memcontrol.c 198 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 27
 */

28
#include <linux/page_counter.h>
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/memremap.h>
57
#include <linux/mm_inline.h>
58
#include <linux/swap_cgroup.h>
59
#include <linux/cpu.h>
60
#include <linux/oom.h>
61
#include <linux/lockdep.h>
62
#include <linux/file.h>
63
#include <linux/resume_user_mode.h>
64
#include <linux/psi.h>
65
#include <linux/seq_buf.h>
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
66
#include "internal.h"
Glauber Costa's avatar
Glauber Costa committed
67
#include <net/sock.h>
Michal Hocko's avatar
Michal Hocko committed
68
#include <net/ip.h>
69
#include "slab.h"
70
#include "swap.h"
71

72
#include <linux/uaccess.h>
73

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79 80
struct mem_cgroup *root_mem_cgroup __read_mostly;

81 82
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83
EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84

85
/* Socket memory accounting disabled? */
86
static bool cgroup_memory_nosocket __ro_after_init;
87

88
/* Kernel memory accounting disabled? */
89
static bool cgroup_memory_nokmem __ro_after_init;
90

91
/* Whether the swap controller is active */
Andrew Morton's avatar
Andrew Morton committed
92
#ifdef CONFIG_MEMCG_SWAP
93
static bool cgroup_memory_noswap __ro_after_init;
94
#else
95
#define cgroup_memory_noswap		1
96
#endif
97

98 99 100 101
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

102 103 104
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
105
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
106 107
}

108 109
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
110

111 112 113 114 115
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

116
struct mem_cgroup_tree_per_node {
117
	struct rb_root rb_root;
118
	struct rb_node *rb_rightmost;
119 120 121 122 123 124 125 126 127
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
128 129 130 131 132
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
133

134 135 136
/*
 * cgroup_event represents events which userspace want to receive.
 */
137
struct mem_cgroup_event {
138
	/*
139
	 * memcg which the event belongs to.
140
	 */
141
	struct mem_cgroup *memcg;
142 143 144 145 146 147 148 149
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
150 151 152 153 154
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
155
	int (*register_event)(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
156
			      struct eventfd_ctx *eventfd, const char *args);
157 158 159 160 161
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
162
	void (*unregister_event)(struct mem_cgroup *memcg,
163
				 struct eventfd_ctx *eventfd);
164 165 166 167 168 169
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
170
	wait_queue_entry_t wait;
171 172 173
	struct work_struct remove;
};

174 175
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
176

177 178
/* Stuffs for move charges at task migration. */
/*
179
 * Types of charges to be moved.
180
 */
181 182 183
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
184

185 186
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
187
	spinlock_t	  lock; /* for from, to */
188
	struct mm_struct  *mm;
189 190
	struct mem_cgroup *from;
	struct mem_cgroup *to;
191
	unsigned long flags;
192
	unsigned long precharge;
193
	unsigned long moved_charge;
194
	unsigned long moved_swap;
195 196 197
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
198
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
199 200
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
201

202 203 204 205
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
206
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
207
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
208

209
/* for encoding cft->private value on file */
210 211 212
enum res_type {
	_MEM,
	_MEMSWAP,
213
	_KMEM,
Vladimir Davydov's avatar
Vladimir Davydov committed
214
	_TCP,
215 216
};

217 218
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
219 220
#define MEMFILE_ATTR(val)	((val) & 0xffff)

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

236
static inline bool task_is_dying(void)
237 238 239 240 241
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

242 243 244 245 246 247 248 249
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

250
struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
251
{
252
	return container_of(vmpr, struct mem_cgroup, vmpressure);
253 254
}

255
#ifdef CONFIG_MEMCG_KMEM
256
static DEFINE_SPINLOCK(objcg_lock);
257

258 259 260 261 262
bool mem_cgroup_kmem_disabled(void)
{
	return cgroup_memory_nokmem;
}

263 264
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages);
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	if (nr_pages)
298
		obj_cgroup_uncharge_pages(objcg, nr_pages);
299

300
	spin_lock_irqsave(&objcg_lock, flags);
301
	list_del(&objcg->list);
302
	spin_unlock_irqrestore(&objcg_lock, flags);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

334
	spin_lock_irq(&objcg_lock);
335

336 337 338 339 340 341
	/* 1) Ready to reparent active objcg. */
	list_add(&objcg->list, &memcg->objcg_list);
	/* 2) Reparent active objcg and already reparented objcgs to parent. */
	list_for_each_entry(iter, &memcg->objcg_list, list)
		WRITE_ONCE(iter->memcg, parent);
	/* 3) Move already reparented objcgs to the parent's list */
342 343
	list_splice(&memcg->objcg_list, &parent->objcg_list);

344
	spin_unlock_irq(&objcg_lock);
345 346 347 348

	percpu_ref_kill(&objcg->refcnt);
}

349 350
/*
 * A lot of the calls to the cache allocation functions are expected to be
351
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352 353 354
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
355
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
356
EXPORT_SYMBOL(memcg_kmem_enabled_key);
357
#endif
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

374
	memcg = page_memcg(page);
375

376
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377 378 379 380 381
		memcg = root_mem_cgroup;

	return &memcg->css;
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
401
	memcg = page_memcg_check(page);
402

403 404 405 406 407 408 409 410
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

411 412
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
413
					 unsigned long new_usage_in_excess)
414 415 416
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
417
	struct mem_cgroup_per_node *mz_node;
418
	bool rightmost = true;
419 420 421 422 423 424 425 426 427

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
428
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429
					tree_node);
430
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
431
			p = &(*p)->rb_left;
432
			rightmost = false;
433
		} else {
434
			p = &(*p)->rb_right;
435
		}
436
	}
437 438 439 440

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

441 442 443 444 445
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

446 447
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
448 449 450
{
	if (!mz->on_tree)
		return;
451 452 453 454

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

455 456 457 458
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

459 460
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
461
{
462 463 464
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
465
	__mem_cgroup_remove_exceeded(mz, mctz);
466
	spin_unlock_irqrestore(&mctz->lock, flags);
467 468
}

469 470 471
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
472
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
473 474 475 476 477 478 479
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
480

481
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
482
{
483
	unsigned long excess;
484 485
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
486

487
	mctz = soft_limit_tree.rb_tree_per_node[nid];
488 489
	if (!mctz)
		return;
490 491 492 493 494
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
495
		mz = memcg->nodeinfo[nid];
496
		excess = soft_limit_excess(memcg);
497 498 499 500 501
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
502 503 504
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
505 506
			/* if on-tree, remove it */
			if (mz->on_tree)
507
				__mem_cgroup_remove_exceeded(mz, mctz);
508 509 510 511
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
512
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
513
			spin_unlock_irqrestore(&mctz->lock, flags);
514 515 516 517 518 519
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
520 521 522
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
523

524
	for_each_node(nid) {
525
		mz = memcg->nodeinfo[nid];
526
		mctz = soft_limit_tree.rb_tree_per_node[nid];
527 528
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
529 530 531
	}
}

532 533
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534
{
535
	struct mem_cgroup_per_node *mz;
536 537 538

retry:
	mz = NULL;
539
	if (!mctz->rb_rightmost)
540 541
		goto done;		/* Nothing to reclaim from */

542 543
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
544 545 546 547 548
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
549
	__mem_cgroup_remove_exceeded(mz, mctz);
550
	if (!soft_limit_excess(mz->memcg) ||
551
	    !css_tryget(&mz->memcg->css))
552 553 554 555 556
		goto retry;
done:
	return mz;
}

557 558
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
559
{
560
	struct mem_cgroup_per_node *mz;
561

562
	spin_lock_irq(&mctz->lock);
563
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
564
	spin_unlock_irq(&mctz->lock);
565 566 567
	return mz;
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * memcg and lruvec stats flushing
 *
 * Many codepaths leading to stats update or read are performance sensitive and
 * adding stats flushing in such codepaths is not desirable. So, to optimize the
 * flushing the kernel does:
 *
 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
 *    rstat update tree grow unbounded.
 *
 * 2) Flush the stats synchronously on reader side only when there are more than
 *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
 *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
 *    only for 2 seconds due to (1).
 */
static void flush_memcg_stats_dwork(struct work_struct *w);
static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
static DEFINE_SPINLOCK(stats_flush_lock);
static DEFINE_PER_CPU(unsigned int, stats_updates);
static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
588 589 590
static u64 flush_next_time;

#define FLUSH_TIME (2UL*HZ)
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/*
 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
 * not rely on this as part of an acquired spinlock_t lock. These functions are
 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
 * is sufficient.
 */
static void memcg_stats_lock(void)
{
#ifdef CONFIG_PREEMPT_RT
      preempt_disable();
#else
      VM_BUG_ON(!irqs_disabled());
#endif
}

static void __memcg_stats_lock(void)
{
#ifdef CONFIG_PREEMPT_RT
      preempt_disable();
#endif
}

static void memcg_stats_unlock(void)
{
#ifdef CONFIG_PREEMPT_RT
      preempt_enable();
#endif
}

621
static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
622
{
623 624
	unsigned int x;

625
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
626 627 628

	x = __this_cpu_add_return(stats_updates, abs(val));
	if (x > MEMCG_CHARGE_BATCH) {
629 630 631 632 633 634 635 636
		/*
		 * If stats_flush_threshold exceeds the threshold
		 * (>num_online_cpus()), cgroup stats update will be triggered
		 * in __mem_cgroup_flush_stats(). Increasing this var further
		 * is redundant and simply adds overhead in atomic update.
		 */
		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
637 638
		__this_cpu_write(stats_updates, 0);
	}
639 640 641 642
}

static void __mem_cgroup_flush_stats(void)
{
643 644 645
	unsigned long flag;

	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
646 647
		return;

648
	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
649 650
	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
	atomic_set(&stats_flush_threshold, 0);
651
	spin_unlock_irqrestore(&stats_flush_lock, flag);
652 653 654 655 656 657 658 659
}

void mem_cgroup_flush_stats(void)
{
	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
		__mem_cgroup_flush_stats();
}

660 661 662 663 664 665
void mem_cgroup_flush_stats_delayed(void)
{
	if (time_after64(jiffies_64, flush_next_time))
		mem_cgroup_flush_stats();
}

666 667
static void flush_memcg_stats_dwork(struct work_struct *w)
{
668
	__mem_cgroup_flush_stats();
669
	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
670 671
}

672 673 674 675 676 677 678 679 680 681 682
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	if (mem_cgroup_disabled())
		return;

683
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
684
	memcg_rstat_updated(memcg, val);
685 686
}

687
/* idx can be of type enum memcg_stat_item or node_stat_item. */
688 689 690 691 692 693
static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
694
		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
695 696 697 698 699 700 701
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

702 703
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
704 705
{
	struct mem_cgroup_per_node *pn;
706
	struct mem_cgroup *memcg;
707 708

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
709
	memcg = pn->memcg;
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	/*
	 * The caller from rmap relay on disabled preemption becase they never
	 * update their counter from in-interrupt context. For these two
	 * counters we check that the update is never performed from an
	 * interrupt context while other caller need to have disabled interrupt.
	 */
	__memcg_stats_lock();
	if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
		switch (idx) {
		case NR_ANON_MAPPED:
		case NR_FILE_MAPPED:
		case NR_ANON_THPS:
		case NR_SHMEM_PMDMAPPED:
		case NR_FILE_PMDMAPPED:
			WARN_ON_ONCE(!in_task());
			break;
		default:
			WARN_ON_ONCE(!irqs_disabled());
		}
	}

732
	/* Update memcg */
733
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
734

735
	/* Update lruvec */
736
	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
737

738
	memcg_rstat_updated(memcg, val);
739
	memcg_stats_unlock();
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

763 764 765 766
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
767
	struct mem_cgroup *memcg;
768 769 770
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

771 772
	rcu_read_lock();
	memcg = page_memcg(head);
773
	/* Untracked pages have no memcg, no lruvec. Update only the node */
774
	if (!memcg) {
775
		rcu_read_unlock();
776 777 778 779
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

780
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
781
	__mod_lruvec_state(lruvec, idx, val);
782
	rcu_read_unlock();
783
}
784
EXPORT_SYMBOL(__mod_lruvec_page_state);
785

786
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
787
{
788
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
789 790 791 792
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
793
	memcg = mem_cgroup_from_slab_obj(p);
794

795 796 797 798 799 800 801
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
802 803
		__mod_node_page_state(pgdat, idx, val);
	} else {
804
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
805 806 807 808 809
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

810 811 812 813
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
Ingo Molnar's avatar
Ingo Molnar committed
814
 * @count: the number of events that occurred
815 816 817 818 819 820 821
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	if (mem_cgroup_disabled())
		return;

822
	memcg_stats_lock();
823
	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
824
	memcg_rstat_updated(memcg, count);
825
	memcg_stats_unlock();
826 827
}

828
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
829
{
830
	return READ_ONCE(memcg->vmstats.events[event]);
831 832
}

833 834
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
835 836 837 838
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
839
		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
840
	return x;
841 842
}

843
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
844
					 int nr_pages)
845
{
846 847
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
848
		__count_memcg_events(memcg, PGPGIN, 1);
849
	else {
850
		__count_memcg_events(memcg, PGPGOUT, 1);
851 852
		nr_pages = -nr_pages; /* for event */
	}
853

854
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
855 856
}

857 858
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
859 860 861
{
	unsigned long val, next;

862 863
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864
	/* from time_after() in jiffies.h */
865
	if ((long)(next - val) < 0) {
866 867 868 869
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
870 871 872
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
873 874 875
		default:
			break;
		}
876
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
877
		return true;
878
	}
879
	return false;
880 881 882 883 884 885
}

/*
 * Check events in order.
 *
 */
886
static void memcg_check_events(struct mem_cgroup *memcg, int nid)
887
{
888 889 890
	if (IS_ENABLED(CONFIG_PREEMPT_RT))
		return;

891
	/* threshold event is triggered in finer grain than soft limit */
892 893
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
894
		bool do_softlimit;
895

896 897
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
898
		mem_cgroup_threshold(memcg);
899
		if (unlikely(do_softlimit))
900
			mem_cgroup_update_tree(memcg, nid);
901
	}
902 903
}

904
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
905
{
906 907 908 909 910 911 912 913
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

914
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
915
}
916
EXPORT_SYMBOL(mem_cgroup_from_task);
917

918 919
static __always_inline struct mem_cgroup *active_memcg(void)
{
920
	if (!in_task())
921 922 923 924 925
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}

926 927 928 929
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
930 931 932 933 934 935
 * Obtain a reference on mm->memcg and returns it if successful. If mm
 * is NULL, then the memcg is chosen as follows:
 * 1) The active memcg, if set.
 * 2) current->mm->memcg, if available
 * 3) root memcg
 * If mem_cgroup is disabled, NULL is returned.
936 937
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
938
{
939 940 941 942
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
943

944 945 946 947 948 949 950 951 952
	/*
	 * Page cache insertions can happen without an
	 * actual mm context, e.g. during disk probing
	 * on boot, loopback IO, acct() writes etc.
	 *
	 * No need to css_get on root memcg as the reference
	 * counting is disabled on the root level in the
	 * cgroup core. See CSS_NO_REF.
	 */
953 954 955 956 957 958 959 960 961 962 963
	if (unlikely(!mm)) {
		memcg = active_memcg();
		if (unlikely(memcg)) {
			/* remote memcg must hold a ref */
			css_get(&memcg->css);
			return memcg;
		}
		mm = current->mm;
		if (unlikely(!mm))
			return root_mem_cgroup;
	}
964

965 966
	rcu_read_lock();
	do {
967 968
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
969
			memcg = root_mem_cgroup;
970
	} while (!css_tryget(&memcg->css));
971
	rcu_read_unlock();
972
	return memcg;
973
}
974 975
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

976 977 978 979 980 981 982
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
983
	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
984 985 986 987 988
		return true;

	return false;
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1002 1003 1004
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1005
 */
1006
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007
				   struct mem_cgroup *prev,
1008
				   struct mem_cgroup_reclaim_cookie *reclaim)
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1009
{
1010
	struct mem_cgroup_reclaim_iter *iter;
1011
	struct cgroup_subsys_state *css = NULL;
1012
	struct mem_cgroup *memcg = NULL;
1013
	struct mem_cgroup *pos = NULL;
1014

1015 1016
	if (mem_cgroup_disabled())
		return NULL;
1017

1018 1019
	if (!root)
		root = root_mem_cgroup;
1020

1021
	rcu_read_lock();
Michal Hocko's avatar
Michal Hocko committed
1022

1023
	if (reclaim) {
1024
		struct mem_cgroup_per_node *mz;
1025

1026
		mz = root->nodeinfo[reclaim->pgdat->node_id];
1027
		iter = &mz->iter;
1028

1029 1030 1031 1032 1033 1034 1035
		/*
		 * On start, join the current reclaim iteration cycle.
		 * Exit when a concurrent walker completes it.
		 */
		if (!prev)
			reclaim->generation = iter->generation;
		else if (reclaim->generation != iter->generation)
1036 1037
			goto out_unlock;

1038
		while (1) {
1039
			pos = READ_ONCE(iter->position);
1040 1041
			if (!pos || css_tryget(&pos->css))
				break;
1042
			/*
1043 1044 1045 1046 1047 1048
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1049
			 */
1050 1051
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1052 1053
	} else if (prev) {
		pos = prev;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1071
		}
1072

1073 1074 1075 1076 1077
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
1078 1079
		if (css == &root->css || css_tryget(css)) {
			memcg = mem_cgroup_from_css(css);
1080
			break;
1081
		}
1082
	}
1083 1084 1085

	if (reclaim) {
		/*
1086 1087 1088
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1089
		 */
1090 1091
		(void)cmpxchg(&iter->position, pos, memcg);

1092 1093 1094 1095 1096
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
1097
	}
1098

1099 1100
out_unlock:
	rcu_read_unlock();
1101 1102 1103
	if (prev && prev != root)
		css_put(&prev->css);

1104
	return memcg;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1105
}
1106

1107 1108 1109 1110 1111 1112 1113
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1114 1115 1116 1117 1118 1119
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
1120

1121 1122
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1123 1124
{
	struct mem_cgroup_reclaim_iter *iter;
1125 1126
	struct mem_cgroup_per_node *mz;
	int nid;
1127

1128
	for_each_node(nid) {
1129
		mz = from->nodeinfo[nid];
1130 1131
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1132 1133 1134
	}
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1181
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1193
#ifdef CONFIG_DEBUG_VM
1194
void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1195 1196 1197 1198 1199 1200
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

1201
	memcg = folio_memcg(folio);
1202 1203

	if (!memcg)
1204
		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1205
	else
1206
		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1207 1208 1209 1210
}
#endif

/**
1211 1212
 * folio_lruvec_lock - Lock the lruvec for a folio.
 * @folio: Pointer to the folio.
1213
 *
1214
 * These functions are safe to use under any of the following conditions:
1215 1216 1217 1218 1219 1220
 * - folio locked
 * - folio_test_lru false
 * - folio_memcg_lock()
 * - folio frozen (refcount of 0)
 *
 * Return: The lruvec this folio is on with its lock held.
1221
 */
1222
struct lruvec *folio_lruvec_lock(struct folio *folio)
1223
{
1224
	struct lruvec *lruvec = folio_lruvec(folio);
1225 1226

	spin_lock(&lruvec->lru_lock);
1227
	lruvec_memcg_debug(lruvec, folio);
1228 1229 1230 1231

	return lruvec;
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/**
 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
 * @folio: Pointer to the folio.
 *
 * These functions are safe to use under any of the following conditions:
 * - folio locked
 * - folio_test_lru false
 * - folio_memcg_lock()
 * - folio frozen (refcount of 0)
 *
 * Return: The lruvec this folio is on with its lock held and interrupts
 * disabled.
 */
struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1246
{
1247
	struct lruvec *lruvec = folio_lruvec(folio);
1248 1249

	spin_lock_irq(&lruvec->lru_lock);
1250
	lruvec_memcg_debug(lruvec, folio);
1251 1252 1253 1254

	return lruvec;
}

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
/**
 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
 * @folio: Pointer to the folio.
 * @flags: Pointer to irqsave flags.
 *
 * These functions are safe to use under any of the following conditions:
 * - folio locked
 * - folio_test_lru false
 * - folio_memcg_lock()
 * - folio frozen (refcount of 0)
 *
 * Return: The lruvec this folio is on with its lock held and interrupts
 * disabled.
 */
struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
		unsigned long *flags)
1271
{
1272
	struct lruvec *lruvec = folio_lruvec(folio);
1273 1274

	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1275
	lruvec_memcg_debug(lruvec, folio);
1276 1277 1278 1279

	return lruvec;
}

1280
/**
1281 1282 1283
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1284
 * @zid: zone id of the accounted pages
1285
 * @nr_pages: positive when adding or negative when removing
1286
 *
1287
 * This function must be called under lru_lock, just before a page is added
1288
 * to or just after a page is removed from an lru list.
1289
 */
1290
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1291
				int zid, int nr_pages)
1292
{
1293
	struct mem_cgroup_per_node *mz;
1294
	unsigned long *lru_size;
1295
	long size;
1296 1297 1298 1299

	if (mem_cgroup_disabled())
		return;

1300
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1301
	lru_size = &mz->lru_zone_size[zid][lru];
1302 1303 1304 1305 1306

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1307 1308 1309
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1310 1311 1312 1313 1314 1315
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1316
}
1317

1318
/**
1319
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
Wanpeng Li's avatar
Wanpeng Li committed
1320
 * @memcg: the memory cgroup
1321
 *
1322
 * Returns the maximum amount of memory @mem can be charged with, in
1323
 * pages.
1324
 */
1325
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1326
{
1327 1328 1329
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1330

1331
	count = page_counter_read(&memcg->memory);
1332
	limit = READ_ONCE(memcg->memory.max);
1333 1334 1335
	if (count < limit)
		margin = limit - count;

1336
	if (do_memsw_account()) {
1337
		count = page_counter_read(&memcg->memsw);
1338
		limit = READ_ONCE(memcg->memsw.max);
1339
		if (count < limit)
1340
			margin = min(margin, limit - count);
1341 1342
		else
			margin = 0;
1343 1344 1345
	}

	return margin;
1346 1347
}

1348
/*
Qiang Huang's avatar
Qiang Huang committed
1349
 * A routine for checking "mem" is under move_account() or not.
1350
 *
Qiang Huang's avatar
Qiang Huang committed
1351 1352 1353
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1354
 */
1355
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1356
{
1357 1358
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1359
	bool ret = false;
1360 1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1369

1370 1371
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1372 1373
unlock:
	spin_unlock(&mc.lock);
1374 1375 1376
	return ret;
}

1377
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1378 1379
{
	if (mc.moving_task && current != mc.moving_task) {
1380
		if (mem_cgroup_under_move(memcg)) {
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1393 1394 1395 1396 1397
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1398
static const struct memory_stat memory_stats[] = {
1399 1400
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
1401
	{ "kernel",			MEMCG_KMEM			},
1402 1403
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
1404
	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1405 1406
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
1407
	{ "vmalloc",			MEMCG_VMALLOC			},
1408
	{ "shmem",			NR_SHMEM			},
Johannes Weiner's avatar
Johannes Weiner committed
1409 1410 1411 1412
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
	{ "zswap",			MEMCG_ZSWAP_B			},
	{ "zswapped",			MEMCG_ZSWAPPED			},
#endif
1413 1414 1415
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1416 1417 1418
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1419
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1420 1421 1422
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1423
#endif
1424 1425 1426 1427 1428 1429 1430
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1431 1432

	/* The memory events */
1433 1434 1435 1436 1437 1438 1439
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1440 1441
};

1442 1443 1444 1445 1446
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
Johannes Weiner's avatar
Johannes Weiner committed
1447
	case MEMCG_ZSWAP_B:
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/* Subset of vm_event_item to report for memcg event stats */
static const unsigned int memcg_vm_event_stat[] = {
	PGSCAN_KSWAPD,
	PGSCAN_DIRECT,
	PGSTEAL_KSWAPD,
	PGSTEAL_DIRECT,
	PGFAULT,
	PGMAJFAULT,
	PGREFILL,
	PGACTIVATE,
	PGDEACTIVATE,
	PGLAZYFREE,
	PGLAZYFREED,
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
	ZSWPIN,
	ZSWPOUT,
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	THP_FAULT_ALLOC,
	THP_COLLAPSE_ALLOC,
#endif
};

1494
static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1495 1496 1497
{
	struct seq_buf s;
	int i;
1498

1499
	seq_buf_init(&s, buf, bufsize);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */
1511
	mem_cgroup_flush_stats();
1512

1513 1514
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1515

1516
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1517
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1518

1519
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1520 1521
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1522 1523 1524
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1525 1526 1527 1528 1529 1530 1531 1532 1533

	/* Accumulated memory events */
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));

1534 1535 1536 1537
	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++)
		seq_buf_printf(&s, "%s %lu\n",
			       vm_event_name(memcg_vm_event_stat[i]),
			       memcg_events(memcg, memcg_vm_event_stat[i]));
1538 1539 1540 1541

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
}
1542

1543
#define K(x) ((x) << (PAGE_SHIFT-10))
1544
/**
1545 1546
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1547 1548 1549 1550 1551 1552
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1553
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1554 1555 1556
{
	rcu_read_lock();

1557 1558 1559 1560 1561
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1562
	if (p) {
1563
		pr_cont(",task_memcg=");
1564 1565
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1566
	rcu_read_unlock();
1567 1568 1569 1570 1571 1572 1573 1574 1575
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1576 1577 1578 1579
	/* Use static buffer, for the caller is holding oom_lock. */
	static char buf[PAGE_SIZE];

	lockdep_assert_held(&oom_lock);
1580

1581 1582
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1583
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1584 1585 1586
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1587
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1588 1589 1590 1591 1592 1593 1594
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1595
	}
1596 1597 1598 1599

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
1600
	memory_stat_format(memcg, buf, sizeof(buf));
1601
	pr_info("%s", buf);
1602 1603
}

1604 1605 1606
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1607
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1608
{
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1622
	}
1623
	return max;
1624 1625
}

1626 1627 1628 1629 1630
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1631
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1632
				     int order)
1633
{
1634 1635 1636
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1637
		.memcg = memcg,
1638 1639 1640
		.gfp_mask = gfp_mask,
		.order = order,
	};
1641
	bool ret = true;
1642

1643 1644
	if (mutex_lock_killable(&oom_lock))
		return true;
1645 1646 1647 1648

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1649 1650 1651 1652
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
1653
	ret = task_is_dying() || out_of_memory(&oc);
1654 1655

unlock:
1656
	mutex_unlock(&oom_lock);
1657
	return ret;
1658 1659
}

1660
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1661
				   pg_data_t *pgdat,
1662 1663 1664 1665 1666 1667 1668 1669 1670
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1671
		.pgdat = pgdat,
1672 1673
	};

1674
	excess = soft_limit_excess(root_memcg);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1700
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1701
					pgdat, &nr_scanned);
1702
		*total_scanned += nr_scanned;
1703
		if (!soft_limit_excess(root_memcg))
1704
			break;
1705
	}
1706 1707
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1708 1709
}

1710 1711 1712 1713 1714 1715
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1716 1717
static DEFINE_SPINLOCK(memcg_oom_lock);

1718 1719 1720 1721
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1722
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1723
{
1724
	struct mem_cgroup *iter, *failed = NULL;
1725

1726 1727
	spin_lock(&memcg_oom_lock);

1728
	for_each_mem_cgroup_tree(iter, memcg) {
1729
		if (iter->oom_lock) {
1730 1731 1732 1733 1734
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1735 1736
			mem_cgroup_iter_break(memcg, iter);
			break;
1737 1738
		} else
			iter->oom_lock = true;
1739
	}
1740

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1752
		}
1753 1754
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1755 1756 1757 1758

	spin_unlock(&memcg_oom_lock);

	return !failed;
1759
}
1760

1761
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1762
{
1763 1764
	struct mem_cgroup *iter;

1765
	spin_lock(&memcg_oom_lock);
1766
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1767
	for_each_mem_cgroup_tree(iter, memcg)
1768
		iter->oom_lock = false;
1769
	spin_unlock(&memcg_oom_lock);
1770 1771
}

1772
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1773 1774 1775
{
	struct mem_cgroup *iter;

1776
	spin_lock(&memcg_oom_lock);
1777
	for_each_mem_cgroup_tree(iter, memcg)
1778 1779
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1780 1781
}

1782
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1783 1784 1785
{
	struct mem_cgroup *iter;

1786
	/*
Ingo Molnar's avatar
Ingo Molnar committed
1787
	 * Be careful about under_oom underflows because a child memcg
1788
	 * could have been added after mem_cgroup_mark_under_oom.
1789
	 */
1790
	spin_lock(&memcg_oom_lock);
1791
	for_each_mem_cgroup_tree(iter, memcg)
1792 1793 1794
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1795 1796
}

1797 1798
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1799
struct oom_wait_info {
1800
	struct mem_cgroup *memcg;
1801
	wait_queue_entry_t	wait;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1802 1803
};

1804
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1805 1806
	unsigned mode, int sync, void *arg)
{
1807 1808
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1809 1810 1811
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1812
	oom_wait_memcg = oom_wait_info->memcg;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1813

1814 1815
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1816 1817 1818 1819
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1820
static void memcg_oom_recover(struct mem_cgroup *memcg)
1821
{
1822 1823 1824 1825 1826 1827 1828 1829 1830
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1831
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1832 1833
}

Shakeel Butt's avatar
Shakeel Butt committed
1834 1835 1836 1837 1838
/*
 * Returns true if successfully killed one or more processes. Though in some
 * corner cases it can return true even without killing any process.
 */
static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1839
{
Shakeel Butt's avatar
Shakeel Butt committed
1840
	bool locked, ret;
1841

1842
	if (order > PAGE_ALLOC_COSTLY_ORDER)
Shakeel Butt's avatar
Shakeel Butt committed
1843
		return false;
1844

1845 1846
	memcg_memory_event(memcg, MEMCG_OOM);

1847
	/*
1848 1849 1850 1851
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1852 1853 1854 1855
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1856
	 *
1857 1858 1859 1860 1861 1862 1863
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
1864
	 */
1865
	if (memcg->oom_kill_disable) {
Shakeel Butt's avatar
Shakeel Butt committed
1866 1867 1868 1869 1870 1871 1872
		if (current->in_user_fault) {
			css_get(&memcg->css);
			current->memcg_in_oom = memcg;
			current->memcg_oom_gfp_mask = mask;
			current->memcg_oom_order = order;
		}
		return false;
1873 1874
	}

1875 1876 1877 1878 1879 1880 1881 1882
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
Shakeel Butt's avatar
Shakeel Butt committed
1883
	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1884 1885 1886

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1887

1888
	return ret;
1889 1890 1891 1892
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1893
 * @handle: actually kill/wait or just clean up the OOM state
1894
 *
1895 1896
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1897
 *
1898
 * Memcg supports userspace OOM handling where failed allocations must
1899 1900 1901 1902
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1903
 * the end of the page fault to complete the OOM handling.
1904 1905
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1906
 * completed, %false otherwise.
1907
 */
1908
bool mem_cgroup_oom_synchronize(bool handle)
1909
{
1910
	struct mem_cgroup *memcg = current->memcg_in_oom;
1911
	struct oom_wait_info owait;
1912
	bool locked;
1913 1914 1915

	/* OOM is global, do not handle */
	if (!memcg)
1916
		return false;
1917

1918
	if (!handle)
1919
		goto cleanup;
1920 1921 1922 1923 1924

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1925
	INIT_LIST_HEAD(&owait.wait.entry);
1926

1927
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
1938 1939
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1940
	} else {
1941
		schedule();
1942 1943 1944 1945 1946
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1947 1948 1949 1950
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
Ingo Molnar's avatar
Ingo Molnar committed
1951
		 * uncharges.  Wake any sleepers explicitly.
1952 1953 1954
		 */
		memcg_oom_recover(memcg);
	}
1955
cleanup:
1956
	current->memcg_in_oom = NULL;
1957
	css_put(&memcg->css);
1958
	return true;
1959 1960
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1989 1990 1991 1992 1993 1994 1995 1996
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2025
/**
2026 2027
 * folio_memcg_lock - Bind a folio to its memcg.
 * @folio: The folio.
2028
 *
2029
 * This function prevents unlocked LRU folios from being moved to
2030 2031
 * another cgroup.
 *
2032 2033
 * It ensures lifetime of the bound memcg.  The caller is responsible
 * for the lifetime of the folio.
2034
 */
2035
void folio_memcg_lock(struct folio *folio)
2036 2037
{
	struct mem_cgroup *memcg;
2038
	unsigned long flags;
2039

2040 2041 2042 2043
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2044
         */
2045 2046 2047
	rcu_read_lock();

	if (mem_cgroup_disabled())
2048
		return;
2049
again:
2050
	memcg = folio_memcg(folio);
2051
	if (unlikely(!memcg))
2052
		return;
2053

2054 2055 2056 2057 2058 2059
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Qiang Huang's avatar
Qiang Huang committed
2060
	if (atomic_read(&memcg->moving_account) <= 0)
2061
		return;
2062

2063
	spin_lock_irqsave(&memcg->move_lock, flags);
2064
	if (memcg != folio_memcg(folio)) {
2065
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2066 2067
		goto again;
	}
2068 2069

	/*
2070 2071 2072 2073
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for unlock_page_memcg().
2074 2075 2076
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2077
}
2078 2079 2080 2081 2082

void lock_page_memcg(struct page *page)
{
	folio_memcg_lock(page_folio(page));
}
2083

2084
static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2085
{
2086 2087 2088 2089 2090 2091 2092 2093
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2094

2095
	rcu_read_unlock();
2096
}
2097 2098

/**
2099 2100 2101 2102 2103 2104
 * folio_memcg_unlock - Release the binding between a folio and its memcg.
 * @folio: The folio.
 *
 * This releases the binding created by folio_memcg_lock().  This does
 * not change the accounting of this folio to its memcg, but it does
 * permit others to change it.
2105
 */
2106
void folio_memcg_unlock(struct folio *folio)
2107
{
2108 2109
	__folio_memcg_unlock(folio_memcg(folio));
}
2110

2111 2112 2113
void unlock_page_memcg(struct page *page)
{
	folio_memcg_unlock(page_folio(page));
2114
}
2115

2116
struct memcg_stock_pcp {
2117
	local_lock_t stock_lock;
2118 2119 2120
	struct mem_cgroup *cached; /* this never be root cgroup */
	unsigned int nr_pages;

2121 2122
#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
2123
	struct pglist_data *cached_pgdat;
2124
	unsigned int nr_bytes;
2125 2126
	int nr_slab_reclaimable_b;
	int nr_slab_unreclaimable_b;
2127 2128
#endif

2129
	struct work_struct work;
2130
	unsigned long flags;
2131
#define FLUSHING_CACHED_CHARGE	0
2132
};
2133 2134 2135
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
};
2136
static DEFINE_MUTEX(percpu_charge_mutex);
2137

2138
#ifdef CONFIG_MEMCG_KMEM
2139
static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2140 2141
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);
2142
static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2143 2144

#else
2145
static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2146
{
2147
	return NULL;
2148 2149 2150 2151 2152 2153
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
2154 2155 2156
static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
{
}
2157 2158
#endif

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2169
 */
2170
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2171 2172
{
	struct memcg_stock_pcp *stock;
2173
	unsigned long flags;
2174
	bool ret = false;
2175

2176
	if (nr_pages > MEMCG_CHARGE_BATCH)
2177
		return ret;
2178

2179
	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2180 2181

	stock = this_cpu_ptr(&memcg_stock);
2182
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2183
		stock->nr_pages -= nr_pages;
2184 2185
		ret = true;
	}
2186

2187
	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2188

2189 2190 2191 2192
	return ret;
}

/*
2193
 * Returns stocks cached in percpu and reset cached information.
2194 2195 2196 2197 2198
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2199 2200 2201
	if (!old)
		return;

2202
	if (stock->nr_pages) {
2203
		page_counter_uncharge(&old->memory, stock->nr_pages);
2204
		if (do_memsw_account())
2205
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2206
		stock->nr_pages = 0;
2207
	}
2208 2209

	css_put(&old->css);
2210 2211 2212 2213 2214
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2215
	struct memcg_stock_pcp *stock;
2216
	struct obj_cgroup *old = NULL;
2217 2218
	unsigned long flags;

2219
	/*
2220 2221 2222
	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
	 * drain_stock races is that we always operate on local CPU stock
	 * here with IRQ disabled
2223
	 */
2224
	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2225 2226

	stock = this_cpu_ptr(&memcg_stock);
2227
	old = drain_obj_stock(stock);
2228
	drain_stock(stock);
2229
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2230

2231 2232 2233
	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
	if (old)
		obj_cgroup_put(old);
2234 2235 2236
}

/*
2237
 * Cache charges(val) to local per_cpu area.
2238
 * This will be consumed by consume_stock() function, later.
2239
 */
2240
static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2241
{
2242
	struct memcg_stock_pcp *stock;
2243

2244
	stock = this_cpu_ptr(&memcg_stock);
2245
	if (stock->cached != memcg) { /* reset if necessary */
2246
		drain_stock(stock);
2247
		css_get(&memcg->css);
2248
		stock->cached = memcg;
2249
	}
2250
	stock->nr_pages += nr_pages;
2251

2252
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2253
		drain_stock(stock);
2254 2255 2256 2257 2258
}

static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	unsigned long flags;
2259

2260
	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2261
	__refill_stock(memcg, nr_pages);
2262
	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2263 2264 2265
}

/*
2266
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2267
 * of the hierarchy under it.
2268
 */
2269
static void drain_all_stock(struct mem_cgroup *root_memcg)
2270
{
2271
	int cpu, curcpu;
2272

2273 2274 2275
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2276 2277 2278 2279 2280 2281
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2282 2283
	migrate_disable();
	curcpu = smp_processor_id();
2284 2285
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2286
		struct mem_cgroup *memcg;
2287
		bool flush = false;
2288

2289
		rcu_read_lock();
2290
		memcg = stock->cached;
2291 2292 2293
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
2294
		else if (obj_stock_flush_required(stock, root_memcg))
2295
			flush = true;
2296 2297 2298 2299
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2300 2301 2302 2303 2304
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2305
	}
2306
	migrate_enable();
2307
	mutex_unlock(&percpu_charge_mutex);
2308 2309
}

2310 2311 2312
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
	struct memcg_stock_pcp *stock;
2313

2314 2315
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2316

2317
	return 0;
2318 2319
}

2320 2321 2322
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2323
{
2324 2325
	unsigned long nr_reclaimed = 0;

2326
	do {
2327 2328
		unsigned long pflags;

2329 2330
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2331
			continue;
2332

2333
		memcg_memory_event(memcg, MEMCG_HIGH);
2334 2335

		psi_memstall_enter(&pflags);
2336
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2337 2338
							gfp_mask,
							MEMCG_RECLAIM_MAY_SWAP);
2339
		psi_memstall_leave(&pflags);
2340 2341
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2342 2343

	return nr_reclaimed;
2344 2345 2346 2347 2348 2349 2350
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2351
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2352 2353
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2368
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2407
static u64 calculate_overage(unsigned long usage, unsigned long high)
2408
{
2409
	u64 overage;
2410

2411 2412
	if (usage <= high)
		return 0;
2413

2414 2415 2416 2417 2418
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2419

2420 2421 2422 2423
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2424

2425 2426 2427
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2428

2429 2430
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2431
					    READ_ONCE(memcg->memory.high));
2432
		max_overage = max(overage, max_overage);
2433 2434 2435
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2436 2437 2438
	return max_overage;
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2465 2466
	if (!max_overage)
		return 0;
2467 2468 2469 2470 2471 2472 2473 2474 2475

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2476 2477 2478
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2479 2480 2481 2482 2483 2484 2485 2486 2487

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2488
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2499
	unsigned long nr_reclaimed;
2500
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2501
	int nr_retries = MAX_RECLAIM_RETRIES;
2502
	struct mem_cgroup *memcg;
2503
	bool in_retry = false;
2504 2505 2506 2507 2508 2509 2510

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2525 2526 2527 2528
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2529 2530
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2531

2532 2533 2534
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2535 2536 2537 2538 2539 2540 2541
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2542 2543 2544 2545 2546 2547 2548 2549 2550
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2572 2573
}

2574 2575
static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
			unsigned int nr_pages)
2576
{
2577
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2578
	int nr_retries = MAX_RECLAIM_RETRIES;
2579
	struct mem_cgroup *mem_over_limit;
2580
	struct page_counter *counter;
2581
	unsigned long nr_reclaimed;
2582
	bool passed_oom = false;
2583
	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2584
	bool drained = false;
2585
	bool raised_max_event = false;
2586
	unsigned long pflags;
2587

2588
retry:
2589
	if (consume_stock(memcg, nr_pages))
2590
		return 0;
2591

2592
	if (!do_memsw_account() ||
2593 2594
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2595
			goto done_restock;
2596
		if (do_memsw_account())
2597 2598
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2599
	} else {
2600
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2601
		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2602
	}
2603

2604 2605 2606 2607
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2618 2619 2620
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2621
	if (!gfpflags_allow_blocking(gfp_mask))
2622
		goto nomem;
2623

2624
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2625
	raised_max_event = true;
2626

2627
	psi_memstall_enter(&pflags);
2628
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2629
						    gfp_mask, reclaim_options);
2630
	psi_memstall_leave(&pflags);
2631

2632
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2633
		goto retry;
2634

2635
	if (!drained) {
2636
		drain_all_stock(mem_over_limit);
2637 2638 2639 2640
		drained = true;
		goto retry;
	}

2641 2642
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2643 2644 2645 2646 2647 2648 2649 2650 2651
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2652
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2653 2654 2655 2656 2657 2658 2659 2660
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2661 2662 2663
	if (nr_retries--)
		goto retry;

2664
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2665 2666
		goto nomem;

2667 2668 2669
	/* Avoid endless loop for tasks bypassed by the oom killer */
	if (passed_oom && task_is_dying())
		goto nomem;
2670

2671 2672 2673 2674 2675
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
Shakeel Butt's avatar
Shakeel Butt committed
2676 2677
	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
			   get_order(nr_pages * PAGE_SIZE))) {
2678
		passed_oom = true;
2679
		nr_retries = MAX_RECLAIM_RETRIES;
2680 2681
		goto retry;
	}
2682
nomem:
2683 2684 2685 2686 2687 2688 2689
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2690
		return -ENOMEM;
2691
force:
2692 2693 2694 2695 2696 2697 2698
	/*
	 * If the allocation has to be enforced, don't forget to raise
	 * a MEMCG_MAX event.
	 */
	if (!raised_max_event)
		memcg_memory_event(mem_over_limit, MEMCG_MAX);

2699 2700 2701 2702 2703 2704
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2705
	if (do_memsw_account())
2706 2707 2708
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2709 2710 2711 2712

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2713

2714
	/*
2715 2716
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2717
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2718 2719 2720 2721
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2722 2723
	 */
	do {
2724 2725 2726 2727 2728 2729 2730 2731
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
2732
		if (!in_task()) {
2733
			if (mem_high) {
2734 2735 2736
				schedule_work(&memcg->high_work);
				break;
			}
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
2750
			current->memcg_nr_pages_over_high += batch;
2751 2752 2753
			set_notify_resume(current);
			break;
		}
2754
	} while ((memcg = parent_mem_cgroup(memcg)));
2755

2756 2757 2758 2759 2760
	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
	    !(current->flags & PF_MEMALLOC) &&
	    gfpflags_allow_blocking(gfp_mask)) {
		mem_cgroup_handle_over_high();
	}
2761
	return 0;
2762
}
2763

2764 2765 2766 2767 2768 2769 2770 2771 2772
static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
			     unsigned int nr_pages)
{
	if (mem_cgroup_is_root(memcg))
		return 0;

	return try_charge_memcg(memcg, gfp_mask, nr_pages);
}

2773
static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2774
{
2775 2776 2777
	if (mem_cgroup_is_root(memcg))
		return;

2778
	page_counter_uncharge(&memcg->memory, nr_pages);
2779
	if (do_memsw_account())
2780
		page_counter_uncharge(&memcg->memsw, nr_pages);
2781 2782
}

2783
static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2784
{
2785
	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2786
	/*
2787
	 * Any of the following ensures page's memcg stability:
2788
	 *
2789 2790 2791 2792
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2793
	 */
2794
	folio->memcg_data = (unsigned long)memcg;
2795
}
2796

2797
#ifdef CONFIG_MEMCG_KMEM
2798 2799 2800 2801 2802 2803 2804
/*
 * The allocated objcg pointers array is not accounted directly.
 * Moreover, it should not come from DMA buffer and is not readily
 * reclaimable. So those GFP bits should be masked off.
 */
#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
/*
 * mod_objcg_mlstate() may be called with irq enabled, so
 * mod_memcg_lruvec_state() should be used.
 */
static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
				     struct pglist_data *pgdat,
				     enum node_stat_item idx, int nr)
{
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
	mod_memcg_lruvec_state(lruvec, idx, nr);
	rcu_read_unlock();
}

2823 2824
int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
				 gfp_t gfp, bool new_slab)
2825
{
2826
	unsigned int objects = objs_per_slab(s, slab);
2827
	unsigned long memcg_data;
2828 2829
	void *vec;

2830
	gfp &= ~OBJCGS_CLEAR_MASK;
2831
	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2832
			   slab_nid(slab));
2833 2834 2835
	if (!vec)
		return -ENOMEM;

2836
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2837
	if (new_slab) {
2838
		/*
2839 2840 2841
		 * If the slab is brand new and nobody can yet access its
		 * memcg_data, no synchronization is required and memcg_data can
		 * be simply assigned.
2842
		 */
2843 2844
		slab->memcg_data = memcg_data;
	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2845
		/*
2846 2847
		 * If the slab is already in use, somebody can allocate and
		 * assign obj_cgroups in parallel. In this case the existing
2848 2849
		 * objcg vector should be reused.
		 */
2850
		kfree(vec);
2851 2852
		return 0;
	}
2853

2854
	kmemleak_not_leak(vec);
2855 2856 2857
	return 0;
}

2858 2859
static __always_inline
struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2860 2861
{
	/*
2862 2863
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
2864
	 * slab->memcg_data.
2865
	 */
2866 2867 2868
	if (folio_test_slab(folio)) {
		struct obj_cgroup **objcgs;
		struct slab *slab;
2869 2870
		unsigned int off;

2871 2872 2873 2874 2875 2876 2877 2878
		slab = folio_slab(folio);
		objcgs = slab_objcgs(slab);
		if (!objcgs)
			return NULL;

		off = obj_to_index(slab->slab_cache, slab, p);
		if (objcgs[off])
			return obj_cgroup_memcg(objcgs[off]);
2879 2880

		return NULL;
2881
	}
2882

2883
	/*
2884 2885 2886
	 * page_memcg_check() is used here, because in theory we can encounter
	 * a folio where the slab flag has been cleared already, but
	 * slab->memcg_data has not been freed yet
2887 2888 2889
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
2890
	return page_memcg_check(folio_page(folio, 0));
2891 2892
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * A passed kernel object can be a slab object, vmalloc object or a generic
 * kernel page, so different mechanisms for getting the memory cgroup pointer
 * should be used.
 *
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct folio *folio;

	if (mem_cgroup_disabled())
		return NULL;

	if (unlikely(is_vmalloc_addr(p)))
		folio = page_folio(vmalloc_to_page(p));
	else
		folio = virt_to_folio(p);

	return mem_cgroup_from_obj_folio(folio, p);
}

/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
 * allocated using vmalloc().
 *
 * A passed kernel object must be a slab object or a generic kernel page.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
{
	if (mem_cgroup_disabled())
		return NULL;

	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
}

Johannes Weiner's avatar
Johannes Weiner committed
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
{
	struct obj_cgroup *objcg = NULL;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
		objcg = NULL;
	}
	return objcg;
}

2953 2954 2955 2956 2957
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2958 2959 2960
	if (memcg_kmem_bypass())
		return NULL;

2961
	rcu_read_lock();
2962 2963
	if (unlikely(active_memcg()))
		memcg = active_memcg();
2964 2965
	else
		memcg = mem_cgroup_from_task(current);
Johannes Weiner's avatar
Johannes Weiner committed
2966
	objcg = __get_obj_cgroup_from_memcg(memcg);
2967
	rcu_read_unlock();
Johannes Weiner's avatar
Johannes Weiner committed
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	return objcg;
}

struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
{
	struct obj_cgroup *objcg;

	if (!memcg_kmem_enabled() || memcg_kmem_bypass())
		return NULL;

	if (PageMemcgKmem(page)) {
		objcg = __folio_objcg(page_folio(page));
		obj_cgroup_get(objcg);
	} else {
		struct mem_cgroup *memcg;
2983

Johannes Weiner's avatar
Johannes Weiner committed
2984 2985 2986 2987 2988 2989 2990 2991
		rcu_read_lock();
		memcg = __folio_memcg(page_folio(page));
		if (memcg)
			objcg = __get_obj_cgroup_from_memcg(memcg);
		else
			objcg = NULL;
		rcu_read_unlock();
	}
2992 2993 2994
	return objcg;
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
{
	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (nr_pages > 0)
			page_counter_charge(&memcg->kmem, nr_pages);
		else
			page_counter_uncharge(&memcg->kmem, -nr_pages);
	}
}


3007 3008 3009 3010 3011
/*
 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
 * @objcg: object cgroup to uncharge
 * @nr_pages: number of pages to uncharge
 */
3012 3013 3014 3015 3016 3017 3018
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages)
{
	struct mem_cgroup *memcg;

	memcg = get_mem_cgroup_from_objcg(objcg);

3019
	memcg_account_kmem(memcg, -nr_pages);
3020
	refill_stock(memcg, nr_pages);
3021 3022 3023 3024

	css_put(&memcg->css);
}

3025 3026 3027
/*
 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
 * @objcg: object cgroup to charge
3028
 * @gfp: reclaim mode
3029
 * @nr_pages: number of pages to charge
3030 3031 3032
 *
 * Returns 0 on success, an error code on failure.
 */
3033 3034
static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
				   unsigned int nr_pages)
3035
{
3036
	struct mem_cgroup *memcg;
3037 3038
	int ret;

3039 3040
	memcg = get_mem_cgroup_from_objcg(objcg);

3041
	ret = try_charge_memcg(memcg, gfp, nr_pages);
3042
	if (ret)
3043
		goto out;
3044

3045
	memcg_account_kmem(memcg, nr_pages);
3046 3047
out:
	css_put(&memcg->css);
3048

3049
	return ret;
3050 3051
}

3052
/**
3053
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3054 3055 3056 3057 3058 3059
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3060
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3061
{
3062
	struct obj_cgroup *objcg;
3063
	int ret = 0;
3064

3065 3066 3067
	objcg = get_obj_cgroup_from_current();
	if (objcg) {
		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3068
		if (!ret) {
3069
			page->memcg_data = (unsigned long)objcg |
3070
				MEMCG_DATA_KMEM;
3071
			return 0;
3072
		}
3073
		obj_cgroup_put(objcg);
3074
	}
3075
	return ret;
3076
}
3077

3078
/**
3079
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3080 3081 3082
 * @page: page to uncharge
 * @order: allocation order
 */
3083
void __memcg_kmem_uncharge_page(struct page *page, int order)
3084
{
3085
	struct folio *folio = page_folio(page);
3086
	struct obj_cgroup *objcg;
3087
	unsigned int nr_pages = 1 << order;
3088

3089
	if (!folio_memcg_kmem(folio))
3090 3091
		return;

3092
	objcg = __folio_objcg(folio);
3093
	obj_cgroup_uncharge_pages(objcg, nr_pages);
3094
	folio->memcg_data = 0;
3095
	obj_cgroup_put(objcg);
3096
}
3097

3098 3099 3100
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr)
{
3101
	struct memcg_stock_pcp *stock;
3102
	struct obj_cgroup *old = NULL;
3103 3104 3105
	unsigned long flags;
	int *bytes;

3106
	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3107 3108
	stock = this_cpu_ptr(&memcg_stock);

3109 3110 3111 3112 3113 3114
	/*
	 * Save vmstat data in stock and skip vmstat array update unless
	 * accumulating over a page of vmstat data or when pgdat or idx
	 * changes.
	 */
	if (stock->cached_objcg != objcg) {
3115
		old = drain_obj_stock(stock);
3116 3117 3118 3119 3120 3121 3122
		obj_cgroup_get(objcg);
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		stock->cached_objcg = objcg;
		stock->cached_pgdat = pgdat;
	} else if (stock->cached_pgdat != pgdat) {
		/* Flush the existing cached vmstat data */
3123 3124
		struct pglist_data *oldpg = stock->cached_pgdat;

3125
		if (stock->nr_slab_reclaimable_b) {
3126
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3127 3128 3129 3130
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
3131
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = pgdat;
	}

	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
					       : &stock->nr_slab_unreclaimable_b;
	/*
	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
	 * cached locally at least once before pushing it out.
	 */
	if (!*bytes) {
		*bytes = nr;
		nr = 0;
	} else {
		*bytes += nr;
		if (abs(*bytes) > PAGE_SIZE) {
			nr = *bytes;
			*bytes = 0;
		} else {
			nr = 0;
		}
	}
	if (nr)
		mod_objcg_mlstate(objcg, pgdat, idx, nr);

3159 3160 3161
	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
	if (old)
		obj_cgroup_put(old);
3162 3163
}

3164 3165
static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
3166
	struct memcg_stock_pcp *stock;
3167 3168 3169
	unsigned long flags;
	bool ret = false;

3170
	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3171 3172

	stock = this_cpu_ptr(&memcg_stock);
3173 3174 3175 3176 3177
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

3178
	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3179 3180 3181 3182

	return ret;
}

3183
static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3184 3185 3186 3187
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
3188
		return NULL;
3189 3190 3191 3192 3193

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		if (nr_pages) {
			struct mem_cgroup *memcg;

			memcg = get_mem_cgroup_from_objcg(old);

			memcg_account_kmem(memcg, -nr_pages);
			__refill_stock(memcg, nr_pages);

			css_put(&memcg->css);
		}
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	/*
	 * Flush the vmstat data in current stock
	 */
	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = NULL;
	}

3238
	stock->cached_objcg = NULL;
3239 3240 3241 3242 3243
	/*
	 * The `old' objects needs to be released by the caller via
	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
	 */
	return old;
3244 3245 3246 3247 3248 3249 3250
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

3251 3252
	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
3253 3254 3255 3256 3257 3258 3259
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

3260 3261
static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
			     bool allow_uncharge)
3262
{
3263
	struct memcg_stock_pcp *stock;
3264
	struct obj_cgroup *old = NULL;
3265
	unsigned long flags;
3266
	unsigned int nr_pages = 0;
3267

3268
	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3269 3270

	stock = this_cpu_ptr(&memcg_stock);
3271
	if (stock->cached_objcg != objcg) { /* reset if necessary */
3272
		old = drain_obj_stock(stock);
3273 3274
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
3275 3276 3277
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3278 3279 3280
	}
	stock->nr_bytes += nr_bytes;

3281 3282 3283 3284
	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		stock->nr_bytes &= (PAGE_SIZE - 1);
	}
3285

3286 3287 3288
	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
	if (old)
		obj_cgroup_put(old);
3289 3290 3291

	if (nr_pages)
		obj_cgroup_uncharge_pages(objcg, nr_pages);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
3303
	 * In theory, objcg->nr_charged_bytes can have enough
3304
	 * pre-charged bytes to satisfy the allocation. However,
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	 * flushing objcg->nr_charged_bytes requires two atomic
	 * operations, and objcg->nr_charged_bytes can't be big.
	 * The shared objcg->nr_charged_bytes can also become a
	 * performance bottleneck if all tasks of the same memcg are
	 * trying to update it. So it's better to ignore it and try
	 * grab some new pages. The stock's nr_bytes will be flushed to
	 * objcg->nr_charged_bytes later on when objcg changes.
	 *
	 * The stock's nr_bytes may contain enough pre-charged bytes
	 * to allow one less page from being charged, but we can't rely
	 * on the pre-charged bytes not being changed outside of
	 * consume_obj_stock() or refill_obj_stock(). So ignore those
	 * pre-charged bytes as well when charging pages. To avoid a
	 * page uncharge right after a page charge, we set the
	 * allow_uncharge flag to false when calling refill_obj_stock()
	 * to temporarily allow the pre-charged bytes to exceed the page
	 * size limit. The maximum reachable value of the pre-charged
	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
	 * race.
3324 3325 3326 3327 3328 3329 3330
	 */
	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

3331
	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3332
	if (!ret && nr_bytes)
3333
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3334 3335 3336 3337 3338 3339

	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
3340
	refill_obj_stock(objcg, size, true);
3341 3342
}

3343
#endif /* CONFIG_MEMCG_KMEM */
3344

3345
/*
3346
 * Because page_memcg(head) is not set on tails, set it now.
3347
 */
3348
void split_page_memcg(struct page *head, unsigned int nr)
3349
{
3350 3351
	struct folio *folio = page_folio(head);
	struct mem_cgroup *memcg = folio_memcg(folio);
3352
	int i;
3353

3354
	if (mem_cgroup_disabled() || !memcg)
3355
		return;
3356

3357
	for (i = 1; i < nr; i++)
3358
		folio_page(folio, i)->memcg_data = folio->memcg_data;
3359

3360 3361
	if (folio_memcg_kmem(folio))
		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3362 3363
	else
		css_get_many(&memcg->css, nr - 1);
3364 3365
}

Andrew Morton's avatar
Andrew Morton committed
3366
#ifdef CONFIG_MEMCG_SWAP
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3378
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3379 3380 3381
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3382
				struct mem_cgroup *from, struct mem_cgroup *to)
3383 3384 3385
{
	unsigned short old_id, new_id;

Li Zefan's avatar
Li Zefan committed
3386 3387
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3388 3389

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3390 3391
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3392 3393 3394 3395 3396 3397
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3398
				struct mem_cgroup *from, struct mem_cgroup *to)
3399 3400 3401
{
	return -EINVAL;
}
3402
#endif
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
3403

3404
static DEFINE_MUTEX(memcg_max_mutex);
3405

3406 3407
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3408
{
3409
	bool enlarge = false;
3410
	bool drained = false;
3411
	int ret;
3412 3413
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3414

3415
	do {
3416 3417 3418 3419
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3420

3421
		mutex_lock(&memcg_max_mutex);
3422 3423
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3424
		 * break our basic invariant rule memory.max <= memsw.max.
3425
		 */
3426
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3427
					   max <= memcg->memsw.max;
3428
		if (!limits_invariant) {
3429
			mutex_unlock(&memcg_max_mutex);
3430 3431 3432
			ret = -EINVAL;
			break;
		}
3433
		if (max > counter->max)
3434
			enlarge = true;
3435 3436
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3437 3438 3439 3440

		if (!ret)
			break;

3441 3442 3443 3444 3445 3446
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3447 3448
		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3449 3450 3451 3452
			ret = -EBUSY;
			break;
		}
	} while (true);
3453

3454 3455
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3456

3457 3458 3459
	return ret;
}

3460
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3461 3462 3463 3464
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3465
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3466 3467
	unsigned long reclaimed;
	int loop = 0;
3468
	struct mem_cgroup_tree_per_node *mctz;
3469
	unsigned long excess;
3470 3471 3472 3473

	if (order > 0)
		return 0;

3474
	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3475 3476 3477 3478 3479 3480

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3481
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3482 3483
		return 0;

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3497
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3498
						    gfp_mask, total_scanned);
3499
		nr_reclaimed += reclaimed;
3500
		spin_lock_irq(&mctz->lock);
3501 3502 3503 3504 3505 3506

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3507 3508 3509
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3510
		excess = soft_limit_excess(mz->memcg);
3511 3512 3513 3514 3515 3516 3517 3518 3519
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3520
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3521
		spin_unlock_irq(&mctz->lock);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3539
/*
3540
 * Reclaims as many pages from the given memcg as possible.
3541 3542 3543 3544 3545
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3546
	int nr_retries = MAX_RECLAIM_RETRIES;
3547

3548 3549
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3550 3551 3552

	drain_all_stock(memcg);

3553
	/* try to free all pages in this cgroup */
3554
	while (nr_retries && page_counter_read(&memcg->memory)) {
3555 3556 3557
		if (signal_pending(current))
			return -EINTR;

3558 3559
		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
						  MEMCG_RECLAIM_MAY_SWAP))
3560 3561
			nr_retries--;
	}
3562 3563

	return 0;
3564 3565
}

3566 3567 3568
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3569
{
3570
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3571

3572 3573
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3574
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3575 3576
}

3577 3578
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3579
{
3580
	return 1;
3581 3582
}

3583 3584
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3585
{
3586
	if (val == 1)
3587
		return 0;
3588

3589 3590 3591
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3592

3593
	return -EINVAL;
3594 3595
}

3596
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3597
{
3598
	unsigned long val;
3599

3600
	if (mem_cgroup_is_root(memcg)) {
3601
		mem_cgroup_flush_stats();
3602
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3603
			memcg_page_state(memcg, NR_ANON_MAPPED);
3604 3605
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3606
	} else {
3607
		if (!swap)
3608
			val = page_counter_read(&memcg->memory);
3609
		else
3610
			val = page_counter_read(&memcg->memsw);
3611
	}
3612
	return val;
3613 3614
}

3615 3616 3617 3618 3619 3620 3621
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3622

3623
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3624
			       struct cftype *cft)
3625
{
3626
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3627
	struct page_counter *counter;
3628

3629
	switch (MEMFILE_TYPE(cft->private)) {
3630
	case _MEM:
3631 3632
		counter = &memcg->memory;
		break;
3633
	case _MEMSWAP:
3634 3635
		counter = &memcg->memsw;
		break;
3636
	case _KMEM:
3637
		counter = &memcg->kmem;
3638
		break;
Vladimir Davydov's avatar
Vladimir Davydov committed
3639
	case _TCP:
3640
		counter = &memcg->tcpmem;
Vladimir Davydov's avatar
Vladimir Davydov committed
3641
		break;
3642 3643 3644
	default:
		BUG();
	}
3645 3646 3647 3648

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3649
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3650
		if (counter == &memcg->memsw)
3651
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3652 3653
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3654
		return (u64)counter->max * PAGE_SIZE;
3655 3656 3657 3658 3659 3660 3661 3662 3663
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
3664
}
3665

3666
#ifdef CONFIG_MEMCG_KMEM
3667
static int memcg_online_kmem(struct mem_cgroup *memcg)
3668
{
3669
	struct obj_cgroup *objcg;
3670

3671
	if (mem_cgroup_kmem_disabled())
3672 3673
		return 0;

3674 3675
	if (unlikely(mem_cgroup_is_root(memcg)))
		return 0;
3676

3677
	objcg = obj_cgroup_alloc();
3678
	if (!objcg)
3679
		return -ENOMEM;
3680

3681 3682 3683
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3684 3685
	static_branch_enable(&memcg_kmem_enabled_key);

3686
	memcg->kmemcg_id = memcg->id.id;
3687 3688

	return 0;
3689 3690
}

3691 3692
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
3693
	struct mem_cgroup *parent;
3694

3695
	if (mem_cgroup_kmem_disabled())
3696 3697 3698
		return;

	if (unlikely(mem_cgroup_is_root(memcg)))
3699
		return;
3700

3701 3702 3703 3704
	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3705
	memcg_reparent_objcgs(memcg, parent);
3706

3707
	/*
3708 3709 3710
	 * After we have finished memcg_reparent_objcgs(), all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty.
	 * The ordering is imposed by list_lru_node->lock taken by
3711
	 * memcg_reparent_list_lrus().
3712
	 */
3713
	memcg_reparent_list_lrus(memcg, parent);
3714
}
3715
#else
3716
static int memcg_online_kmem(struct mem_cgroup *memcg)
3717 3718 3719 3720 3721 3722
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
3723
#endif /* CONFIG_MEMCG_KMEM */
3724

3725
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
Vladimir Davydov's avatar
Vladimir Davydov committed
3726 3727 3728
{
	int ret;

3729
	mutex_lock(&memcg_max_mutex);
Vladimir Davydov's avatar
Vladimir Davydov committed
3730

3731
	ret = page_counter_set_max(&memcg->tcpmem, max);
Vladimir Davydov's avatar
Vladimir Davydov committed
3732 3733 3734
	if (ret)
		goto out;

3735
	if (!memcg->tcpmem_active) {
Vladimir Davydov's avatar
Vladimir Davydov committed
3736 3737 3738
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3739 3740 3741
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
Vladimir Davydov's avatar
Vladimir Davydov committed
3742 3743 3744 3745 3746 3747
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3748
		 * We never race with the readers in mem_cgroup_sk_alloc(),
Vladimir Davydov's avatar
Vladimir Davydov committed
3749 3750 3751 3752
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3753
		memcg->tcpmem_active = true;
Vladimir Davydov's avatar
Vladimir Davydov committed
3754 3755
	}
out:
3756
	mutex_unlock(&memcg_max_mutex);
Vladimir Davydov's avatar
Vladimir Davydov committed
3757 3758 3759
	return ret;
}

3760 3761 3762 3763
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3764 3765
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
3766
{
3767
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3768
	unsigned long nr_pages;
3769 3770
	int ret;

3771
	buf = strstrip(buf);
3772
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3773 3774
	if (ret)
		return ret;
3775

3776
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3777
	case RES_LIMIT:
3778 3779 3780 3781
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3782 3783
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3784
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3785
			break;
3786
		case _MEMSWAP:
3787
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3788
			break;
3789
		case _KMEM:
3790 3791
			/* kmem.limit_in_bytes is deprecated. */
			ret = -EOPNOTSUPP;
3792
			break;
Vladimir Davydov's avatar
Vladimir Davydov committed
3793
		case _TCP:
3794
			ret = memcg_update_tcp_max(memcg, nr_pages);
Vladimir Davydov's avatar
Vladimir Davydov committed
3795
			break;
3796
		}
3797
		break;
3798
	case RES_SOFT_LIMIT:
3799 3800 3801 3802 3803 3804
		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
			ret = -EOPNOTSUPP;
		} else {
			memcg->soft_limit = nr_pages;
			ret = 0;
		}
3805 3806
		break;
	}
3807
	return ret ?: nbytes;
3808 3809
}

3810 3811
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3812
{
3813
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3814
	struct page_counter *counter;
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
Vladimir Davydov's avatar
Vladimir Davydov committed
3826
	case _TCP:
3827
		counter = &memcg->tcpmem;
Vladimir Davydov's avatar
Vladimir Davydov committed
3828
		break;
3829 3830 3831
	default:
		BUG();
	}
3832

3833
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3834
	case RES_MAX_USAGE:
3835
		page_counter_reset_watermark(counter);
3836 3837
		break;
	case RES_FAILCNT:
3838
		counter->failcnt = 0;
3839
		break;
3840 3841
	default:
		BUG();
3842
	}
3843

3844
	return nbytes;
3845 3846
}

3847
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3848 3849
					struct cftype *cft)
{
3850
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3851 3852
}

3853
#ifdef CONFIG_MMU
3854
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3855 3856
					struct cftype *cft, u64 val)
{
3857
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3858

3859
	if (val & ~MOVE_MASK)
3860
		return -EINVAL;
3861

3862
	/*
3863 3864 3865 3866
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3867
	 */
3868
	memcg->move_charge_at_immigrate = val;
3869 3870
	return 0;
}
3871
#else
3872
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3873 3874 3875 3876 3877
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3878

3879
#ifdef CONFIG_NUMA
3880 3881 3882 3883 3884 3885

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3886
				int nid, unsigned int lru_mask, bool tree)
3887
{
3888
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3889 3890 3891 3892 3893 3894 3895 3896
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3897 3898 3899 3900
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3901 3902 3903 3904 3905
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3906 3907
					     unsigned int lru_mask,
					     bool tree)
3908 3909 3910 3911 3912 3913 3914
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3915 3916 3917 3918
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3919 3920 3921 3922
	}
	return nr;
}

3923
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3924
{
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3937
	int nid;
3938
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3939

3940
	mem_cgroup_flush_stats();
3941

3942
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3943 3944 3945 3946 3947 3948 3949
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3950
		seq_putc(m, '\n');
3951 3952
	}

3953
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3954 3955 3956 3957 3958 3959 3960 3961

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3962
		seq_putc(m, '\n');
3963 3964 3965 3966 3967 3968
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3969
static const unsigned int memcg1_stats[] = {
3970
	NR_FILE_PAGES,
3971
	NR_ANON_MAPPED,
3972 3973 3974
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3985
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3986
	"rss_huge",
3987
#endif
3988 3989 3990 3991 3992 3993 3994
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3995
/* Universal VM events cgroup1 shows, original sort order */
3996
static const unsigned int memcg1_events[] = {
3997 3998 3999 4000 4001 4002
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4003
static int memcg_stat_show(struct seq_file *m, void *v)
4004
{
4005
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4006
	unsigned long memory, memsw;
4007 4008
	struct mem_cgroup *mi;
	unsigned int i;
4009

4010
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4011

4012
	mem_cgroup_flush_stats();
4013

4014
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4015 4016
		unsigned long nr;

4017
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4018
			continue;
4019 4020
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4021
	}
4022

4023
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4024
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4025
			   memcg_events_local(memcg, memcg1_events[i]));
4026 4027

	for (i = 0; i < NR_LRU_LISTS; i++)
4028
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4029
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4030
			   PAGE_SIZE);
4031

KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4032
	/* Hierarchical information */
4033 4034
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4035 4036
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4037
	}
4038 4039
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4040
	if (do_memsw_account())
4041 4042
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4043

4044
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4045 4046
		unsigned long nr;

4047
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4048
			continue;
4049
		nr = memcg_page_state(memcg, memcg1_stats[i]);
4050
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4051
						(u64)nr * PAGE_SIZE);
4052 4053
	}

4054
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4055 4056
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4057
			   (u64)memcg_events(memcg, memcg1_events[i]));
4058

4059
	for (i = 0; i < NR_LRU_LISTS; i++)
4060
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4061 4062
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4063

KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4064 4065
#ifdef CONFIG_DEBUG_VM
	{
4066 4067
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4068 4069
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4070

4071
		for_each_online_pgdat(pgdat) {
4072
			mz = memcg->nodeinfo[pgdat->node_id];
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4073

4074 4075
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4076
		}
4077 4078
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4079 4080 4081
	}
#endif

4082 4083 4084
	return 0;
}

4085 4086
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4087
{
4088
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4089

4090
	return mem_cgroup_swappiness(memcg);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4091 4092
}

4093 4094
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4095
{
4096
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4097

4098
	if (val > 200)
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4099 4100
		return -EINVAL;

4101
	if (!mem_cgroup_is_root(memcg))
4102 4103 4104
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4105

KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4106 4107 4108
	return 0;
}

4109 4110 4111
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4112
	unsigned long usage;
4113 4114 4115 4116
	int i;

	rcu_read_lock();
	if (!swap)
4117
		t = rcu_dereference(memcg->thresholds.primary);
4118
	else
4119
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4120 4121 4122 4123

	if (!t)
		goto unlock;

4124
	usage = mem_cgroup_usage(memcg, swap);
4125 4126

	/*
4127
	 * current_threshold points to threshold just below or equal to usage.
4128 4129 4130
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4131
	i = t->current_threshold;
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4155
	t->current_threshold = i - 1;
4156 4157 4158 4159 4160 4161
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4162 4163
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4164
		if (do_memsw_account())
4165 4166 4167 4168
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4169 4170 4171 4172 4173 4174 4175
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4176 4177 4178 4179 4180 4181 4182
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4183 4184
}

4185
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4186 4187 4188
{
	struct mem_cgroup_eventfd_list *ev;

4189 4190
	spin_lock(&memcg_oom_lock);

4191
	list_for_each_entry(ev, &memcg->oom_notify, list)
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4192
		eventfd_signal(ev->eventfd, 1);
4193 4194

	spin_unlock(&memcg_oom_lock);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4195 4196 4197
	return 0;
}

4198
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4199
{
4200 4201
	struct mem_cgroup *iter;

4202
	for_each_mem_cgroup_tree(iter, memcg)
4203
		mem_cgroup_oom_notify_cb(iter);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4204 4205
}

4206
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
4207
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4208
{
4209 4210
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4211 4212
	unsigned long threshold;
	unsigned long usage;
4213
	int i, size, ret;
4214

4215
	ret = page_counter_memparse(args, "-1", &threshold);
4216 4217 4218 4219
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4220

4221
	if (type == _MEM) {
4222
		thresholds = &memcg->thresholds;
4223
		usage = mem_cgroup_usage(memcg, false);
4224
	} else if (type == _MEMSWAP) {
4225
		thresholds = &memcg->memsw_thresholds;
4226
		usage = mem_cgroup_usage(memcg, true);
4227
	} else
4228 4229 4230
		BUG();

	/* Check if a threshold crossed before adding a new one */
4231
	if (thresholds->primary)
4232 4233
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4234
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4235 4236

	/* Allocate memory for new array of thresholds */
4237
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4238
	if (!new) {
4239 4240 4241
		ret = -ENOMEM;
		goto unlock;
	}
4242
	new->size = size;
4243 4244

	/* Copy thresholds (if any) to new array */
4245 4246 4247
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4248

4249
	/* Add new threshold */
4250 4251
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4252 4253

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4254
	sort(new->entries, size, sizeof(*new->entries),
4255 4256 4257
			compare_thresholds, NULL);

	/* Find current threshold */
4258
	new->current_threshold = -1;
4259
	for (i = 0; i < size; i++) {
4260
		if (new->entries[i].threshold <= usage) {
4261
			/*
4262 4263
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4264 4265
			 * it here.
			 */
4266
			++new->current_threshold;
4267 4268
		} else
			break;
4269 4270
	}

4271 4272 4273 4274 4275
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4276

4277
	/* To be sure that nobody uses thresholds */
4278 4279 4280 4281 4282 4283 4284 4285
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4286
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
4287 4288
	struct eventfd_ctx *eventfd, const char *args)
{
4289
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
Tejun Heo's avatar
Tejun Heo committed
4290 4291
}

4292
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
4293 4294
	struct eventfd_ctx *eventfd, const char *args)
{
4295
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
Tejun Heo's avatar
Tejun Heo committed
4296 4297
}

4298
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
4299
	struct eventfd_ctx *eventfd, enum res_type type)
4300
{
4301 4302
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4303
	unsigned long usage;
4304
	int i, j, size, entries;
4305 4306

	mutex_lock(&memcg->thresholds_lock);
4307 4308

	if (type == _MEM) {
4309
		thresholds = &memcg->thresholds;
4310
		usage = mem_cgroup_usage(memcg, false);
4311
	} else if (type == _MEMSWAP) {
4312
		thresholds = &memcg->memsw_thresholds;
4313
		usage = mem_cgroup_usage(memcg, true);
4314
	} else
4315 4316
		BUG();

4317 4318 4319
	if (!thresholds->primary)
		goto unlock;

4320 4321 4322 4323
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4324
	size = entries = 0;
4325 4326
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4327
			size++;
4328 4329
		else
			entries++;
4330 4331
	}

4332
	new = thresholds->spare;
4333

4334 4335 4336 4337
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4338 4339
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4340 4341
		kfree(new);
		new = NULL;
4342
		goto swap_buffers;
4343 4344
	}

4345
	new->size = size;
4346 4347

	/* Copy thresholds and find current threshold */
4348 4349 4350
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4351 4352
			continue;

4353
		new->entries[j] = thresholds->primary->entries[i];
4354
		if (new->entries[j].threshold <= usage) {
4355
			/*
4356
			 * new->current_threshold will not be used
4357 4358 4359
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4360
			++new->current_threshold;
4361 4362 4363 4364
		}
		j++;
	}

4365
swap_buffers:
4366 4367
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4368

4369
	rcu_assign_pointer(thresholds->primary, new);
4370

4371
	/* To be sure that nobody uses thresholds */
4372
	synchronize_rcu();
4373 4374 4375 4376 4377 4378

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4379
unlock:
4380 4381
	mutex_unlock(&memcg->thresholds_lock);
}
4382

4383
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
4384 4385
	struct eventfd_ctx *eventfd)
{
4386
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
Tejun Heo's avatar
Tejun Heo committed
4387 4388
}

4389
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
4390 4391
	struct eventfd_ctx *eventfd)
{
4392
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
Tejun Heo's avatar
Tejun Heo committed
4393 4394
}

4395
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
4396
	struct eventfd_ctx *eventfd, const char *args)
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4397 4398 4399 4400 4401 4402 4403
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4404
	spin_lock(&memcg_oom_lock);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4405 4406 4407 4408 4409

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4410
	if (memcg->under_oom)
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4411
		eventfd_signal(eventfd, 1);
4412
	spin_unlock(&memcg_oom_lock);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4413 4414 4415 4416

	return 0;
}

4417
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
Tejun Heo's avatar
Tejun Heo committed
4418
	struct eventfd_ctx *eventfd)
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4419 4420 4421
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4422
	spin_lock(&memcg_oom_lock);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4423

4424
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4425 4426 4427 4428 4429 4430
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4431
	spin_unlock(&memcg_oom_lock);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4432 4433
}

4434
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4435
{
4436
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4437

4438
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4439
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4440 4441
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4442 4443 4444
	return 0;
}

4445
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4446 4447
	struct cftype *cft, u64 val)
{
4448
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4449 4450

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4451
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4452 4453
		return -EINVAL;

4454
	memcg->oom_kill_disable = val;
4455
	if (!val)
4456
		memcg_oom_recover(memcg);
4457

4458 4459 4460
	return 0;
}

4461 4462
#ifdef CONFIG_CGROUP_WRITEBACK

4463 4464
#include <trace/events/writeback.h>

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4475 4476 4477 4478 4479
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4490 4491 4492
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4493 4494
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4495 4496 4497
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4498 4499 4500
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4501
 *
4502 4503 4504 4505 4506
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4507
 */
4508 4509 4510
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4511 4512 4513 4514
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4515
	mem_cgroup_flush_stats();
4516

4517 4518 4519 4520
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_page_state(memcg, NR_ACTIVE_FILE);
4521

4522
	*pheadroom = PAGE_COUNTER_MAX;
4523
	while ((parent = parent_mem_cgroup(memcg))) {
4524
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4525
					    READ_ONCE(memcg->memory.high));
4526 4527
		unsigned long used = page_counter_read(&memcg->memory);

4528
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4529 4530 4531 4532
		memcg = parent;
	}
}

4533 4534 4535 4536
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
Ingo Molnar's avatar
Ingo Molnar committed
4537
 * tracks ownership per-page while the latter per-inode.  This was a
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
Ingo Molnar's avatar
Ingo Molnar committed
4552
 * Conditions like the above can lead to a cgroup getting repeatedly and
4553
 * severely throttled after making some progress after each
Ingo Molnar's avatar
Ingo Molnar committed
4554
 * dirty_expire_interval while the underlying IO device is almost
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
4577
void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4578 4579
					     struct bdi_writeback *wb)
{
4580
	struct mem_cgroup *memcg = folio_memcg(folio);
4581 4582 4583 4584 4585 4586
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4587
	trace_track_foreign_dirty(folio, wb);
4588

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4649
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4650
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4651 4652 4653 4654 4655 4656
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4668 4669 4670 4671
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4672 4673
#endif	/* CONFIG_CGROUP_WRITEBACK */

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4687 4688 4689 4690 4691
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4692
static void memcg_event_remove(struct work_struct *work)
4693
{
4694 4695
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4696
	struct mem_cgroup *memcg = event->memcg;
4697 4698 4699

	remove_wait_queue(event->wqh, &event->wait);

4700
	event->unregister_event(memcg, event->eventfd);
4701 4702 4703 4704 4705 4706

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4707
	css_put(&memcg->css);
4708 4709 4710
}

/*
4711
 * Gets called on EPOLLHUP on eventfd when user closes it.
4712 4713 4714
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4715
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4716
			    int sync, void *key)
4717
{
4718 4719
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4720
	struct mem_cgroup *memcg = event->memcg;
Al Viro's avatar
Al Viro committed
4721
	__poll_t flags = key_to_poll(key);
4722

4723
	if (flags & EPOLLHUP) {
4724 4725 4726 4727 4728 4729 4730 4731 4732
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4733
		spin_lock(&memcg->event_list_lock);
4734 4735 4736 4737 4738 4739 4740 4741
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4742
		spin_unlock(&memcg->event_list_lock);
4743 4744 4745 4746 4747
	}

	return 0;
}

4748
static void memcg_event_ptable_queue_proc(struct file *file,
4749 4750
		wait_queue_head_t *wqh, poll_table *pt)
{
4751 4752
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4753 4754 4755 4756 4757 4758

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4759 4760
 * DO NOT USE IN NEW FILES.
 *
4761 4762 4763 4764 4765
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4766 4767
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4768
{
4769
	struct cgroup_subsys_state *css = of_css(of);
4770
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4771
	struct mem_cgroup_event *event;
4772 4773 4774 4775
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4776
	const char *name;
4777 4778 4779
	char *endp;
	int ret;

4780 4781 4782
	if (IS_ENABLED(CONFIG_PREEMPT_RT))
		return -EOPNOTSUPP;

4783 4784 4785
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4786 4787
	if (*endp != ' ')
		return -EINVAL;
4788
	buf = endp + 1;
4789

4790
	cfd = simple_strtoul(buf, &endp, 10);
4791 4792
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4793
	buf = endp + 1;
4794 4795 4796 4797 4798

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4799
	event->memcg = memcg;
4800
	INIT_LIST_HEAD(&event->list);
4801 4802 4803
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4825
	ret = file_permission(cfile.file, MAY_READ);
4826 4827 4828
	if (ret < 0)
		goto out_put_cfile;

4829 4830 4831 4832 4833
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4834 4835
	 *
	 * DO NOT ADD NEW FILES.
4836
	 */
Al Viro's avatar
Al Viro committed
4837
	name = cfile.file->f_path.dentry->d_name.name;
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
Tejun Heo's avatar
Tejun Heo committed
4849 4850
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4851 4852 4853 4854 4855
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4856
	/*
4857 4858 4859
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4860
	 */
Al Viro's avatar
Al Viro committed
4861
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4862
					       &memory_cgrp_subsys);
4863
	ret = -EINVAL;
4864
	if (IS_ERR(cfile_css))
4865
		goto out_put_cfile;
4866 4867
	if (cfile_css != css) {
		css_put(cfile_css);
4868
		goto out_put_cfile;
4869
	}
4870

4871
	ret = event->register_event(memcg, event->eventfd, buf);
4872 4873 4874
	if (ret)
		goto out_put_css;

4875
	vfs_poll(efile.file, &event->pt);
4876

4877
	spin_lock_irq(&memcg->event_list_lock);
4878
	list_add(&event->list, &memcg->event_list);
4879
	spin_unlock_irq(&memcg->event_list_lock);
4880 4881 4882 4883

	fdput(cfile);
	fdput(efile);

4884
	return nbytes;
4885 4886

out_put_css:
4887
	css_put(css);
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4900 4901 4902 4903 4904
#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
static int mem_cgroup_slab_show(struct seq_file *m, void *p)
{
	/*
	 * Deprecated.
4905
	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4906 4907 4908 4909 4910
	 */
	return 0;
}
#endif

4911
static struct cftype mem_cgroup_legacy_files[] = {
4912
	{
4913
		.name = "usage_in_bytes",
4914
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4915
		.read_u64 = mem_cgroup_read_u64,
4916
	},
4917 4918
	{
		.name = "max_usage_in_bytes",
4919
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4920
		.write = mem_cgroup_reset,
4921
		.read_u64 = mem_cgroup_read_u64,
4922
	},
4923
	{
4924
		.name = "limit_in_bytes",
4925
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4926
		.write = mem_cgroup_write,
4927
		.read_u64 = mem_cgroup_read_u64,
4928
	},
4929 4930 4931
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4932
		.write = mem_cgroup_write,
4933
		.read_u64 = mem_cgroup_read_u64,
4934
	},
4935 4936
	{
		.name = "failcnt",
4937
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4938
		.write = mem_cgroup_reset,
4939
		.read_u64 = mem_cgroup_read_u64,
4940
	},
4941 4942
	{
		.name = "stat",
4943
		.seq_show = memcg_stat_show,
4944
	},
4945 4946
	{
		.name = "force_empty",
4947
		.write = mem_cgroup_force_empty_write,
4948
	},
4949 4950 4951 4952 4953
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4954
	{
4955
		.name = "cgroup.event_control",		/* XXX: for compat */
4956
		.write = memcg_write_event_control,
4957
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4958
	},
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4959 4960 4961 4962 4963
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4964 4965 4966 4967 4968
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4969 4970
	{
		.name = "oom_control",
4971
		.seq_show = mem_cgroup_oom_control_read,
4972
		.write_u64 = mem_cgroup_oom_control_write,
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
4973
	},
4974 4975 4976
	{
		.name = "pressure_level",
	},
4977 4978 4979
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4980
		.seq_show = memcg_numa_stat_show,
4981 4982
	},
#endif
4983 4984 4985
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4986
		.write = mem_cgroup_write,
4987
		.read_u64 = mem_cgroup_read_u64,
4988 4989 4990 4991
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4992
		.read_u64 = mem_cgroup_read_u64,
4993 4994 4995 4996
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4997
		.write = mem_cgroup_reset,
4998
		.read_u64 = mem_cgroup_read_u64,
4999 5000 5001 5002
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5003
		.write = mem_cgroup_reset,
5004
		.read_u64 = mem_cgroup_read_u64,
5005
	},
5006 5007
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5008 5009
	{
		.name = "kmem.slabinfo",
5010
		.seq_show = mem_cgroup_slab_show,
5011 5012
	},
#endif
Vladimir Davydov's avatar
Vladimir Davydov committed
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5036
	{ },	/* terminate */
5037
};
5038

5039 5040 5041 5042 5043 5044 5045 5046
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5047
 * However, there usually are many references to the offline CSS after
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5065 5066 5067 5068 5069 5070 5071 5072
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5073 5074
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5075
{
5076
	refcount_add(n, &memcg->id.ref);
5077 5078
}

5079
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5080
{
5081
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5082
		mem_cgroup_id_remove(memcg);
5083 5084 5085 5086 5087 5088

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5089 5090 5091 5092 5093
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
#ifdef CONFIG_SHRINKER_DEBUG
struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
{
	struct cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *memcg;

	cgrp = cgroup_get_from_id(ino);
	if (!cgrp)
		return ERR_PTR(-ENOENT);

	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
	if (css)
		memcg = container_of(css, struct mem_cgroup, css);
	else
		memcg = ERR_PTR(-ENOENT);

	cgroup_put(cgrp);

	return memcg;
}
#endif

5129
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5130 5131
{
	struct mem_cgroup_per_node *pn;
5132 5133

	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5134 5135
	if (!pn)
		return 1;
5136

5137 5138 5139
	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
						   GFP_KERNEL_ACCOUNT);
	if (!pn->lruvec_stats_percpu) {
5140 5141 5142 5143
		kfree(pn);
		return 1;
	}

5144 5145 5146
	lruvec_init(&pn->lruvec);
	pn->memcg = memcg;

5147
	memcg->nodeinfo[node] = pn;
5148 5149 5150
	return 0;
}

5151
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5152
{
5153 5154
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

5155 5156 5157
	if (!pn)
		return;

5158
	free_percpu(pn->lruvec_stats_percpu);
5159
	kfree(pn);
5160 5161
}

5162
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5163
{
5164
	int node;
5165

5166
	for_each_node(node)
5167
		free_mem_cgroup_per_node_info(memcg, node);
5168
	free_percpu(memcg->vmstats_percpu);
5169
	kfree(memcg);
5170
}
5171

5172 5173 5174 5175 5176 5177
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

5178
static struct mem_cgroup *mem_cgroup_alloc(void)
5179
{
5180
	struct mem_cgroup *memcg;
5181
	int node;
5182
	int __maybe_unused i;
5183
	long error = -ENOMEM;
5184

5185
	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5186
	if (!memcg)
5187
		return ERR_PTR(error);
5188

5189
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5190
				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5191 5192
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5193
		goto fail;
5194
	}
5195

5196 5197
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5198
	if (!memcg->vmstats_percpu)
5199
		goto fail;
5200

Bob Liu's avatar
Bob Liu committed
5201
	for_each_node(node)
5202
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5203
			goto fail;
5204

5205 5206
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5207

5208
	INIT_WORK(&memcg->high_work, high_work_func);
5209 5210 5211
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5212
	vmpressure_init(&memcg->vmpressure);
5213 5214
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5215
	memcg->socket_pressure = jiffies;
5216
#ifdef CONFIG_MEMCG_KMEM
5217
	memcg->kmemcg_id = -1;
5218
	INIT_LIST_HEAD(&memcg->objcg_list);
5219
#endif
5220 5221
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5222 5223 5224
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5225 5226 5227 5228 5229
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5230
#endif
5231
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5232 5233
	return memcg;
fail:
5234
	mem_cgroup_id_remove(memcg);
5235
	__mem_cgroup_free(memcg);
5236
	return ERR_PTR(error);
5237 5238
}

5239 5240
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5241
{
5242
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5243
	struct mem_cgroup *memcg, *old_memcg;
5244

5245
	old_memcg = set_active_memcg(parent);
5246
	memcg = mem_cgroup_alloc();
5247
	set_active_memcg(old_memcg);
5248 5249
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5250

5251
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5252
	memcg->soft_limit = PAGE_COUNTER_MAX;
Johannes Weiner's avatar
Johannes Weiner committed
5253 5254 5255
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
	memcg->zswap_max = PAGE_COUNTER_MAX;
#endif
5256
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5257 5258 5259
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5260

5261
		page_counter_init(&memcg->memory, &parent->memory);
5262
		page_counter_init(&memcg->swap, &parent->swap);
5263
		page_counter_init(&memcg->kmem, &parent->kmem);
5264
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5265
	} else {
5266 5267 5268 5269
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5270

5271 5272 5273 5274
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5275
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5276
		static_branch_inc(&memcg_sockets_enabled_key);
5277

5278 5279 5280
	return &memcg->css;
}

5281
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5282
{
5283 5284
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5285 5286 5287
	if (memcg_online_kmem(memcg))
		goto remove_id;

5288
	/*
5289
	 * A memcg must be visible for expand_shrinker_info()
5290 5291 5292
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
5293 5294
	if (alloc_shrinker_info(memcg))
		goto offline_kmem;
5295

5296
	/* Online state pins memcg ID, memcg ID pins CSS */
5297
	refcount_set(&memcg->id.ref, 1);
5298
	css_get(css);
5299 5300 5301 5302

	if (unlikely(mem_cgroup_is_root(memcg)))
		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
				   2UL*HZ);
5303
	return 0;
5304 5305 5306 5307 5308
offline_kmem:
	memcg_offline_kmem(memcg);
remove_id:
	mem_cgroup_id_remove(memcg);
	return -ENOMEM;
5309 5310
}

5311
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5312
{
5313
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5314
	struct mem_cgroup_event *event, *tmp;
5315 5316 5317 5318 5319 5320

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5321
	spin_lock_irq(&memcg->event_list_lock);
5322
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5323 5324 5325
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5326
	spin_unlock_irq(&memcg->event_list_lock);
5327

Roman Gushchin's avatar
Roman Gushchin committed
5328
	page_counter_set_min(&memcg->memory, 0);
5329
	page_counter_set_low(&memcg->memory, 0);
5330

5331
	memcg_offline_kmem(memcg);
5332
	reparent_shrinker_deferred(memcg);
5333
	wb_memcg_offline(memcg);
5334

5335 5336
	drain_all_stock(memcg);

5337
	mem_cgroup_id_put(memcg);
5338 5339
}

5340 5341 5342 5343 5344 5345 5346
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5347
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5348
{
5349
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5350
	int __maybe_unused i;
5351

5352 5353 5354 5355
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5356
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5357
		static_branch_dec(&memcg_sockets_enabled_key);
5358

5359
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
Vladimir Davydov's avatar
Vladimir Davydov committed
5360
		static_branch_dec(&memcg_sockets_enabled_key);
5361

5362 5363 5364
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5365
	free_shrinker_info(memcg);
5366
	mem_cgroup_free(memcg);
5367 5368
}

5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5386 5387 5388 5389
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
Roman Gushchin's avatar
Roman Gushchin committed
5390
	page_counter_set_min(&memcg->memory, 0);
5391
	page_counter_set_low(&memcg->memory, 0);
5392
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5393
	memcg->soft_limit = PAGE_COUNTER_MAX;
5394
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5395
	memcg_wb_domain_size_changed(memcg);
5396 5397
}

5398 5399 5400 5401 5402 5403
static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	struct memcg_vmstats_percpu *statc;
	long delta, v;
5404
	int i, nid;
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451

	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);

	for (i = 0; i < MEMCG_NR_STAT; i++) {
		/*
		 * Collect the aggregated propagation counts of groups
		 * below us. We're in a per-cpu loop here and this is
		 * a global counter, so the first cycle will get them.
		 */
		delta = memcg->vmstats.state_pending[i];
		if (delta)
			memcg->vmstats.state_pending[i] = 0;

		/* Add CPU changes on this level since the last flush */
		v = READ_ONCE(statc->state[i]);
		if (v != statc->state_prev[i]) {
			delta += v - statc->state_prev[i];
			statc->state_prev[i] = v;
		}

		if (!delta)
			continue;

		/* Aggregate counts on this level and propagate upwards */
		memcg->vmstats.state[i] += delta;
		if (parent)
			parent->vmstats.state_pending[i] += delta;
	}

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		delta = memcg->vmstats.events_pending[i];
		if (delta)
			memcg->vmstats.events_pending[i] = 0;

		v = READ_ONCE(statc->events[i]);
		if (v != statc->events_prev[i]) {
			delta += v - statc->events_prev[i];
			statc->events_prev[i] = v;
		}

		if (!delta)
			continue;

		memcg->vmstats.events[i] += delta;
		if (parent)
			parent->vmstats.events_pending[i] += delta;
	}
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481

	for_each_node_state(nid, N_MEMORY) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
		struct mem_cgroup_per_node *ppn = NULL;
		struct lruvec_stats_percpu *lstatc;

		if (parent)
			ppn = parent->nodeinfo[nid];

		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			delta = pn->lruvec_stats.state_pending[i];
			if (delta)
				pn->lruvec_stats.state_pending[i] = 0;

			v = READ_ONCE(lstatc->state[i]);
			if (v != lstatc->state_prev[i]) {
				delta += v - lstatc->state_prev[i];
				lstatc->state_prev[i] = v;
			}

			if (!delta)
				continue;

			pn->lruvec_stats.state[i] += delta;
			if (ppn)
				ppn->lruvec_stats.state_pending[i] += delta;
		}
	}
5482 5483
}

5484
#ifdef CONFIG_MMU
5485
/* Handlers for move charge at task migration. */
5486
static int mem_cgroup_do_precharge(unsigned long count)
5487
{
5488
	int ret;
5489

5490 5491
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5492
	if (!ret) {
5493 5494 5495
		mc.precharge += count;
		return ret;
	}
5496

5497
	/* Try charges one by one with reclaim, but do not retry */
5498
	while (count--) {
5499
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5500 5501
		if (ret)
			return ret;
5502
		mc.precharge++;
5503
		cond_resched();
5504
	}
5505
	return 0;
5506 5507 5508 5509
}

union mc_target {
	struct page	*page;
5510
	swp_entry_t	ent;
5511 5512 5513
};

enum mc_target_type {
5514
	MC_TARGET_NONE = 0,
5515
	MC_TARGET_PAGE,
5516
	MC_TARGET_SWAP,
5517
	MC_TARGET_DEVICE,
5518 5519
};

5520 5521
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5522
{
5523
	struct page *page = vm_normal_page(vma, addr, ptent);
5524

5525 5526 5527
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5528
		if (!(mc.flags & MOVE_ANON))
5529
			return NULL;
5530 5531 5532 5533
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
5534 5535 5536 5537 5538 5539
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5540
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5541
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5542
			pte_t ptent, swp_entry_t *entry)
5543 5544 5545 5546
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5547
	if (!(mc.flags & MOVE_ANON))
5548
		return NULL;
5549 5550

	/*
5551 5552
	 * Handle device private pages that are not accessible by the CPU, but
	 * stored as special swap entries in the page table.
5553 5554
	 */
	if (is_device_private_entry(ent)) {
5555
		page = pfn_swap_entry_to_page(ent);
5556
		if (!get_page_unless_zero(page))
5557 5558 5559 5560
			return NULL;
		return page;
	}

5561 5562 5563
	if (non_swap_entry(ent))
		return NULL;

5564 5565 5566 5567
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5568
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5569
	entry->val = ent.val;
5570 5571 5572

	return page;
}
5573 5574
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5575
			pte_t ptent, swp_entry_t *entry)
5576 5577 5578 5579
{
	return NULL;
}
#endif
5580

5581
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5582
			unsigned long addr, pte_t ptent)
5583 5584 5585
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5586
	if (!(mc.flags & MOVE_FILE))
5587 5588 5589
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5590
	/* shmem/tmpfs may report page out on swap: account for that too. */
5591 5592
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5593 5594
}

5595 5596 5597
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5598
 * @compound: charge the page as compound or small page
5599 5600 5601
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5602
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5603 5604 5605 5606 5607
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5608
				   bool compound,
5609 5610 5611
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5612
	struct folio *folio = page_folio(page);
5613 5614
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5615
	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5616
	int nid, ret;
5617 5618

	VM_BUG_ON(from == to);
5619
	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5620
	VM_BUG_ON(compound && !folio_test_large(folio));
5621 5622

	/*
5623
	 * Prevent mem_cgroup_migrate() from looking at
5624
	 * page's memory cgroup of its source page while we change it.
5625
	 */
5626
	ret = -EBUSY;
5627
	if (!folio_trylock(folio))
5628 5629 5630
		goto out;

	ret = -EINVAL;
5631
	if (folio_memcg(folio) != from)
5632 5633
		goto out_unlock;

5634
	pgdat = folio_pgdat(folio);
5635 5636
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5637

5638
	folio_memcg_lock(folio);
5639

5640 5641
	if (folio_test_anon(folio)) {
		if (folio_mapped(folio)) {
5642 5643
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5644
			if (folio_test_transhuge(folio)) {
5645 5646 5647 5648
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5649
			}
5650 5651
		}
	} else {
5652 5653 5654
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

5655
		if (folio_test_swapbacked(folio)) {
5656 5657 5658 5659
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5660
		if (folio_mapped(folio)) {
5661 5662 5663
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5664

5665 5666
		if (folio_test_dirty(folio)) {
			struct address_space *mapping = folio_mapping(folio);
5667

5668
			if (mapping_can_writeback(mapping)) {
5669 5670 5671 5672 5673
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5674 5675 5676
		}
	}

5677
	if (folio_test_writeback(folio)) {
5678 5679
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5680 5681 5682
	}

	/*
5683 5684
	 * All state has been migrated, let's switch to the new memcg.
	 *
5685
	 * It is safe to change page's memcg here because the page
5686 5687
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5688
	 * that would rely on a stable page's memory cgroup.
5689 5690
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5691
	 * to save space. As soon as we switch page's memory cgroup to a
5692 5693
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5694
	 */
5695
	smp_mb();
5696

5697 5698 5699
	css_get(&to->css);
	css_put(&from->css);

5700
	folio->memcg_data = (unsigned long)to;
5701

5702
	__folio_memcg_unlock(from);
5703 5704

	ret = 0;
5705
	nid = folio_nid(folio);
5706 5707

	local_irq_disable();
5708
	mem_cgroup_charge_statistics(to, nr_pages);
5709
	memcg_check_events(to, nid);
5710
	mem_cgroup_charge_statistics(from, -nr_pages);
5711
	memcg_check_events(from, nid);
5712 5713
	local_irq_enable();
out_unlock:
5714
	folio_unlock(folio);
5715 5716 5717 5718
out:
	return ret;
}

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5734 5735
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
 *   thus not on the lru.
5736 5737 5738
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5739 5740
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5741 5742 5743 5744
 *
 * Called with pte lock held.
 */

5745
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5746 5747 5748
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5749
	enum mc_target_type ret = MC_TARGET_NONE;
5750 5751 5752 5753
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
5754 5755 5756 5757 5758 5759
	else if (pte_none_mostly(ptent))
		/*
		 * PTE markers should be treated as a none pte here, separated
		 * from other swap handling below.
		 */
		page = mc_handle_file_pte(vma, addr, ptent);
5760
	else if (is_swap_pte(ptent))
5761
		page = mc_handle_swap_pte(vma, ptent, &ent);
5762 5763

	if (!page && !ent.val)
5764
		return ret;
5765 5766
	if (page) {
		/*
5767
		 * Do only loose check w/o serialization.
5768
		 * mem_cgroup_move_account() checks the page is valid or
5769
		 * not under LRU exclusion.
5770
		 */
5771
		if (page_memcg(page) == mc.from) {
5772
			ret = MC_TARGET_PAGE;
5773 5774
			if (is_device_private_page(page) ||
			    is_device_coherent_page(page))
5775
				ret = MC_TARGET_DEVICE;
5776 5777 5778 5779 5780 5781
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5782 5783 5784 5785 5786
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
Li Zefan's avatar
Li Zefan committed
5787
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5788 5789 5790
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5791 5792 5793 5794
	}
	return ret;
}

5795 5796
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5797 5798
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5799 5800 5801 5802 5803 5804 5805 5806
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5807 5808 5809 5810 5811
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5812
	page = pmd_page(pmd);
5813
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5814
	if (!(mc.flags & MOVE_ANON))
5815
		return ret;
5816
	if (page_memcg(page) == mc.from) {
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5833 5834 5835 5836
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5837
	struct vm_area_struct *vma = walk->vma;
5838 5839 5840
	pte_t *pte;
	spinlock_t *ptl;

5841 5842
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5843 5844
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5845 5846
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5847
		 */
5848 5849
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5850
		spin_unlock(ptl);
5851
		return 0;
5852
	}
5853

5854 5855
	if (pmd_trans_unstable(pmd))
		return 0;
5856 5857
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5858
		if (get_mctgt_type(vma, addr, *pte, NULL))
5859 5860 5861 5862
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5863 5864 5865
	return 0;
}

5866 5867 5868 5869
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5870 5871 5872 5873
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5874
	mmap_read_lock(mm);
5875
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5876
	mmap_read_unlock(mm);
5877 5878 5879 5880 5881 5882 5883 5884 5885

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5886 5887 5888 5889 5890
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5891 5892
}

5893 5894
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5895
{
5896 5897 5898
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5899
	/* we must uncharge all the leftover precharges from mc.to */
5900
	if (mc.precharge) {
5901
		cancel_charge(mc.to, mc.precharge);
5902 5903 5904 5905 5906 5907 5908
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5909
		cancel_charge(mc.from, mc.moved_charge);
5910
		mc.moved_charge = 0;
5911
	}
5912 5913 5914
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5915
		if (!mem_cgroup_is_root(mc.from))
5916
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5917

5918 5919
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5920
		/*
5921 5922
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5923
		 */
5924
		if (!mem_cgroup_is_root(mc.to))
5925 5926
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5927 5928
		mc.moved_swap = 0;
	}
5929 5930 5931 5932 5933 5934 5935
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5936 5937
	struct mm_struct *mm = mc.mm;

5938 5939 5940 5941 5942 5943
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5944
	spin_lock(&mc.lock);
5945 5946
	mc.from = NULL;
	mc.to = NULL;
5947
	mc.mm = NULL;
5948
	spin_unlock(&mc.lock);
5949 5950

	mmput(mm);
5951 5952
}

5953
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5954
{
5955
	struct cgroup_subsys_state *css;
5956
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5957
	struct mem_cgroup *from;
5958
	struct task_struct *leader, *p;
5959
	struct mm_struct *mm;
5960
	unsigned long move_flags;
5961
	int ret = 0;
5962

5963 5964
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5965 5966
		return 0;

5967 5968 5969 5970 5971 5972 5973
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5974
	cgroup_taskset_for_each_leader(leader, css, tset) {
5975 5976
		WARN_ON_ONCE(p);
		p = leader;
5977
		memcg = mem_cgroup_from_css(css);
5978 5979 5980 5981
	}
	if (!p)
		return 0;

5982
	/*
Ingo Molnar's avatar
Ingo Molnar committed
5983
	 * We are now committed to this value whatever it is. Changes in this
5984 5985 5986 5987 5988 5989 5990
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
6007
		mc.mm = mm;
6008 6009 6010 6011 6012 6013 6014 6015 6016
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
6017 6018
	} else {
		mmput(mm);
6019 6020 6021 6022
	}
	return ret;
}

6023
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6024
{
6025 6026
	if (mc.to)
		mem_cgroup_clear_mc();
6027 6028
}

6029 6030 6031
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6032
{
6033
	int ret = 0;
6034
	struct vm_area_struct *vma = walk->vma;
6035 6036
	pte_t *pte;
	spinlock_t *ptl;
6037 6038 6039
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6040

6041 6042
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6043
		if (mc.precharge < HPAGE_PMD_NR) {
6044
			spin_unlock(ptl);
6045 6046 6047 6048 6049 6050
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6051
				if (!mem_cgroup_move_account(page, true,
6052
							     mc.from, mc.to)) {
6053 6054 6055 6056 6057 6058
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6059 6060 6061 6062 6063 6064 6065 6066
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6067
		}
6068
		spin_unlock(ptl);
6069
		return 0;
6070 6071
	}

6072 6073
	if (pmd_trans_unstable(pmd))
		return 0;
6074 6075 6076 6077
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6078
		bool device = false;
6079
		swp_entry_t ent;
6080 6081 6082 6083

		if (!mc.precharge)
			break;

6084
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6085 6086
		case MC_TARGET_DEVICE:
			device = true;
Joe Perches's avatar
Joe Perches committed
6087
			fallthrough;
6088 6089
		case MC_TARGET_PAGE:
			page = target.page;
6090 6091 6092 6093 6094 6095 6096 6097
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6098
			if (!device && isolate_lru_page(page))
6099
				goto put;
6100 6101
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6102
				mc.precharge--;
6103 6104
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6105
			}
6106 6107
			if (!device)
				putback_lru_page(page);
6108
put:			/* get_mctgt_type() gets the page */
6109 6110
			put_page(page);
			break;
6111 6112
		case MC_TARGET_SWAP:
			ent = target.ent;
6113
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6114
				mc.precharge--;
6115 6116
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6117 6118
				mc.moved_swap++;
			}
6119
			break;
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6134
		ret = mem_cgroup_do_precharge(1);
6135 6136 6137 6138 6139 6140 6141
		if (!ret)
			goto retry;
	}

	return ret;
}

6142 6143 6144 6145
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6146
static void mem_cgroup_move_charge(void)
6147 6148
{
	lru_add_drain_all();
6149
	/*
6150 6151 6152
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6153 6154 6155
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6156
retry:
6157
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6158
		/*
6159
		 * Someone who are holding the mmap_lock might be waiting in
6160 6161 6162 6163 6164 6165 6166 6167 6168
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6169 6170 6171 6172
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6173 6174
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6175

6176
	mmap_read_unlock(mc.mm);
6177
	atomic_dec(&mc.from->moving_account);
6178 6179
}

6180
static void mem_cgroup_move_task(void)
6181
{
6182 6183
	if (mc.to) {
		mem_cgroup_move_charge();
6184
		mem_cgroup_clear_mc();
6185
	}
6186
}
6187
#else	/* !CONFIG_MMU */
6188
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6189 6190 6191
{
	return 0;
}
6192
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6193 6194
{
}
6195
static void mem_cgroup_move_task(void)
6196 6197 6198
{
}
#endif
6199

6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6210 6211 6212
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6213 6214 6215
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6216 6217
}

6218 6219 6220 6221 6222 6223 6224 6225
static u64 memory_peak_read(struct cgroup_subsys_state *css,
			    struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)memcg->memory.watermark * PAGE_SIZE;
}

Roman Gushchin's avatar
Roman Gushchin committed
6226 6227
static int memory_min_show(struct seq_file *m, void *v)
{
6228 6229
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
Roman Gushchin's avatar
Roman Gushchin committed
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6249 6250
static int memory_low_show(struct seq_file *m, void *v)
{
6251 6252
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6263
	err = page_counter_memparse(buf, "max", &low);
6264 6265 6266
	if (err)
		return err;

6267
	page_counter_set_low(&memcg->memory, low);
6268 6269 6270 6271 6272 6273

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6274 6275
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6276 6277 6278 6279 6280 6281
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6282
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6283
	bool drained = false;
6284 6285 6286 6287
	unsigned long high;
	int err;

	buf = strstrip(buf);
6288
	err = page_counter_memparse(buf, "max", &high);
6289 6290 6291
	if (err)
		return err;

6292 6293
	page_counter_set_high(&memcg->memory, high);

6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6311
					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6312 6313 6314 6315

		if (!reclaimed && !nr_retries--)
			break;
	}
6316

6317
	memcg_wb_domain_size_changed(memcg);
6318 6319 6320 6321 6322
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6323 6324
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6325 6326 6327 6328 6329 6330
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6331
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6332
	bool drained = false;
6333 6334 6335 6336
	unsigned long max;
	int err;

	buf = strstrip(buf);
6337
	err = page_counter_memparse(buf, "max", &max);
6338 6339 6340
	if (err)
		return err;

6341
	xchg(&memcg->memory.max, max);
6342 6343 6344 6345 6346 6347 6348

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6349
		if (signal_pending(current))
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6360
					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6361 6362 6363 6364
				nr_reclaims--;
			continue;
		}

6365
		memcg_memory_event(memcg, MEMCG_OOM);
6366 6367 6368
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6369

6370
	memcg_wb_domain_size_changed(memcg);
6371 6372 6373
	return nbytes;
}

6374 6375 6376 6377 6378 6379 6380 6381
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6382 6383
	seq_printf(m, "oom_group_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6384 6385
}

6386 6387
static int memory_events_show(struct seq_file *m, void *v)
{
6388
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6389

6390 6391 6392 6393 6394 6395 6396
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6397

6398
	__memory_events_show(m, memcg->memory_events_local);
6399 6400 6401
	return 0;
}

6402 6403
static int memory_stat_show(struct seq_file *m, void *v)
{
6404
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6405
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6406

6407 6408
	if (!buf)
		return -ENOMEM;
6409
	memory_stat_format(memcg, buf, PAGE_SIZE);
6410 6411
	seq_puts(m, buf);
	kfree(buf);
6412 6413 6414
	return 0;
}

6415
#ifdef CONFIG_NUMA
6416 6417 6418 6419 6420 6421
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6422 6423 6424 6425 6426
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

6427
	mem_cgroup_flush_stats();
6428

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6441 6442
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6443 6444 6445 6446 6447 6448 6449 6450 6451
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6452 6453
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6454
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6483 6484 6485 6486 6487 6488
static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
			      size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6489
	unsigned int reclaim_options;
6490 6491 6492 6493 6494 6495 6496
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "", &nr_to_reclaim);
	if (err)
		return err;

6497
	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	while (nr_reclaimed < nr_to_reclaim) {
		unsigned long reclaimed;

		if (signal_pending(current))
			return -EINTR;

		/*
		 * This is the final attempt, drain percpu lru caches in the
		 * hope of introducing more evictable pages for
		 * try_to_free_mem_cgroup_pages().
		 */
		if (!nr_retries)
			lru_add_drain_all();

		reclaimed = try_to_free_mem_cgroup_pages(memcg,
						nr_to_reclaim - nr_reclaimed,
6514
						GFP_KERNEL, reclaim_options);
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524

		if (!reclaimed && !nr_retries--)
			return -EAGAIN;

		nr_reclaimed += reclaimed;
	}

	return nbytes;
}

6525 6526 6527
static struct cftype memory_files[] = {
	{
		.name = "current",
6528
		.flags = CFTYPE_NOT_ON_ROOT,
6529 6530
		.read_u64 = memory_current_read,
	},
6531 6532 6533 6534 6535
	{
		.name = "peak",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = memory_peak_read,
	},
Roman Gushchin's avatar
Roman Gushchin committed
6536 6537 6538 6539 6540 6541
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6563
		.file_offset = offsetof(struct mem_cgroup, events_file),
6564 6565
		.seq_show = memory_events_show,
	},
6566 6567 6568 6569 6570 6571
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6572 6573 6574 6575
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6576 6577 6578 6579 6580 6581
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6582 6583 6584 6585 6586 6587
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6588 6589 6590 6591 6592
	{
		.name = "reclaim",
		.flags = CFTYPE_NS_DELEGATABLE,
		.write = memory_reclaim,
	},
6593 6594 6595
	{ }	/* terminate */
};

6596
struct cgroup_subsys memory_cgrp_subsys = {
6597
	.css_alloc = mem_cgroup_css_alloc,
6598
	.css_online = mem_cgroup_css_online,
6599
	.css_offline = mem_cgroup_css_offline,
6600
	.css_released = mem_cgroup_css_released,
6601
	.css_free = mem_cgroup_css_free,
6602
	.css_reset = mem_cgroup_css_reset,
6603
	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6604 6605
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6606
	.post_attach = mem_cgroup_move_task,
6607 6608
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6609
	.early_init = 0,
6610
};
6611

6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6654 6655
 */
static unsigned long effective_protection(unsigned long usage,
6656
					  unsigned long parent_usage,
6657 6658 6659 6660 6661
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6662
	unsigned long ep;
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6706 6707 6708 6709
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6710 6711 6712
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6713 6714 6715
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6726 6727
}

6728
/**
6729
 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6730
 * @root: the top ancestor of the sub-tree being checked
6731 6732
 * @memcg: the memory cgroup to check
 *
6733 6734
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6735
 */
6736 6737
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6738
{
6739
	unsigned long usage, parent_usage;
6740 6741
	struct mem_cgroup *parent;

6742
	if (mem_cgroup_disabled())
6743
		return;
6744

6745 6746
	if (!root)
		root = root_mem_cgroup;
6747 6748 6749 6750 6751 6752 6753 6754

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6755
	if (memcg == root)
6756
		return;
6757

6758
	usage = page_counter_read(&memcg->memory);
Roman Gushchin's avatar
Roman Gushchin committed
6759
	if (!usage)
6760
		return;
Roman Gushchin's avatar
Roman Gushchin committed
6761 6762

	parent = parent_mem_cgroup(memcg);
6763

6764
	if (parent == root) {
6765
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6766
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6767
		return;
Roman Gushchin's avatar
Roman Gushchin committed
6768 6769
	}

6770 6771
	parent_usage = page_counter_read(&parent->memory);

6772
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6773 6774
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6775
			atomic_long_read(&parent->memory.children_min_usage)));
6776

6777
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6778 6779
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6780
			atomic_long_read(&parent->memory.children_low_usage)));
6781 6782
}

6783 6784
static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
			gfp_t gfp)
6785
{
6786
	long nr_pages = folio_nr_pages(folio);
6787 6788 6789 6790 6791 6792 6793
	int ret;

	ret = try_charge(memcg, gfp, nr_pages);
	if (ret)
		goto out;

	css_get(&memcg->css);
6794
	commit_charge(folio, memcg);
6795 6796

	local_irq_disable();
6797
	mem_cgroup_charge_statistics(memcg, nr_pages);
6798
	memcg_check_events(memcg, folio_nid(folio));
6799 6800 6801 6802 6803
	local_irq_enable();
out:
	return ret;
}

6804
int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6805
{
6806 6807
	struct mem_cgroup *memcg;
	int ret;
6808

6809
	memcg = get_mem_cgroup_from_mm(mm);
6810
	ret = charge_memcg(folio, memcg, gfp);
6811
	css_put(&memcg->css);
6812

6813 6814
	return ret;
}
6815

6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
/**
 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp: reclaim mode
 * @entry: swap entry for which the page is allocated
 *
 * This function charges a page allocated for swapin. Please call this before
 * adding the page to the swapcache.
 *
 * Returns 0 on success. Otherwise, an error code is returned.
 */
int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
				  gfp_t gfp, swp_entry_t entry)
{
6831
	struct folio *folio = page_folio(page);
6832 6833 6834
	struct mem_cgroup *memcg;
	unsigned short id;
	int ret;
6835

6836 6837
	if (mem_cgroup_disabled())
		return 0;
6838

6839 6840 6841 6842 6843 6844
	id = lookup_swap_cgroup_id(entry);
	rcu_read_lock();
	memcg = mem_cgroup_from_id(id);
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = get_mem_cgroup_from_mm(mm);
	rcu_read_unlock();
6845

6846
	ret = charge_memcg(folio, memcg, gfp);
6847

6848 6849 6850
	css_put(&memcg->css);
	return ret;
}
6851

6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
/*
 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
 * @entry: swap entry for which the page is charged
 *
 * Call this function after successfully adding the charged page to swapcache.
 *
 * Note: This function assumes the page for which swap slot is being uncharged
 * is order 0 page.
 */
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
6875
	if (!mem_cgroup_disabled() && do_memsw_account()) {
6876 6877 6878 6879 6880
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6881
		mem_cgroup_uncharge_swap(entry, 1);
6882
	}
6883 6884
}

6885 6886
struct uncharge_gather {
	struct mem_cgroup *memcg;
6887
	unsigned long nr_memory;
6888 6889
	unsigned long pgpgout;
	unsigned long nr_kmem;
6890
	int nid;
6891 6892 6893
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6894
{
6895 6896 6897 6898 6899
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6900 6901
	unsigned long flags;

6902 6903
	if (ug->nr_memory) {
		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6904
		if (do_memsw_account())
6905
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6906 6907
		if (ug->nr_kmem)
			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6908
		memcg_oom_recover(ug->memcg);
6909
	}
6910 6911

	local_irq_save(flags);
6912
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6913
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6914
	memcg_check_events(ug->memcg, ug->nid);
6915
	local_irq_restore(flags);
6916

6917
	/* drop reference from uncharge_folio */
6918
	css_put(&ug->memcg->css);
6919 6920
}

6921
static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6922
{
6923
	long nr_pages;
6924 6925
	struct mem_cgroup *memcg;
	struct obj_cgroup *objcg;
6926

6927
	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6928 6929 6930

	/*
	 * Nobody should be changing or seriously looking at
6931 6932
	 * folio memcg or objcg at this point, we have fully
	 * exclusive access to the folio.
6933
	 */
6934
	if (folio_memcg_kmem(folio)) {
6935
		objcg = __folio_objcg(folio);
6936 6937 6938 6939 6940 6941
		/*
		 * This get matches the put at the end of the function and
		 * kmem pages do not hold memcg references anymore.
		 */
		memcg = get_mem_cgroup_from_objcg(objcg);
	} else {
6942
		memcg = __folio_memcg(folio);
6943
	}
6944

6945 6946 6947 6948
	if (!memcg)
		return;

	if (ug->memcg != memcg) {
6949 6950 6951 6952
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6953
		ug->memcg = memcg;
6954
		ug->nid = folio_nid(folio);
6955 6956

		/* pairs with css_put in uncharge_batch */
6957
		css_get(&memcg->css);
6958 6959
	}

6960
	nr_pages = folio_nr_pages(folio);
6961

6962
	if (folio_memcg_kmem(folio)) {
6963
		ug->nr_memory += nr_pages;
6964
		ug->nr_kmem += nr_pages;
6965

6966
		folio->memcg_data = 0;
6967 6968 6969 6970 6971
		obj_cgroup_put(objcg);
	} else {
		/* LRU pages aren't accounted at the root level */
		if (!mem_cgroup_is_root(memcg))
			ug->nr_memory += nr_pages;
6972
		ug->pgpgout++;
6973

6974
		folio->memcg_data = 0;
6975 6976 6977
	}

	css_put(&memcg->css);
6978 6979
}

6980
void __mem_cgroup_uncharge(struct folio *folio)
6981
{
6982 6983
	struct uncharge_gather ug;

6984 6985
	/* Don't touch folio->lru of any random page, pre-check: */
	if (!folio_memcg(folio))
6986 6987
		return;

6988
	uncharge_gather_clear(&ug);
6989
	uncharge_folio(folio, &ug);
6990
	uncharge_batch(&ug);
6991
}
6992

6993
/**
6994
 * __mem_cgroup_uncharge_list - uncharge a list of page
6995 6996 6997
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6998
 * __mem_cgroup_charge().
6999
 */
7000
void __mem_cgroup_uncharge_list(struct list_head *page_list)
7001
{
7002
	struct uncharge_gather ug;
7003
	struct folio *folio;
7004 7005

	uncharge_gather_clear(&ug);
7006 7007
	list_for_each_entry(folio, page_list, lru)
		uncharge_folio(folio, &ug);
7008 7009
	if (ug.memcg)
		uncharge_batch(&ug);
7010 7011 7012
}

/**
7013 7014 7015
 * mem_cgroup_migrate - Charge a folio's replacement.
 * @old: Currently circulating folio.
 * @new: Replacement folio.
7016
 *
7017
 * Charge @new as a replacement folio for @old. @old will
7018
 * be uncharged upon free.
7019
 *
7020
 * Both folios must be locked, @new->mapping must be set up.
7021
 */
7022
void mem_cgroup_migrate(struct folio *old, struct folio *new)
7023
{
7024
	struct mem_cgroup *memcg;
7025
	long nr_pages = folio_nr_pages(new);
7026
	unsigned long flags;
7027

7028 7029 7030 7031
	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7032 7033 7034 7035

	if (mem_cgroup_disabled())
		return;

7036 7037
	/* Page cache replacement: new folio already charged? */
	if (folio_memcg(new))
7038 7039
		return;

7040 7041
	memcg = folio_memcg(old);
	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7042
	if (!memcg)
7043 7044
		return;

7045
	/* Force-charge the new page. The old one will be freed soon */
7046 7047 7048 7049 7050
	if (!mem_cgroup_is_root(memcg)) {
		page_counter_charge(&memcg->memory, nr_pages);
		if (do_memsw_account())
			page_counter_charge(&memcg->memsw, nr_pages);
	}
7051

7052
	css_get(&memcg->css);
7053
	commit_charge(new, memcg);
7054

7055
	local_irq_save(flags);
7056
	mem_cgroup_charge_statistics(memcg, nr_pages);
7057
	memcg_check_events(memcg, folio_nid(new));
7058
	local_irq_restore(flags);
7059 7060
}

7061
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7062 7063
EXPORT_SYMBOL(memcg_sockets_enabled_key);

7064
void mem_cgroup_sk_alloc(struct sock *sk)
7065 7066 7067
{
	struct mem_cgroup *memcg;

7068 7069 7070
	if (!mem_cgroup_sockets_enabled)
		return;

7071
	/* Do not associate the sock with unrelated interrupted task's memcg. */
7072
	if (!in_task())
7073 7074
		return;

7075 7076
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
7077 7078
	if (memcg == root_mem_cgroup)
		goto out;
7079
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7080
		goto out;
7081
	if (css_tryget(&memcg->css))
7082
		sk->sk_memcg = memcg;
7083
out:
7084 7085 7086
	rcu_read_unlock();
}

7087
void mem_cgroup_sk_free(struct sock *sk)
7088
{
7089 7090
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7091 7092 7093 7094 7095 7096
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
7097
 * @gfp_mask: reclaim mode
7098 7099
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7100
 * @memcg's configured limit, %false if it doesn't.
7101
 */
7102 7103
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
			     gfp_t gfp_mask)
7104
{
7105
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7106
		struct page_counter *fail;
7107

7108 7109
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7110 7111
			return true;
		}
7112
		memcg->tcpmem_pressure = 1;
7113 7114 7115 7116
		if (gfp_mask & __GFP_NOFAIL) {
			page_counter_charge(&memcg->tcpmem, nr_pages);
			return true;
		}
7117
		return false;
7118
	}
7119

7120 7121
	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7122
		return true;
7123
	}
7124

7125 7126 7127 7128 7129
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
Mike Rapoport's avatar
Mike Rapoport committed
7130 7131
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7132 7133 7134
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7135
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7136
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7137 7138
		return;
	}
7139

7140
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7141

7142
	refill_stock(memcg, nr_pages);
7143 7144
}

7145 7146 7147 7148 7149 7150 7151 7152 7153
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7154 7155
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7156
	}
7157
	return 1;
7158 7159
}
__setup("cgroup.memory=", cgroup_memory);
7160

7161
/*
7162 7163
 * subsys_initcall() for memory controller.
 *
7164 7165 7166 7167
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7168 7169 7170
 */
static int __init mem_cgroup_init(void)
{
7171 7172
	int cpu, node;

7173 7174 7175 7176 7177 7178 7179 7180
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7181 7182
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7194
		rtpn->rb_root = RB_ROOT;
7195
		rtpn->rb_rightmost = NULL;
7196
		spin_lock_init(&rtpn->lock);
7197 7198 7199
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7200 7201 7202
	return 0;
}
subsys_initcall(mem_cgroup_init);
7203 7204

#ifdef CONFIG_MEMCG_SWAP
7205 7206
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7207
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7223 7224
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
7225
 * @folio: folio whose memsw charge to transfer
7226 7227
 * @entry: swap entry to move the charge to
 *
7228
 * Transfer the memsw charge of @folio to @entry.
7229
 */
7230
void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7231
{
7232
	struct mem_cgroup *memcg, *swap_memcg;
7233
	unsigned int nr_entries;
7234 7235
	unsigned short oldid;

7236 7237
	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7238

7239 7240 7241
	if (mem_cgroup_disabled())
		return;

7242
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7243 7244
		return;

7245
	memcg = folio_memcg(folio);
7246

7247
	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7248 7249 7250
	if (!memcg)
		return;

7251 7252 7253 7254 7255 7256
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7257
	nr_entries = folio_nr_pages(folio);
7258 7259 7260 7261 7262
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7263
	VM_BUG_ON_FOLIO(oldid, folio);
7264
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7265

7266
	folio->memcg_data = 0;
7267 7268

	if (!mem_cgroup_is_root(memcg))
7269
		page_counter_uncharge(&memcg->memory, nr_entries);
7270

7271
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7272
		if (!mem_cgroup_is_root(swap_memcg))
7273 7274
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7275 7276
	}

7277 7278
	/*
	 * Interrupts should be disabled here because the caller holds the
Matthew Wilcox's avatar
Matthew Wilcox committed
7279
	 * i_pages lock which is taken with interrupts-off. It is
7280
	 * important here to have the interrupts disabled because it is the
Matthew Wilcox's avatar
Matthew Wilcox committed
7281
	 * only synchronisation we have for updating the per-CPU variables.
7282
	 */
7283
	memcg_stats_lock();
7284
	mem_cgroup_charge_statistics(memcg, -nr_entries);
7285
	memcg_stats_unlock();
7286
	memcg_check_events(memcg, folio_nid(folio));
7287

7288
	css_put(&memcg->css);
7289 7290
}

7291
/**
7292 7293
 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
 * @folio: folio being added to swap
7294 7295
 * @entry: swap entry to charge
 *
7296
 * Try to charge @folio's memcg for the swap space at @entry.
7297 7298 7299
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
7300
int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7301
{
7302
	unsigned int nr_pages = folio_nr_pages(folio);
7303
	struct page_counter *counter;
7304
	struct mem_cgroup *memcg;
7305 7306
	unsigned short oldid;

7307
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7308 7309
		return 0;

7310
	memcg = folio_memcg(folio);
7311

7312
	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7313 7314 7315
	if (!memcg)
		return 0;

7316 7317
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7318
		return 0;
7319
	}
7320

7321 7322
	memcg = mem_cgroup_id_get_online(memcg);

7323
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7324
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7325 7326
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7327
		mem_cgroup_id_put(memcg);
7328
		return -ENOMEM;
7329
	}
7330

7331 7332 7333 7334
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7335
	VM_BUG_ON_FOLIO(oldid, folio);
7336
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7337 7338 7339 7340

	return 0;
}

7341
/**
7342
 * __mem_cgroup_uncharge_swap - uncharge swap space
7343
 * @entry: swap entry to uncharge
7344
 * @nr_pages: the amount of swap space to uncharge
7345
 */
7346
void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7347 7348 7349 7350
{
	struct mem_cgroup *memcg;
	unsigned short id;

7351
	id = swap_cgroup_record(entry, 0, nr_pages);
7352
	rcu_read_lock();
7353
	memcg = mem_cgroup_from_id(id);
7354
	if (memcg) {
7355
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7356
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7357
				page_counter_uncharge(&memcg->swap, nr_pages);
7358
			else
7359
				page_counter_uncharge(&memcg->memsw, nr_pages);
7360
		}
7361
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7362
		mem_cgroup_id_put_many(memcg, nr_pages);
7363 7364 7365 7366
	}
	rcu_read_unlock();
}

7367 7368 7369 7370
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7371
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7372 7373 7374
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7375
				      READ_ONCE(memcg->swap.max) -
7376 7377 7378 7379
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7380 7381 7382 7383 7384 7385 7386 7387
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7388
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7389 7390
		return false;

7391
	memcg = page_memcg(page);
7392 7393 7394
	if (!memcg)
		return false;

7395 7396 7397 7398 7399
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7400
			return true;
7401
	}
7402 7403 7404 7405

	return false;
}

7406
static int __init setup_swap_account(char *s)
7407 7408
{
	if (!strcmp(s, "1"))
7409
		cgroup_memory_noswap = false;
7410
	else if (!strcmp(s, "0"))
7411
		cgroup_memory_noswap = true;
7412 7413
	return 1;
}
7414
__setup("swapaccount=", setup_swap_account);
7415

7416 7417 7418 7419 7420 7421 7422 7423
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7447 7448
static int swap_max_show(struct seq_file *m, void *v)
{
7449 7450
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7465
	xchg(&memcg->swap.max, max);
7466 7467 7468 7469

	return nbytes;
}

7470 7471
static int swap_events_show(struct seq_file *m, void *v)
{
7472
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7473

7474 7475
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7476 7477 7478 7479 7480 7481 7482 7483
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7484 7485 7486 7487 7488 7489
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7490 7491 7492 7493 7494 7495
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7496 7497 7498 7499 7500 7501
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7502 7503 7504 7505 7506 7507
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7508 7509 7510
	{ }	/* terminate */
};

7511
static struct cftype memsw_files[] = {
7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

Johannes Weiner's avatar
Johannes Weiner committed
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
/**
 * obj_cgroup_may_zswap - check if this cgroup can zswap
 * @objcg: the object cgroup
 *
 * Check if the hierarchical zswap limit has been reached.
 *
 * This doesn't check for specific headroom, and it is not atomic
 * either. But with zswap, the size of the allocation is only known
 * once compression has occured, and this optimistic pre-check avoids
 * spending cycles on compression when there is already no room left
 * or zswap is disabled altogether somewhere in the hierarchy.
 */
bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
{
	struct mem_cgroup *memcg, *original_memcg;
	bool ret = true;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return true;

	original_memcg = get_mem_cgroup_from_objcg(objcg);
	for (memcg = original_memcg; memcg != root_mem_cgroup;
	     memcg = parent_mem_cgroup(memcg)) {
		unsigned long max = READ_ONCE(memcg->zswap_max);
		unsigned long pages;

		if (max == PAGE_COUNTER_MAX)
			continue;
		if (max == 0) {
			ret = false;
			break;
		}

		cgroup_rstat_flush(memcg->css.cgroup);
		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
		if (pages < max)
			continue;
		ret = false;
		break;
	}
	mem_cgroup_put(original_memcg);
	return ret;
}

/**
 * obj_cgroup_charge_zswap - charge compression backend memory
 * @objcg: the object cgroup
 * @size: size of compressed object
 *
 * This forces the charge after obj_cgroup_may_swap() allowed
 * compression and storage in zwap for this cgroup to go ahead.
 */
void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
{
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return;

	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));

	/* PF_MEMALLOC context, charging must succeed */
	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
		VM_WARN_ON_ONCE(1);

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
	rcu_read_unlock();
}

/**
 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
 * @objcg: the object cgroup
 * @size: size of compressed object
 *
 * Uncharges zswap memory on page in.
 */
void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
{
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return;

	obj_cgroup_uncharge(objcg, size);

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
	rcu_read_unlock();
}

static u64 zswap_current_read(struct cgroup_subsys_state *css,
			      struct cftype *cft)
{
	cgroup_rstat_flush(css->cgroup);
	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
}

static int zswap_max_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
}

static ssize_t zswap_max_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	xchg(&memcg->zswap_max, max);

	return nbytes;
}

static struct cftype zswap_files[] = {
	{
		.name = "zswap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = zswap_current_read,
	},
	{
		.name = "zswap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = zswap_max_show,
		.write = zswap_max_write,
	},
	{ }	/* terminate */
};
#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */

7680 7681 7682 7683 7684 7685 7686
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7687 7688
static int __init mem_cgroup_swap_init(void)
{
7689 7690 7691 7692 7693
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7694 7695 7696 7697
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
Johannes Weiner's avatar
Johannes Weiner committed
7698 7699 7700
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
#endif
7701 7702
	return 0;
}
7703
core_initcall(mem_cgroup_swap_init);
7704 7705

#endif /* CONFIG_MEMCG_SWAP */