> blocksize_bits) * csum_size;

			item_offset = btrfs_item_ptr_offset(leaf,
							    path->slots[0]);

992
			memzero_extent_buffer(leaf, item_offset + offset,
993 994 995 996 997 998 999 1000
					     shift_len);
			key.offset = bytenr;

			/*
			 * btrfs_split_item returns -EAGAIN when the
			 * item changed size or key
			 */
			ret = btrfs_split_item(trans, root, path, &key, offset);
1001
			if (ret && ret != -EAGAIN) {
1002
				btrfs_abort_transaction(trans, ret);
1003
				break;
1004
			}
1005
			ret = 0;
1006 1007 1008

			key.offset = end_byte - 1;
		} else {
1009
			truncate_one_csum(trans, path, &key, bytenr, len);
1010 1011
			if (key.offset < bytenr)
				break;
1012
		}
1013
		btrfs_release_path(path);
1014 1015
	}
	btrfs_free_path(path);
1016
	return ret;
1017 1018
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static int find_next_csum_offset(struct btrfs_root *root,
				 struct btrfs_path *path,
				 u64 *next_offset)
{
	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
	struct btrfs_key found_key;
	int slot = path->slots[0] + 1;
	int ret;

	if (nritems == 0 || slot >= nritems) {
		ret = btrfs_next_leaf(root, path);
		if (ret < 0) {
			return ret;
		} else if (ret > 0) {
			*next_offset = (u64)-1;
			return 0;
		}
		slot = path->slots[0];
	}

	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);

	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
		*next_offset = (u64)-1;
	else
		*next_offset = found_key.offset;

	return 0;
}

1050
int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1051
			   struct btrfs_root *root,
1052
			   struct btrfs_ordered_sum *sums)
Chris Mason's avatar
Chris Mason committed
1053
{
1054
	struct btrfs_fs_info *fs_info = root->fs_info;
Chris Mason's avatar
Chris Mason committed
1055
	struct btrfs_key file_key;
1056
	struct btrfs_key found_key;
1057
	struct btrfs_path *path;
Chris Mason's avatar
Chris Mason committed
1058
	struct btrfs_csum_item *item;
1059
	struct btrfs_csum_item *item_end;
1060
	struct extent_buffer *leaf = NULL;
1061 1062
	u64 next_offset;
	u64 total_bytes = 0;
1063
	u64 csum_offset;
1064
	u64 bytenr;
1065
	u32 ins_size;
1066 1067 1068
	int index = 0;
	int found_next;
	int ret;
1069
	const u32 csum_size = fs_info->csum_size;
1070

1071
	path = btrfs_alloc_path();
1072 1073
	if (!path)
		return -ENOMEM;
1074 1075 1076
again:
	next_offset = (u64)-1;
	found_next = 0;
1077
	bytenr = sums->logical + total_bytes;
1078
	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1079
	file_key.offset = bytenr;
1080
	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1081

1082
	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1083
	if (!IS_ERR(item)) {
1084
		ret = 0;
1085 1086 1087 1088
		leaf = path->nodes[0];
		item_end = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_csum_item);
		item_end = (struct btrfs_csum_item *)((char *)item_end +
1089
			   btrfs_item_size(leaf, path->slots[0]));
1090
		goto found;
1091
	}
1092
	ret = PTR_ERR(item);
1093
	if (ret != -EFBIG && ret != -ENOENT)
1094
		goto out;
1095

1096 1097 1098
	if (ret == -EFBIG) {
		u32 item_size;
		/* we found one, but it isn't big enough yet */
1099
		leaf = path->nodes[0];
1100
		item_size = btrfs_item_size(leaf, path->slots[0]);
1101
		if ((item_size / csum_size) >=
1102
		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1103 1104 1105 1106
			/* already at max size, make a new one */
			goto insert;
		}
	} else {
1107 1108 1109 1110
		/* We didn't find a csum item, insert one. */
		ret = find_next_csum_offset(root, path, &next_offset);
		if (ret < 0)
			goto out;
1111
		found_next = 1;
1112 1113 1114 1115
		goto insert;
	}

	/*
1116 1117 1118 1119 1120 1121 1122 1123
	 * At this point, we know the tree has a checksum item that ends at an
	 * offset matching the start of the checksum range we want to insert.
	 * We try to extend that item as much as possible and then add as many
	 * checksums to it as they fit.
	 *
	 * First check if the leaf has enough free space for at least one
	 * checksum. If it has go directly to the item extension code, otherwise
	 * release the path and do a search for insertion before the extension.
1124
	 */
1125 1126 1127
	if (btrfs_leaf_free_space(leaf) >= csum_size) {
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		csum_offset = (bytenr - found_key.offset) >>
1128
			fs_info->sectorsize_bits;
1129 1130 1131
		goto extend_csum;
	}

1132
	btrfs_release_path(path);
1133
	path->search_for_extension = 1;
1134
	ret = btrfs_search_slot(trans, root, &file_key, path,
1135
				csum_size, 1);
1136
	path->search_for_extension = 0;
1137
	if (ret < 0)
1138
		goto out;
1139 1140 1141 1142 1143

	if (ret > 0) {
		if (path->slots[0] == 0)
			goto insert;
		path->slots[0]--;
1144
	}
1145

1146 1147
	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1148
	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1149

1150
	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1151
	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1152
	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1153 1154
		goto insert;
	}
1155

1156
extend_csum:
1157
	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1158
	    csum_size) {
1159 1160 1161 1162
		int extend_nr;
		u64 tmp;
		u32 diff;

1163
		tmp = sums->len - total_bytes;
1164
		tmp >>= fs_info->sectorsize_bits;
1165
		WARN_ON(tmp < 1);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		extend_nr = max_t(int, 1, tmp);

		/*
		 * A log tree can already have checksum items with a subset of
		 * the checksums we are trying to log. This can happen after
		 * doing a sequence of partial writes into prealloc extents and
		 * fsyncs in between, with a full fsync logging a larger subrange
		 * of an extent for which a previous fast fsync logged a smaller
		 * subrange. And this happens in particular due to merging file
		 * extent items when we complete an ordered extent for a range
		 * covered by a prealloc extent - this is done at
		 * btrfs_mark_extent_written().
		 *
		 * So if we try to extend the previous checksum item, which has
		 * a range that ends at the start of the range we want to insert,
		 * make sure we don't extend beyond the start offset of the next
		 * checksum item. If we are at the last item in the leaf, then
		 * forget the optimization of extending and add a new checksum
		 * item - it is not worth the complexity of releasing the path,
		 * getting the first key for the next leaf, repeat the btree
		 * search, etc, because log trees are temporary anyway and it
		 * would only save a few bytes of leaf space.
		 */
1189
		if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
			if (path->slots[0] + 1 >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = find_next_csum_offset(root, path, &next_offset);
				if (ret < 0)
					goto out;
				found_next = 1;
				goto insert;
			}

			ret = find_next_csum_offset(root, path, &next_offset);
			if (ret < 0)
				goto out;

			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
			if (tmp <= INT_MAX)
				extend_nr = min_t(int, extend_nr, tmp);
		}
1207 1208

		diff = (csum_offset + extend_nr) * csum_size;
1209 1210
		diff = min(diff,
			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1211

1212
		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1213
		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1214 1215
		diff /= csum_size;
		diff *= csum_size;
1216

1217
		btrfs_extend_item(trans, path, diff);
1218
		ret = 0;
1219 1220 1221 1222
		goto csum;
	}

insert:
1223
	btrfs_release_path(path);
1224
	csum_offset = 0;
1225
	if (found_next) {
1226
		u64 tmp;
1227

1228
		tmp = sums->len - total_bytes;
1229
		tmp >>= fs_info->sectorsize_bits;
1230
		tmp = min(tmp, (next_offset - file_key.offset) >>
1231
					 fs_info->sectorsize_bits);
1232

1233 1234
		tmp = max_t(u64, 1, tmp);
		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1235
		ins_size = csum_size * tmp;
1236
	} else {
1237
		ins_size = csum_size;
1238
	}
1239
	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1240
				      ins_size);
1241
	if (ret < 0)
1242
		goto out;
1243
	leaf = path->nodes[0];
1244
csum:
1245
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1246
	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1247
				      btrfs_item_size(leaf, path->slots[0]));
1248
	item = (struct btrfs_csum_item *)((unsigned char *)item +
1249
					  csum_offset * csum_size);
Chris Mason's avatar
Chris Mason committed
1250
found:
1251
	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1252 1253 1254 1255 1256 1257
	ins_size *= csum_size;
	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
			      ins_size);
	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
			    ins_size);

1258
	index += ins_size;
1259
	ins_size /= csum_size;
1260
	total_bytes += ins_size * fs_info->sectorsize;
1261

1262
	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1263
	if (total_bytes < sums->len) {
1264
		btrfs_release_path(path);
1265
		cond_resched();
1266 1267
		goto again;
	}
1268
out:
1269
	btrfs_free_path(path);
Chris Mason's avatar
Chris Mason committed
1270 1271
	return ret;
}
1272

1273
void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1274 1275 1276 1277
				     const struct btrfs_path *path,
				     struct btrfs_file_extent_item *fi,
				     struct extent_map *em)
{
1278
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1279
	struct btrfs_root *root = inode->root;
1280 1281 1282
	struct extent_buffer *leaf = path->nodes[0];
	const int slot = path->slots[0];
	struct btrfs_key key;
1283
	u64 extent_start;
1284 1285 1286 1287 1288 1289 1290
	u64 bytenr;
	u8 type = btrfs_file_extent_type(leaf, fi);
	int compress_type = btrfs_file_extent_compression(leaf, fi);

	btrfs_item_key_to_cpu(leaf, &key, slot);
	extent_start = key.offset;
	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1291
	em->generation = btrfs_file_extent_generation(leaf, fi);
1292 1293 1294
	if (type == BTRFS_FILE_EXTENT_REG ||
	    type == BTRFS_FILE_EXTENT_PREALLOC) {
		em->start = extent_start;
1295
		em->len = btrfs_file_extent_end(path) - extent_start;
1296 1297 1298
		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
		if (bytenr == 0) {
			em->block_start = EXTENT_MAP_HOLE;
1299 1300 1301
			em->disk_bytenr = EXTENT_MAP_HOLE;
			em->disk_num_bytes = 0;
			em->offset = 0;
1302 1303
			return;
		}
1304 1305 1306
		em->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
		em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
		em->offset = btrfs_file_extent_offset(leaf, fi);
1307
		if (compress_type != BTRFS_COMPRESS_NONE) {
1308
			extent_map_set_compression(em, compress_type);
1309 1310 1311 1312 1313
			em->block_start = bytenr;
		} else {
			bytenr += btrfs_file_extent_offset(leaf, fi);
			em->block_start = bytenr;
			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1314
				em->flags |= EXTENT_FLAG_PREALLOC;
1315 1316
		}
	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1317 1318 1319
		/* Tree-checker has ensured this. */
		ASSERT(extent_start == 0);

1320
		em->block_start = EXTENT_MAP_INLINE;
1321
		em->disk_bytenr = EXTENT_MAP_INLINE;
1322 1323
		em->start = 0;
		em->len = fs_info->sectorsize;
1324
		em->offset = 0;
1325
		extent_map_set_compression(em, compress_type);
1326
	} else {
1327
		btrfs_err(fs_info,
1328 1329
			  "unknown file extent item type %d, inode %llu, offset %llu, "
			  "root %llu", type, btrfs_ino(inode), extent_start,
1330
			  btrfs_root_id(root));
1331 1332
	}
}
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

/*
 * Returns the end offset (non inclusive) of the file extent item the given path
 * points to. If it points to an inline extent, the returned offset is rounded
 * up to the sector size.
 */
u64 btrfs_file_extent_end(const struct btrfs_path *path)
{
	const struct extent_buffer *leaf = path->nodes[0];
	const int slot = path->slots[0];
	struct btrfs_file_extent_item *fi;
	struct btrfs_key key;
	u64 end;

	btrfs_item_key_to_cpu(leaf, &key, slot);
	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);

1351 1352 1353
	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
		end = leaf->fs_info->sectorsize;
	else
1354 1355 1356 1357
		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);

	return end;
}