rdma.c 64 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * NVMe over Fabrics RDMA host code.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
Israel Rukshin's avatar
Israel Rukshin committed
10
#include <rdma/mr_pool.h>
11 12 13 14
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
15
#include <linux/blk-integrity.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>

#include "nvme.h"
#include "fabrics.h"


31
#define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */
32 33 34

#define NVME_RDMA_MAX_SEGMENTS		256

35
#define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36

37 38 39 40 41
#define NVME_RDMA_DATA_SGL_SIZE \
	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
#define NVME_RDMA_METADATA_SGL_SIZE \
	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)

42
struct nvme_rdma_device {
43 44
	struct ib_device	*dev;
	struct ib_pd		*pd;
45 46
	struct kref		ref;
	struct list_head	entry;
47
	unsigned int		num_inline_segments;
48 49 50 51 52 53 54 55
};

struct nvme_rdma_qe {
	struct ib_cqe		cqe;
	void			*data;
	u64			dma;
};

56 57 58 59 60
struct nvme_rdma_sgl {
	int			nents;
	struct sg_table		sg_table;
};

61 62
struct nvme_rdma_queue;
struct nvme_rdma_request {
63
	struct nvme_request	req;
64 65
	struct ib_mr		*mr;
	struct nvme_rdma_qe	sqe;
66 67 68
	union nvme_result	result;
	__le16			status;
	refcount_t		ref;
69 70 71 72 73
	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
	u32			num_sge;
	struct ib_reg_wr	reg_wr;
	struct ib_cqe		reg_cqe;
	struct nvme_rdma_queue  *queue;
74
	struct nvme_rdma_sgl	data_sgl;
75 76
	struct nvme_rdma_sgl	*metadata_sgl;
	bool			use_sig_mr;
77 78 79
};

enum nvme_rdma_queue_flags {
80 81
	NVME_RDMA_Q_ALLOCATED		= 0,
	NVME_RDMA_Q_LIVE		= 1,
82
	NVME_RDMA_Q_TR_READY		= 2,
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
};

struct nvme_rdma_queue {
	struct nvme_rdma_qe	*rsp_ring;
	int			queue_size;
	size_t			cmnd_capsule_len;
	struct nvme_rdma_ctrl	*ctrl;
	struct nvme_rdma_device	*device;
	struct ib_cq		*ib_cq;
	struct ib_qp		*qp;

	unsigned long		flags;
	struct rdma_cm_id	*cm_id;
	int			cm_error;
	struct completion	cm_done;
98
	bool			pi_support;
99
	int			cq_size;
100
	struct mutex		queue_lock;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
};

struct nvme_rdma_ctrl {
	/* read only in the hot path */
	struct nvme_rdma_queue	*queues;

	/* other member variables */
	struct blk_mq_tag_set	tag_set;
	struct work_struct	err_work;

	struct nvme_rdma_qe	async_event_sqe;

	struct delayed_work	reconnect_work;

	struct list_head	list;

	struct blk_mq_tag_set	admin_tag_set;
	struct nvme_rdma_device	*device;

	u32			max_fr_pages;

122 123
	struct sockaddr_storage addr;
	struct sockaddr_storage src_addr;
124 125

	struct nvme_ctrl	ctrl;
126
	bool			use_inline_data;
127
	u32			io_queues[HCTX_MAX_TYPES];
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
};

static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);

/*
 * Disabling this option makes small I/O goes faster, but is fundamentally
 * unsafe.  With it turned off we will have to register a global rkey that
 * allows read and write access to all physical memory.
 */
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
	 "Use memory registration even for contiguous memory regions");

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154
static void nvme_rdma_complete_rq(struct request *rq);
155

156 157 158
static const struct blk_mq_ops nvme_rdma_mq_ops;
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;

159 160 161 162 163
static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
	return queue - queue->ctrl->queues;
}

164 165 166
static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
{
	return nvme_rdma_queue_idx(queue) >
167 168
		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}

static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
	kfree(qe->data);
}

static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	qe->data = kzalloc(capsule_size, GFP_KERNEL);
	if (!qe->data)
		return -ENOMEM;

	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
	if (ib_dma_mapping_error(ibdev, qe->dma)) {
		kfree(qe->data);
193
		qe->data = NULL;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		return -ENOMEM;
	}

	return 0;
}

static void nvme_rdma_free_ring(struct ib_device *ibdev,
		struct nvme_rdma_qe *ring, size_t ib_queue_size,
		size_t capsule_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ib_queue_size; i++)
		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
	kfree(ring);
}

static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
		size_t ib_queue_size, size_t capsule_size,
		enum dma_data_direction dir)
{
	struct nvme_rdma_qe *ring;
	int i;

	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
	if (!ring)
		return NULL;

222 223 224 225 226
	/*
	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
	 * lifetime. It's safe, since any chage in the underlying RDMA device
	 * will issue error recovery and queue re-creation.
	 */
227 228 229 230 231 232 233 234 235 236 237 238 239 240
	for (i = 0; i < ib_queue_size; i++) {
		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
			goto out_free_ring;
	}

	return ring;

out_free_ring:
	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
	return NULL;
}

static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
241 242 243
	pr_debug("QP event %s (%d)\n",
		 ib_event_msg(event->event), event->event);

244 245 246 247
}

static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
248 249
	int ret;

250 251
	ret = wait_for_completion_interruptible(&queue->cm_done);
	if (ret)
252 253
		return ret;
	WARN_ON_ONCE(queue->cm_error > 0);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	return queue->cm_error;
}

static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
	struct nvme_rdma_device *dev = queue->device;
	struct ib_qp_init_attr init_attr;
	int ret;

	memset(&init_attr, 0, sizeof(init_attr));
	init_attr.event_handler = nvme_rdma_qp_event;
	/* +1 for drain */
	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
	/* +1 for drain */
	init_attr.cap.max_recv_wr = queue->queue_size + 1;
	init_attr.cap.max_recv_sge = 1;
270
	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 272 273 274
	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	init_attr.qp_type = IB_QPT_RC;
	init_attr.send_cq = queue->ib_cq;
	init_attr.recv_cq = queue->ib_cq;
275 276
	if (queue->pi_support)
		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277
	init_attr.qp_context = queue;
278 279 280 281 282 283 284

	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);

	queue->qp = queue->cm_id->qp;
	return ret;
}

285 286
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx)
287 288 289
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

290
	kfree(req->sqe.data);
291 292
}

293 294 295
static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx,
		unsigned int numa_node)
296
{
297
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 301
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];

302
	nvme_req(rq)->ctrl = &ctrl->ctrl;
303 304 305
	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
	if (!req->sqe.data)
		return -ENOMEM;
306

307 308 309 310 311 312
	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
	if (queue->pi_support)
		req->metadata_sgl = (void *)nvme_req(rq) +
			sizeof(struct nvme_rdma_request) +
			NVME_RDMA_DATA_SGL_SIZE;

313
	req->queue = queue;
314
	nvme_req(rq)->cmd = req->sqe.data;
315 316 317 318 319 320 321

	return 0;
}

static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
322
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323 324
	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];

325
	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326 327 328 329 330 331 332 333

	hctx->driver_data = queue;
	return 0;
}

static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
334
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	struct nvme_rdma_queue *queue = &ctrl->queues[0];

	BUG_ON(hctx_idx != 0);

	hctx->driver_data = queue;
	return 0;
}

static void nvme_rdma_free_dev(struct kref *ref)
{
	struct nvme_rdma_device *ndev =
		container_of(ref, struct nvme_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	ib_dealloc_pd(ndev->pd);
	kfree(ndev);
}

static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
	kref_put(&dev->ref, nvme_rdma_free_dev);
}

static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
	return kref_get_unless_zero(&dev->ref);
}

static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
	struct nvme_rdma_device *ndev;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev->node_guid == cm_id->device->node_guid &&
		    nvme_rdma_dev_get(ndev))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

	ndev->dev = cm_id->device;
	kref_init(&ndev->ref);

385 386
	ndev->pd = ib_alloc_pd(ndev->dev,
		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 388 389 390 391 392 393
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (!(ndev->dev->attrs.device_cap_flags &
	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
		dev_err(&ndev->dev->dev,
			"Memory registrations not supported.\n");
394
		goto out_free_pd;
395 396
	}

397
	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398
					ndev->dev->attrs.max_send_sge - 1);
399 400 401 402 403 404 405 406 407 408 409 410 411 412
	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

413 414 415 416 417 418 419 420
static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
{
	if (nvme_rdma_poll_queue(queue))
		ib_free_cq(queue->ib_cq);
	else
		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
}

421 422
static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
423 424 425 426 427 428 429 430
	struct nvme_rdma_device *dev;
	struct ib_device *ibdev;

	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
		return;

	dev = queue->device;
	ibdev = dev->dev;
431

432 433
	if (queue->pi_support)
		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
Israel Rukshin's avatar
Israel Rukshin committed
434 435
	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);

436 437 438 439 440 441
	/*
	 * The cm_id object might have been destroyed during RDMA connection
	 * establishment error flow to avoid getting other cma events, thus
	 * the destruction of the QP shouldn't use rdma_cm API.
	 */
	ib_destroy_qp(queue->qp);
442
	nvme_rdma_free_cq(queue);
443 444 445 446 447 448 449

	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);

	nvme_rdma_dev_put(dev);
}

450
static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
Israel Rukshin's avatar
Israel Rukshin committed
451
{
452 453 454 455 456 457 458 459
	u32 max_page_list_len;

	if (pi_support)
		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
	else
		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;

	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
Israel Rukshin's avatar
Israel Rukshin committed
460 461
}

462 463 464 465 466 467 468 469 470 471 472 473
static int nvme_rdma_create_cq(struct ib_device *ibdev,
		struct nvme_rdma_queue *queue)
{
	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);

	/*
	 * Spread I/O queues completion vectors according their queue index.
	 * Admin queues can always go on completion vector 0.
	 */
	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;

	/* Polling queues need direct cq polling context */
474
	if (nvme_rdma_poll_queue(queue))
475
		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476 477
					   comp_vector, IB_POLL_DIRECT);
	else
478
		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479
					      comp_vector, IB_POLL_SOFTIRQ);
480 481 482 483 484 485 486 487 488

	if (IS_ERR(queue->ib_cq)) {
		ret = PTR_ERR(queue->ib_cq);
		return ret;
	}

	return 0;
}

489
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490
{
491
	struct ib_device *ibdev;
492 493
	const int send_wr_factor = 3;			/* MR, SEND, INV */
	const int cq_factor = send_wr_factor + 1;	/* + RECV */
494
	int ret, pages_per_mr;
495

496 497 498 499 500 501 502
	queue->device = nvme_rdma_find_get_device(queue->cm_id);
	if (!queue->device) {
		dev_err(queue->cm_id->device->dev.parent,
			"no client data found!\n");
		return -ECONNREFUSED;
	}
	ibdev = queue->device->dev;
503

504
	/* +1 for ib_drain_qp */
505 506 507 508
	queue->cq_size = cq_factor * queue->queue_size + 1;

	ret = nvme_rdma_create_cq(ibdev, queue);
	if (ret)
509
		goto out_put_dev;
510 511 512 513 514 515 516 517 518 519 520 521

	ret = nvme_rdma_create_qp(queue, send_wr_factor);
	if (ret)
		goto out_destroy_ib_cq;

	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
	if (!queue->rsp_ring) {
		ret = -ENOMEM;
		goto out_destroy_qp;
	}

522 523 524 525 526
	/*
	 * Currently we don't use SG_GAPS MR's so if the first entry is
	 * misaligned we'll end up using two entries for a single data page,
	 * so one additional entry is required.
	 */
527
	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
Israel Rukshin's avatar
Israel Rukshin committed
528 529 530
	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
			      queue->queue_size,
			      IB_MR_TYPE_MEM_REG,
531
			      pages_per_mr, 0);
Israel Rukshin's avatar
Israel Rukshin committed
532 533 534
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"failed to initialize MR pool sized %d for QID %d\n",
535
			queue->queue_size, nvme_rdma_queue_idx(queue));
Israel Rukshin's avatar
Israel Rukshin committed
536 537 538
		goto out_destroy_ring;
	}

539 540 541 542 543 544 545
	if (queue->pi_support) {
		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
				      pages_per_mr, pages_per_mr);
		if (ret) {
			dev_err(queue->ctrl->ctrl.device,
				"failed to initialize PI MR pool sized %d for QID %d\n",
546
				queue->queue_size, nvme_rdma_queue_idx(queue));
547 548 549 550
			goto out_destroy_mr_pool;
		}
	}

551 552
	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);

553 554
	return 0;

555 556
out_destroy_mr_pool:
	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
Israel Rukshin's avatar
Israel Rukshin committed
557 558 559
out_destroy_ring:
	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560
out_destroy_qp:
561
	rdma_destroy_qp(queue->cm_id);
562
out_destroy_ib_cq:
563
	nvme_rdma_free_cq(queue);
564 565
out_put_dev:
	nvme_rdma_dev_put(queue->device);
566 567 568
	return ret;
}

569
static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 571 572
		int idx, size_t queue_size)
{
	struct nvme_rdma_queue *queue;
573
	struct sockaddr *src_addr = NULL;
574 575 576
	int ret;

	queue = &ctrl->queues[idx];
577
	mutex_init(&queue->queue_lock);
578
	queue->ctrl = ctrl;
579 580 581 582
	if (idx && ctrl->ctrl.max_integrity_segments)
		queue->pi_support = true;
	else
		queue->pi_support = false;
583 584 585 586 587 588 589 590 591 592 593 594 595 596
	init_completion(&queue->cm_done);

	if (idx > 0)
		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
	else
		queue->cmnd_capsule_len = sizeof(struct nvme_command);

	queue->queue_size = queue_size;

	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(queue->cm_id)) {
		dev_info(ctrl->ctrl.device,
			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 598
		ret = PTR_ERR(queue->cm_id);
		goto out_destroy_mutex;
599 600
	}

601
	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602
		src_addr = (struct sockaddr *)&ctrl->src_addr;
603

604 605 606
	queue->cm_error = -ETIMEDOUT;
	ret = rdma_resolve_addr(queue->cm_id, src_addr,
			(struct sockaddr *)&ctrl->addr,
607
			NVME_RDMA_CM_TIMEOUT_MS);
608 609 610 611 612 613 614 615 616
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

	ret = nvme_rdma_wait_for_cm(queue);
	if (ret) {
		dev_info(ctrl->ctrl.device,
617
			"rdma connection establishment failed (%d)\n", ret);
618 619 620
		goto out_destroy_cm_id;
	}

621
	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622 623 624 625 626

	return 0;

out_destroy_cm_id:
	rdma_destroy_id(queue->cm_id);
627
	nvme_rdma_destroy_queue_ib(queue);
628 629
out_destroy_mutex:
	mutex_destroy(&queue->queue_lock);
630 631 632
	return ret;
}

633 634 635 636 637 638
static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
	rdma_disconnect(queue->cm_id);
	ib_drain_qp(queue->qp);
}

639 640
static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
641 642 643 644
	mutex_lock(&queue->queue_lock);
	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
		__nvme_rdma_stop_queue(queue);
	mutex_unlock(&queue->queue_lock);
645 646 647 648
}

static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
649
	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
650 651
		return;

652
	rdma_destroy_id(queue->cm_id);
653
	nvme_rdma_destroy_queue_ib(queue);
654
	mutex_destroy(&queue->queue_lock);
655 656
}

657
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
658
{
659 660 661 662
	int i;

	for (i = 1; i < ctrl->ctrl.queue_count; i++)
		nvme_rdma_free_queue(&ctrl->queues[i]);
663 664
}

665
static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
666 667 668
{
	int i;

669
	for (i = 1; i < ctrl->ctrl.queue_count; i++)
670
		nvme_rdma_stop_queue(&ctrl->queues[i]);
671 672
}

673 674
static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
{
675
	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
676 677 678
	int ret;

	if (idx)
679
		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
680 681 682
	else
		ret = nvmf_connect_admin_queue(&ctrl->ctrl);

683
	if (!ret) {
684
		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
685
	} else {
686 687
		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
			__nvme_rdma_stop_queue(queue);
688 689
		dev_info(ctrl->ctrl.device,
			"failed to connect queue: %d ret=%d\n", idx, ret);
690
	}
691 692 693
	return ret;
}

694 695
static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
				     int first, int last)
696 697 698
{
	int i, ret = 0;

699
	for (i = first; i < last; i++) {
700 701
		ret = nvme_rdma_start_queue(ctrl, i);
		if (ret)
702
			goto out_stop_queues;
703 704
	}

705 706
	return 0;

707
out_stop_queues:
708
	for (i--; i >= first; i--)
709
		nvme_rdma_stop_queue(&ctrl->queues[i]);
710 711 712
	return ret;
}

713
static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
714
{
715
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
716
	struct ib_device *ibdev = ctrl->device->dev;
717 718
	unsigned int nr_io_queues, nr_default_queues;
	unsigned int nr_read_queues, nr_poll_queues;
719 720
	int i, ret;

721 722 723 724 725 726
	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
				min(opts->nr_io_queues, num_online_cpus()));
	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
				min(opts->nr_write_queues, num_online_cpus()));
	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
727

728 729 730 731
	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
	if (ret)
		return ret;

732
	if (nr_io_queues == 0) {
733 734 735 736
		dev_err(ctrl->ctrl.device,
			"unable to set any I/O queues\n");
		return -ENOMEM;
	}
737

738
	ctrl->ctrl.queue_count = nr_io_queues + 1;
739 740 741
	dev_info(ctrl->ctrl.device,
		"creating %d I/O queues.\n", nr_io_queues);

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
		/*
		 * separate read/write queues
		 * hand out dedicated default queues only after we have
		 * sufficient read queues.
		 */
		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
			min(nr_default_queues, nr_io_queues);
		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
	} else {
		/*
		 * shared read/write queues
		 * either no write queues were requested, or we don't have
		 * sufficient queue count to have dedicated default queues.
		 */
		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
			min(nr_read_queues, nr_io_queues);
		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
	}

	if (opts->nr_poll_queues && nr_io_queues) {
		/* map dedicated poll queues only if we have queues left */
		ctrl->io_queues[HCTX_TYPE_POLL] =
			min(nr_poll_queues, nr_io_queues);
	}

770
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
771 772 773
		ret = nvme_rdma_alloc_queue(ctrl, i,
				ctrl->ctrl.sqsize + 1);
		if (ret)
774 775 776 777 778 779
			goto out_free_queues;
	}

	return 0;

out_free_queues:
780
	for (i--; i >= 1; i--)
781
		nvme_rdma_free_queue(&ctrl->queues[i]);
782 783 784 785

	return ret;
}

786
static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
787
{
788 789
	unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
				NVME_RDMA_DATA_SGL_SIZE;
790

791 792 793
	if (ctrl->max_integrity_segments)
		cmd_size += sizeof(struct nvme_rdma_sgl) +
			    NVME_RDMA_METADATA_SGL_SIZE;
794

795
	return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
796
			&nvme_rdma_mq_ops,
797 798
			ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
			cmd_size);
799 800
}

801
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
802
{
803
	if (ctrl->async_event_sqe.data) {
804
		cancel_work_sync(&ctrl->ctrl.async_event_work);
805 806 807 808
		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
				sizeof(struct nvme_command), DMA_TO_DEVICE);
		ctrl->async_event_sqe.data = NULL;
	}
809
	nvme_rdma_free_queue(&ctrl->queues[0]);
810 811
}

812 813
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool new)
814
{
815
	bool pi_capable = false;
816 817
	int error;

818
	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
819 820 821 822
	if (error)
		return error;

	ctrl->device = ctrl->queues[0].device;
823
	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
824

825
	/* T10-PI support */
826 827
	if (ctrl->device->dev->attrs.kernel_cap_flags &
	    IBK_INTEGRITY_HANDOVER)
828 829 830 831
		pi_capable = true;

	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
							pi_capable);
832

833 834 835 836 837
	/*
	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
	 * It's safe, since any chage in the underlying RDMA device will issue
	 * error recovery and queue re-creation.
	 */
838 839 840 841 842
	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
	if (error)
		goto out_free_queue;

843
	if (new) {
844 845 846 847
		error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
				&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
				sizeof(struct nvme_rdma_request) +
				NVME_RDMA_DATA_SGL_SIZE);
848
		if (error)
849
			goto out_free_async_qe;
850 851 852

	}

853
	error = nvme_rdma_start_queue(ctrl, 0);
854
	if (error)
855
		goto out_remove_admin_tag_set;
856

857
	error = nvme_enable_ctrl(&ctrl->ctrl);
858
	if (error)
859
		goto out_stop_queue;
860

861 862
	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
863 864 865 866
	if (pi_capable)
		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
	else
		ctrl->ctrl.max_integrity_segments = 0;
867

868
	nvme_unquiesce_admin_queue(&ctrl->ctrl);
869

870
	error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
871
	if (error)
872
		goto out_quiesce_queue;
873 874 875

	return 0;

876
out_quiesce_queue:
877
	nvme_quiesce_admin_queue(&ctrl->ctrl);
878
	blk_sync_queue(ctrl->ctrl.admin_q);
879 880
out_stop_queue:
	nvme_rdma_stop_queue(&ctrl->queues[0]);
881
	nvme_cancel_admin_tagset(&ctrl->ctrl);
882
out_remove_admin_tag_set:
883
	if (new)
884
		nvme_remove_admin_tag_set(&ctrl->ctrl);
885
out_free_async_qe:
886 887 888 889 890
	if (ctrl->async_event_sqe.data) {
		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
		ctrl->async_event_sqe.data = NULL;
	}
891 892 893 894 895
out_free_queue:
	nvme_rdma_free_queue(&ctrl->queues[0]);
	return error;
}

896 897
static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
{
898
	int ret, nr_queues;
899

900
	ret = nvme_rdma_alloc_io_queues(ctrl);
901 902 903 904
	if (ret)
		return ret;

	if (new) {
905 906
		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
		if (ret)
907 908 909
			goto out_free_io_queues;
	}

910 911 912 913 914 915 916
	/*
	 * Only start IO queues for which we have allocated the tagset
	 * and limitted it to the available queues. On reconnects, the
	 * queue number might have changed.
	 */
	nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
	ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
917
	if (ret)
918
		goto out_cleanup_tagset;
919

920
	if (!new) {
921
		nvme_unquiesce_io_queues(&ctrl->ctrl);
922 923 924 925 926 927 928 929 930
		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
			/*
			 * If we timed out waiting for freeze we are likely to
			 * be stuck.  Fail the controller initialization just
			 * to be safe.
			 */
			ret = -ENODEV;
			goto out_wait_freeze_timed_out;
		}
931 932 933 934 935
		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
			ctrl->ctrl.queue_count - 1);
		nvme_unfreeze(&ctrl->ctrl);
	}

936 937 938 939 940 941 942 943 944
	/*
	 * If the number of queues has increased (reconnect case)
	 * start all new queues now.
	 */
	ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
					ctrl->tag_set.nr_hw_queues + 1);
	if (ret)
		goto out_wait_freeze_timed_out;

945 946
	return 0;

947
out_wait_freeze_timed_out:
948
	nvme_quiesce_io_queues(&ctrl->ctrl);
949
	nvme_sync_io_queues(&ctrl->ctrl);
950
	nvme_rdma_stop_io_queues(ctrl);
951
out_cleanup_tagset:
952
	nvme_cancel_tagset(&ctrl->ctrl);
953
	if (new)
954
		nvme_remove_io_tag_set(&ctrl->ctrl);
955 956 957
out_free_io_queues:
	nvme_rdma_free_io_queues(ctrl);
	return ret;
958 959
}

960 961 962
static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool remove)
{
963
	nvme_quiesce_admin_queue(&ctrl->ctrl);
964
	blk_sync_queue(ctrl->ctrl.admin_q);
965
	nvme_rdma_stop_queue(&ctrl->queues[0]);
966
	nvme_cancel_admin_tagset(&ctrl->ctrl);
967
	if (remove) {
968
		nvme_unquiesce_admin_queue(&ctrl->ctrl);
969 970 971
		nvme_remove_admin_tag_set(&ctrl->ctrl);
	}
	nvme_rdma_destroy_admin_queue(ctrl);
972 973 974 975 976 977
}

static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
		bool remove)
{
	if (ctrl->ctrl.queue_count > 1) {
978
		nvme_start_freeze(&ctrl->ctrl);
979
		nvme_quiesce_io_queues(&ctrl->ctrl);
980
		nvme_sync_io_queues(&ctrl->ctrl);
981
		nvme_rdma_stop_io_queues(ctrl);
982
		nvme_cancel_tagset(&ctrl->ctrl);
983
		if (remove) {
984
			nvme_unquiesce_io_queues(&ctrl->ctrl);
985 986 987
			nvme_remove_io_tag_set(&ctrl->ctrl);
		}
		nvme_rdma_free_io_queues(ctrl);
988 989 990
	}
}

991 992 993 994
static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

995
	flush_work(&ctrl->err_work);
996 997 998
	cancel_delayed_work_sync(&ctrl->reconnect_work);
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	if (list_empty(&ctrl->list))
		goto free_ctrl;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_del(&ctrl->list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	nvmf_free_options(nctrl->opts);
free_ctrl:
1012
	kfree(ctrl->queues);
1013 1014 1015
	kfree(ctrl);
}

1016 1017 1018
static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
{
	/* If we are resetting/deleting then do nothing */
1019
	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1020 1021 1022 1023 1024 1025 1026 1027
		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
			ctrl->ctrl.state == NVME_CTRL_LIVE);
		return;
	}

	if (nvmf_should_reconnect(&ctrl->ctrl)) {
		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
			ctrl->ctrl.opts->reconnect_delay);
1028
		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1029 1030
				ctrl->ctrl.opts->reconnect_delay * HZ);
	} else {
1031
		nvme_delete_ctrl(&ctrl->ctrl);
1032 1033 1034
	}
}

1035
static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1036
{
1037
	int ret;
1038 1039
	bool changed;

1040
	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1041
	if (ret)
1042 1043 1044
		return ret;

	if (ctrl->ctrl.icdoff) {
1045
		ret = -EOPNOTSUPP;
1046 1047 1048 1049 1050
		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
		goto destroy_admin;
	}

	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1051
		ret = -EOPNOTSUPP;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		dev_err(ctrl->ctrl.device,
			"Mandatory keyed sgls are not supported!\n");
		goto destroy_admin;
	}

	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl sqsize %u, clamping down\n",
			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
	}

1063 1064 1065 1066 1067 1068 1069
	if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
		dev_warn(ctrl->ctrl.device,
			"ctrl sqsize %u > max queue size %u, clamping down\n",
			ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
		ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
	}

1070 1071 1072 1073 1074 1075
	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
		dev_warn(ctrl->ctrl.device,
			"sqsize %u > ctrl maxcmd %u, clamping down\n",
			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
	}
1076

1077 1078
	if (ctrl->ctrl.sgls & (1 << 20))
		ctrl->use_inline_data = true;
1079

1080
	if (ctrl->ctrl.queue_count > 1) {
1081
		ret = nvme_rdma_configure_io_queues(ctrl, new);
1082
		if (ret)
1083
			goto destroy_admin;
1084 1085 1086
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1087
	if (!changed) {
1088
		/*
1089
		 * state change failure is ok if we started ctrl delete,
1090 1091 1092
		 * unless we're during creation of a new controller to
		 * avoid races with teardown flow.
		 */
1093 1094
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1095
		WARN_ON_ONCE(new);
1096 1097
		ret = -EINVAL;
		goto destroy_io;
1098 1099
	}

1100
	nvme_start_ctrl(&ctrl->ctrl);
1101 1102 1103
	return 0;

destroy_io:
1104
	if (ctrl->ctrl.queue_count > 1) {
1105
		nvme_quiesce_io_queues(&ctrl->ctrl);
1106 1107 1108
		nvme_sync_io_queues(&ctrl->ctrl);
		nvme_rdma_stop_io_queues(ctrl);
		nvme_cancel_tagset(&ctrl->ctrl);
1109 1110 1111
		if (new)
			nvme_remove_io_tag_set(&ctrl->ctrl);
		nvme_rdma_free_io_queues(ctrl);
1112
	}
1113
destroy_admin:
1114
	nvme_quiesce_admin_queue(&ctrl->ctrl);
1115
	blk_sync_queue(ctrl->ctrl.admin_q);
1116
	nvme_rdma_stop_queue(&ctrl->queues[0]);
1117
	nvme_cancel_admin_tagset(&ctrl->ctrl);
1118 1119 1120
	if (new)
		nvme_remove_admin_tag_set(&ctrl->ctrl);
	nvme_rdma_destroy_admin_queue(ctrl);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	return ret;
}

static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_rdma_ctrl, reconnect_work);

	++ctrl->ctrl.nr_reconnects;

	if (nvme_rdma_setup_ctrl(ctrl, false))
		goto requeue;
1133

1134 1135 1136 1137
	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
			ctrl->ctrl.nr_reconnects);

	ctrl->ctrl.nr_reconnects = 0;
1138 1139 1140 1141

	return;

requeue:
1142
	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1143
			ctrl->ctrl.nr_reconnects);
1144
	nvme_rdma_reconnect_or_remove(ctrl);
1145 1146 1147 1148 1149 1150 1151
}

static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
			struct nvme_rdma_ctrl, err_work);

1152
	nvme_stop_keep_alive(&ctrl->ctrl);
1153
	flush_work(&ctrl->ctrl.async_event_work);
1154
	nvme_rdma_teardown_io_queues(ctrl, false);
1155
	nvme_unquiesce_io_queues(&ctrl->ctrl);
1156
	nvme_rdma_teardown_admin_queue(ctrl, false);
1157
	nvme_unquiesce_admin_queue(&ctrl->ctrl);
1158
	nvme_auth_stop(&ctrl->ctrl);
1159

1160
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1161 1162 1163
		/* state change failure is ok if we started ctrl delete */
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1164 1165 1166
		return;
	}

1167
	nvme_rdma_reconnect_or_remove(ctrl);
1168 1169 1170 1171
}

static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
1172
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1173 1174
		return;

1175
	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1176
	queue_work(nvme_reset_wq, &ctrl->err_work);
1177 1178
}

1179 1180 1181 1182 1183 1184
static void nvme_rdma_end_request(struct nvme_rdma_request *req)
{
	struct request *rq = blk_mq_rq_from_pdu(req);

	if (!refcount_dec_and_test(&req->ref))
		return;
1185
	if (!nvme_try_complete_req(rq, req->status, req->result))
1186
		nvme_rdma_complete_rq(rq);
1187 1188
}

1189 1190 1191
static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
		const char *op)
{
1192
	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;

	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
		dev_info(ctrl->ctrl.device,
			     "%s for CQE 0x%p failed with status %s (%d)\n",
			     op, wc->wr_cqe,
			     ib_wc_status_msg(wc->status), wc->status);
	nvme_rdma_error_recovery(ctrl);
}

static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "MEMREG");
}

static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
1211 1212 1213
	struct nvme_rdma_request *req =
		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);

1214
	if (unlikely(wc->status != IB_WC_SUCCESS))
1215
		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1216 1217
	else
		nvme_rdma_end_request(req);
1218 1219 1220 1221 1222 1223 1224 1225 1226
}

static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req)
{
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.next		    = NULL,
		.num_sge	    = 0,
1227
		.send_flags	    = IB_SEND_SIGNALED,
1228 1229 1230 1231 1232 1233
		.ex.invalidate_rkey = req->mr->rkey,
	};

	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
	wr.wr_cqe = &req->reg_cqe;

1234
	return ib_post_send(queue->qp, &wr, NULL);
1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

	if (blk_integrity_rq(rq)) {
		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
				req->metadata_sgl->nents, rq_dma_dir(rq));
		sg_free_table_chained(&req->metadata_sgl->sg_table,
				      NVME_INLINE_METADATA_SG_CNT);
	}

	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
			rq_dma_dir(rq));
	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
}

1253 1254 1255 1256 1257 1258
static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
		struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
1259
	struct list_head *pool = &queue->qp->rdma_mrs;
1260

1261
	if (!blk_rq_nr_phys_segments(rq))
1262 1263
		return;

1264 1265 1266
	if (req->use_sig_mr)
		pool = &queue->qp->sig_mrs;

Israel Rukshin's avatar
Israel Rukshin committed
1267
	if (req->mr) {
1268
		ib_mr_pool_put(queue->qp, pool, req->mr);
Israel Rukshin's avatar
Israel Rukshin committed
1269 1270 1271
		req->mr = NULL;
	}

1272
	nvme_rdma_dma_unmap_req(ibdev, rq);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
}

static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = 0;
	put_unaligned_le24(0, sg->length);
	put_unaligned_le32(0, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1287 1288
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
1289 1290
{
	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1291
	struct ib_sge *sge = &req->sge[1];
1292
	struct scatterlist *sgl;
1293 1294
	u32 len = 0;
	int i;
1295

1296
	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1297 1298 1299 1300
		sge->addr = sg_dma_address(sgl);
		sge->length = sg_dma_len(sgl);
		sge->lkey = queue->device->pd->local_dma_lkey;
		len += sge->length;
1301
		sge++;
1302
	}
1303 1304

	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1305
	sg->length = cpu_to_le32(len);
1306 1307
	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;

1308
	req->num_sge += count;
1309 1310 1311 1312 1313 1314 1315 1316
	return 0;
}

static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

1317 1318
	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1319
	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

Israel Rukshin's avatar
Israel Rukshin committed
1331 1332 1333 1334
	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
	if (WARN_ON_ONCE(!req->mr))
		return -EAGAIN;

1335 1336 1337 1338
	/*
	 * Align the MR to a 4K page size to match the ctrl page size and
	 * the block virtual boundary.
	 */
1339 1340
	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
			  SZ_4K);
1341
	if (unlikely(nr < count)) {
Israel Rukshin's avatar
Israel Rukshin committed
1342 1343
		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
		req->mr = NULL;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		if (nr < 0)
			return nr;
		return -EINVAL;
	}

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_memreg_done;
	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
	req->reg_wr.wr.opcode = IB_WR_REG_MR;
	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
	req->reg_wr.wr.num_sge = 0;
	req->reg_wr.mr = req->mr;
	req->reg_wr.key = req->mr->rkey;
	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
			     IB_ACCESS_REMOTE_READ |
			     IB_ACCESS_REMOTE_WRITE;

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
			NVME_SGL_FMT_INVALIDATE;

	return 0;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
		struct nvme_command *cmd, struct ib_sig_domain *domain,
		u16 control, u8 pi_type)
{
	domain->sig_type = IB_SIG_TYPE_T10_DIF;
	domain->sig.dif.bg_type = IB_T10DIF_CRC;
	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
	if (control & NVME_RW_PRINFO_PRCHK_REF)
		domain->sig.dif.ref_remap = true;

	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
	domain->sig.dif.app_escape = true;
	if (pi_type == NVME_NS_DPS_PI_TYPE3)
		domain->sig.dif.ref_escape = true;
}

static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
		u8 pi_type)
{
	u16 control = le16_to_cpu(cmd->rw.control);

	memset(sig_attrs, 0, sizeof(*sig_attrs));
	if (control & NVME_RW_PRINFO_PRACT) {
		/* for WRITE_INSERT/READ_STRIP no memory domain */
		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
					 pi_type);
		/* Clear the PRACT bit since HCA will generate/verify the PI */
		control &= ~NVME_RW_PRINFO_PRACT;
		cmd->rw.control = cpu_to_le16(control);
	} else {
		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
					 pi_type);
		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
					 pi_type);
	}
}

static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
{
	*mask = 0;
	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
		*mask |= IB_SIG_CHECK_REFTAG;
	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
		*mask |= IB_SIG_CHECK_GUARD;
}

static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "SIG");
}

static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count, int pi_count)
{
	struct nvme_rdma_sgl *sgl = &req->data_sgl;
	struct ib_reg_wr *wr = &req->reg_wr;
	struct request *rq = blk_mq_rq_from_pdu(req);
	struct nvme_ns *ns = rq->q->queuedata;
	struct bio *bio = rq->bio;
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
	if (WARN_ON_ONCE(!req->mr))
		return -EAGAIN;

	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
			     SZ_4K);
	if (unlikely(nr))
		goto mr_put;

1450
	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
				req->mr->sig_attrs, ns->pi_type);
	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_sig_done;
	memset(wr, 0, sizeof(*wr));
	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
	wr->wr.wr_cqe = &req->reg_cqe;
	wr->wr.num_sge = 0;
	wr->wr.send_flags = 0;
	wr->mr = req->mr;
	wr->key = req->mr->rkey;
	wr->access = IB_ACCESS_LOCAL_WRITE |
		     IB_ACCESS_REMOTE_READ |
		     IB_ACCESS_REMOTE_WRITE;

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;

	return 0;

mr_put:
	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
	req->mr = NULL;
	if (nr < 0)
		return nr;
	return -EINVAL;
}

1483 1484
static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
		int *count, int *pi_count)
1485 1486
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1487
	int ret;
1488

1489 1490 1491
	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1492
			NVME_INLINE_SG_CNT);
1493 1494 1495
	if (ret)
		return -ENOMEM;

1496 1497
	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
					    req->data_sgl.sg_table.sgl);
1498

1499 1500 1501
	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
			       req->data_sgl.nents, rq_dma_dir(rq));
	if (unlikely(*count <= 0)) {
1502 1503
		ret = -EIO;
		goto out_free_table;
1504 1505
	}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (blk_integrity_rq(rq)) {
		req->metadata_sgl->sg_table.sgl =
			(struct scatterlist *)(req->metadata_sgl + 1);
		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
				blk_rq_count_integrity_sg(rq->q, rq->bio),
				req->metadata_sgl->sg_table.sgl,
				NVME_INLINE_METADATA_SG_CNT);
		if (unlikely(ret)) {
			ret = -ENOMEM;
			goto out_unmap_sg;
		}

		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
				rq->bio, req->metadata_sgl->sg_table.sgl);
1520 1521 1522 1523 1524
		*pi_count = ib_dma_map_sg(ibdev,
					  req->metadata_sgl->sg_table.sgl,
					  req->metadata_sgl->nents,
					  rq_dma_dir(rq));
		if (unlikely(*pi_count <= 0)) {
1525 1526 1527 1528 1529
			ret = -EIO;
			goto out_free_pi_table;
		}
	}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	return 0;

out_free_pi_table:
	sg_free_table_chained(&req->metadata_sgl->sg_table,
			      NVME_INLINE_METADATA_SG_CNT);
out_unmap_sg:
	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
			rq_dma_dir(rq));
out_free_table:
	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
	return ret;
}

static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
		struct request *rq, struct nvme_command *c)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int pi_count = 0;
	int count, ret;

	req->num_sge = 1;
	refcount_set(&req->ref, 2); /* send and recv completions */

	c->common.flags |= NVME_CMD_SGL_METABUF;

	if (!blk_rq_nr_phys_segments(rq))
		return nvme_rdma_set_sg_null(c);

	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
	if (unlikely(ret))
		return ret;

1564 1565 1566 1567 1568
	if (req->use_sig_mr) {
		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
		goto out;
	}

1569
	if (count <= dev->num_inline_segments) {
1570
		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1571
		    queue->ctrl->use_inline_data &&
1572
		    blk_rq_payload_bytes(rq) <=
1573
				nvme_rdma_inline_data_size(queue)) {
1574
			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1575 1576
			goto out;
		}
1577

1578
		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1579 1580 1581
			ret = nvme_rdma_map_sg_single(queue, req, c);
			goto out;
		}
1582 1583
	}

1584 1585 1586
	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
out:
	if (unlikely(ret))
1587
		goto out_dma_unmap_req;
1588 1589 1590

	return 0;

1591 1592
out_dma_unmap_req:
	nvme_rdma_dma_unmap_req(ibdev, rq);
1593
	return ret;
1594 1595 1596 1597
}

static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
1598 1599 1600 1601 1602
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_request *req =
		container_of(qe, struct nvme_rdma_request, sqe);

1603
	if (unlikely(wc->status != IB_WC_SUCCESS))
1604
		nvme_rdma_wr_error(cq, wc, "SEND");
1605 1606
	else
		nvme_rdma_end_request(req);
1607 1608 1609 1610
}

static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1611
		struct ib_send_wr *first)
1612
{
1613
	struct ib_send_wr wr;
1614 1615 1616
	int ret;

	sge->addr   = qe->dma;
1617
	sge->length = sizeof(struct nvme_command);
1618 1619 1620 1621 1622 1623 1624
	sge->lkey   = queue->device->pd->local_dma_lkey;

	wr.next       = NULL;
	wr.wr_cqe     = &qe->cqe;
	wr.sg_list    = sge;
	wr.num_sge    = num_sge;
	wr.opcode     = IB_WR_SEND;
1625
	wr.send_flags = IB_SEND_SIGNALED;
1626 1627 1628 1629 1630 1631

	if (first)
		first->next = &wr;
	else
		first = &wr;

1632
	ret = ib_post_send(queue->qp, first, NULL);
1633
	if (unlikely(ret)) {
1634 1635 1636 1637 1638 1639 1640 1641 1642
		dev_err(queue->ctrl->ctrl.device,
			     "%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe)
{
1643
	struct ib_recv_wr wr;
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	struct ib_sge list;
	int ret;

	list.addr   = qe->dma;
	list.length = sizeof(struct nvme_completion);
	list.lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_recv_done;

	wr.next     = NULL;
	wr.wr_cqe   = &qe->cqe;
	wr.sg_list  = &list;
	wr.num_sge  = 1;

1658
	ret = ib_post_recv(queue->qp, &wr, NULL);
1659
	if (unlikely(ret)) {
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		dev_err(queue->ctrl->ctrl.device,
			"%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
	u32 queue_idx = nvme_rdma_queue_idx(queue);

	if (queue_idx == 0)
		return queue->ctrl->admin_tag_set.tags[queue_idx];
	return queue->ctrl->tag_set.tags[queue_idx - 1];
}

1675 1676 1677 1678 1679 1680
static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "ASYNC");
}

1681
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
	struct nvme_rdma_queue *queue = &ctrl->queues[0];
	struct ib_device *dev = queue->device->dev;
	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
	struct nvme_command *cmd = sqe->data;
	struct ib_sge sge;
	int ret;

	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);

	memset(cmd, 0, sizeof(*cmd));
	cmd->common.opcode = nvme_admin_async_event;
Keith Busch's avatar
Keith Busch committed
1695
	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1696 1697 1698
	cmd->common.flags |= NVME_CMD_SGL_METABUF;
	nvme_rdma_set_sg_null(cmd);

1699 1700
	sqe->cqe.done = nvme_rdma_async_done;

1701 1702 1703
	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
			DMA_TO_DEVICE);

1704
	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1705 1706 1707
	WARN_ON_ONCE(ret);
}

1708 1709
static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
		struct nvme_completion *cqe, struct ib_wc *wc)
1710 1711 1712 1713
{
	struct request *rq;
	struct nvme_rdma_request *req;

1714
	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1715 1716
	if (!rq) {
		dev_err(queue->ctrl->ctrl.device,
1717
			"got bad command_id %#x on QP %#x\n",
1718 1719
			cqe->command_id, queue->qp->qp_num);
		nvme_rdma_error_recovery(queue->ctrl);
1720
		return;
1721 1722 1723
	}
	req = blk_mq_rq_to_pdu(rq);

1724 1725
	req->status = cqe->status;
	req->result = cqe->result;
1726

1727
	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1728 1729
		if (unlikely(!req->mr ||
			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1730 1731
			dev_err(queue->ctrl->ctrl.device,
				"Bogus remote invalidation for rkey %#x\n",
1732
				req->mr ? req->mr->rkey : 0);
1733 1734
			nvme_rdma_error_recovery(queue->ctrl);
		}
Israel Rukshin's avatar
Israel Rukshin committed
1735
	} else if (req->mr) {
1736 1737
		int ret;

1738 1739 1740 1741 1742 1743 1744 1745
		ret = nvme_rdma_inv_rkey(queue, req);
		if (unlikely(ret < 0)) {
			dev_err(queue->ctrl->ctrl.device,
				"Queueing INV WR for rkey %#x failed (%d)\n",
				req->mr->rkey, ret);
			nvme_rdma_error_recovery(queue->ctrl);
		}
		/* the local invalidation completion will end the request */
1746
		return;
1747
	}
1748 1749

	nvme_rdma_end_request(req);
1750 1751
}

1752
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1753 1754 1755
{
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1756
	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1757 1758 1759 1760 1761 1762
	struct ib_device *ibdev = queue->device->dev;
	struct nvme_completion *cqe = qe->data;
	const size_t len = sizeof(struct nvme_completion);

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvme_rdma_wr_error(cq, wc, "RECV");
1763
		return;
1764 1765
	}

1766 1767 1768 1769 1770 1771 1772 1773
	/* sanity checking for received data length */
	if (unlikely(wc->byte_len < len)) {
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected nvme completion length(%d)\n", wc->byte_len);
		nvme_rdma_error_recovery(queue->ctrl);
		return;
	}

1774 1775 1776 1777 1778 1779 1780
	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
	/*
	 * AEN requests are special as they don't time out and can
	 * survive any kind of queue freeze and often don't respond to
	 * aborts.  We don't even bother to allocate a struct request
	 * for them but rather special case them here.
	 */
1781 1782
	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
				     cqe->command_id)))
1783 1784
		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
				&cqe->result);
1785
	else
1786
		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);

	nvme_rdma_post_recv(queue, qe);
}

static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
	int ret, i;

	for (i = 0; i < queue->queue_size; i++) {
		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
		if (ret)
1799
			return ret;
1800 1801 1802 1803 1804 1805 1806 1807
	}

	return 0;
}

static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
		struct rdma_cm_event *ev)
{
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	struct rdma_cm_id *cm_id = queue->cm_id;
	int status = ev->status;
	const char *rej_msg;
	const struct nvme_rdma_cm_rej *rej_data;
	u8 rej_data_len;

	rej_msg = rdma_reject_msg(cm_id, status);
	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);

	if (rej_data && rej_data_len >= sizeof(u16)) {
		u16 sts = le16_to_cpu(rej_data->sts);
1819 1820

		dev_err(queue->ctrl->ctrl.device,
1821 1822
		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1823 1824
	} else {
		dev_err(queue->ctrl->ctrl.device,
1825
			"Connect rejected: status %d (%s).\n", status, rej_msg);
1826 1827 1828 1829 1830 1831 1832
	}

	return -ECONNRESET;
}

static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
1833
	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1834 1835
	int ret;

1836 1837 1838
	ret = nvme_rdma_create_queue_ib(queue);
	if (ret)
		return ret;
1839

1840 1841
	if (ctrl->opts->tos >= 0)
		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1842
	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1843
	if (ret) {
1844
		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
			queue->cm_error);
		goto out_destroy_queue;
	}

	return 0;

out_destroy_queue:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct rdma_conn_param param = { };
1860
	struct nvme_rdma_cm_req priv = { };
1861 1862 1863 1864 1865 1866
	int ret;

	param.qp_num = queue->qp->qp_num;
	param.flow_control = 1;

	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1867 1868
	/* maximum retry count */
	param.retry_count = 7;
1869 1870 1871 1872 1873 1874
	param.rnr_retry_count = 7;
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);

	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1875 1876 1877 1878 1879
	/*
	 * set the admin queue depth to the minimum size
	 * specified by the Fabrics standard.
	 */
	if (priv.qid == 0) {
1880 1881
		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1882
	} else {
1883 1884 1885 1886 1887
		/*
		 * current interpretation of the fabrics spec
		 * is at minimum you make hrqsize sqsize+1, or a
		 * 1's based representation of sqsize.
		 */
1888
		priv.hrqsize = cpu_to_le16(queue->queue_size);
1889
		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1890
	}
1891

1892
	ret = rdma_connect_locked(queue->cm_id, &param);
1893 1894
	if (ret) {
		dev_err(ctrl->ctrl.device,
1895
			"rdma_connect_locked failed (%d).\n", ret);
1896
		return ret;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	}

	return 0;
}

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *ev)
{
	struct nvme_rdma_queue *queue = cm_id->context;
	int cm_error = 0;

	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
		rdma_event_msg(ev->event), ev->event,
		ev->status, cm_id);

	switch (ev->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
		cm_error = nvme_rdma_addr_resolved(queue);
		break;
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		cm_error = nvme_rdma_route_resolved(queue);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		queue->cm_error = nvme_rdma_conn_established(queue);
		/* complete cm_done regardless of success/failure */
		complete(&queue->cm_done);
		return 0;
	case RDMA_CM_EVENT_REJECTED:
		cm_error = nvme_rdma_conn_rejected(queue, ev);
		break;
	case RDMA_CM_EVENT_ROUTE_ERROR:
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
1930
	case RDMA_CM_EVENT_ADDR_ERROR:
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		dev_dbg(queue->ctrl->ctrl.device,
			"CM error event %d\n", ev->event);
		cm_error = -ECONNRESET;
		break;
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
		dev_dbg(queue->ctrl->ctrl.device,
			"disconnect received - connection closed\n");
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1943 1944
		/* device removal is handled via the ib_client API */
		break;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	default:
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected RDMA CM event (%d)\n", ev->event);
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	}

	if (cm_error) {
		queue->cm_error = cm_error;
		complete(&queue->cm_done);
	}

	return 0;
}

1960 1961 1962 1963 1964 1965
static void nvme_rdma_complete_timed_out(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_queue *queue = req->queue;

	nvme_rdma_stop_queue(queue);
1966
	nvmf_complete_timed_out_request(rq);
1967 1968
}

1969
static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1970 1971
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1972 1973
	struct nvme_rdma_queue *queue = req->queue;
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1974

1975 1976
	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
		 rq->tag, nvme_rdma_queue_idx(queue));
1977

1978 1979
	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
		/*
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		 * If we are resetting, connecting or deleting we should
		 * complete immediately because we may block controller
		 * teardown or setup sequence
		 * - ctrl disable/shutdown fabrics requests
		 * - connect requests
		 * - initialization admin requests
		 * - I/O requests that entered after unquiescing and
		 *   the controller stopped responding
		 *
		 * All other requests should be cancelled by the error
		 * recovery work, so it's fine that we fail it here.
1991
		 */
1992
		nvme_rdma_complete_timed_out(rq);
1993 1994
		return BLK_EH_DONE;
	}
1995

1996 1997 1998 1999
	/*
	 * LIVE state should trigger the normal error recovery which will
	 * handle completing this request.
	 */
2000 2001
	nvme_rdma_error_recovery(ctrl);
	return BLK_EH_RESET_TIMER;
2002 2003
}

2004
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2005 2006 2007 2008 2009 2010 2011
		const struct blk_mq_queue_data *bd)
{
	struct nvme_ns *ns = hctx->queue->queuedata;
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct request *rq = bd->rq;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_qe *sqe = &req->sqe;
2012
	struct nvme_command *c = nvme_req(rq)->cmd;
2013
	struct ib_device *dev;
2014
	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2015 2016
	blk_status_t ret;
	int err;
2017 2018 2019

	WARN_ON_ONCE(rq->tag < 0);

2020 2021
	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2022

2023
	dev = queue->device->dev;
2024 2025 2026 2027 2028 2029 2030 2031

	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
					 sizeof(struct nvme_command),
					 DMA_TO_DEVICE);
	err = ib_dma_mapping_error(dev, req->sqe.dma);
	if (unlikely(err))
		return BLK_STS_RESOURCE;

2032 2033 2034
	ib_dma_sync_single_for_cpu(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

2035
	ret = nvme_setup_cmd(ns, rq);
2036
	if (ret)
2037
		goto unmap_qe;
2038

2039
	nvme_start_request(rq);
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
	    queue->pi_support &&
	    (c->common.opcode == nvme_cmd_write ||
	     c->common.opcode == nvme_cmd_read) &&
	    nvme_ns_has_pi(ns))
		req->use_sig_mr = true;
	else
		req->use_sig_mr = false;

2050
	err = nvme_rdma_map_data(queue, rq, c);
2051
	if (unlikely(err < 0)) {
2052
		dev_err(queue->ctrl->ctrl.device,
2053
			     "Failed to map data (%d)\n", err);
2054 2055 2056
		goto err;
	}

2057 2058
	sqe->cqe.done = nvme_rdma_send_done;

2059 2060 2061
	ib_dma_sync_single_for_device(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

2062
	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
Israel Rukshin's avatar
Israel Rukshin committed
2063
			req->mr ? &req->reg_wr.wr : NULL);
2064 2065
	if (unlikely(err))
		goto err_unmap;
2066

2067
	return BLK_STS_OK;
2068

2069 2070
err_unmap:
	nvme_rdma_unmap_data(queue, rq);
2071
err:
2072 2073 2074
	if (err == -EIO)
		ret = nvme_host_path_error(rq);
	else if (err == -ENOMEM || err == -EAGAIN)
2075 2076 2077
		ret = BLK_STS_RESOURCE;
	else
		ret = BLK_STS_IOERR;
2078
	nvme_cleanup_cmd(rq);
2079 2080 2081 2082
unmap_qe:
	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
			    DMA_TO_DEVICE);
	return ret;
2083 2084
}

2085
static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2086 2087 2088 2089 2090 2091
{
	struct nvme_rdma_queue *queue = hctx->driver_data;

	return ib_process_cq_direct(queue->ib_cq, -1);
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
{
	struct request *rq = blk_mq_rq_from_pdu(req);
	struct ib_mr_status mr_status;
	int ret;

	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
	if (ret) {
		pr_err("ib_check_mr_status failed, ret %d\n", ret);
		nvme_req(rq)->status = NVME_SC_INVALID_PI;
		return;
	}

	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
		switch (mr_status.sig_err.err_type) {
		case IB_SIG_BAD_GUARD:
			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
			break;
		case IB_SIG_BAD_REFTAG:
			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
			break;
		case IB_SIG_BAD_APPTAG:
			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
			break;
		}
		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
		       mr_status.sig_err.actual);
	}
}

2123 2124 2125
static void nvme_rdma_complete_rq(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2126 2127
	struct nvme_rdma_queue *queue = req->queue;
	struct ib_device *ibdev = queue->device->dev;
2128

2129 2130 2131
	if (req->use_sig_mr)
		nvme_rdma_check_pi_status(req);

2132 2133 2134
	nvme_rdma_unmap_data(queue, rq);
	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
			    DMA_TO_DEVICE);
2135
	nvme_complete_rq(rq);
2136 2137
}

2138
static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2139
{
2140
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2141
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2142

2143
	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2144
		/* separate read/write queues */
2145 2146 2147 2148 2149
		set->map[HCTX_TYPE_DEFAULT].nr_queues =
			ctrl->io_queues[HCTX_TYPE_DEFAULT];
		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
		set->map[HCTX_TYPE_READ].nr_queues =
			ctrl->io_queues[HCTX_TYPE_READ];
2150
		set->map[HCTX_TYPE_READ].queue_offset =
2151
			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2152
	} else {
2153 2154 2155 2156 2157 2158
		/* shared read/write queues */
		set->map[HCTX_TYPE_DEFAULT].nr_queues =
			ctrl->io_queues[HCTX_TYPE_DEFAULT];
		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
		set->map[HCTX_TYPE_READ].nr_queues =
			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2159 2160
		set->map[HCTX_TYPE_READ].queue_offset = 0;
	}
2161 2162
	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2163

2164 2165
	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
		/* map dedicated poll queues only if we have queues left */
2166
		set->map[HCTX_TYPE_POLL].nr_queues =
2167
				ctrl->io_queues[HCTX_TYPE_POLL];
2168
		set->map[HCTX_TYPE_POLL].queue_offset =
2169 2170
			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
			ctrl->io_queues[HCTX_TYPE_READ];
2171 2172
		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
	}
2173 2174 2175 2176 2177 2178

	dev_info(ctrl->ctrl.device,
		"mapped %d/%d/%d default/read/poll queues.\n",
		ctrl->io_queues[HCTX_TYPE_DEFAULT],
		ctrl->io_queues[HCTX_TYPE_READ],
		ctrl->io_queues[HCTX_TYPE_POLL]);
2179 2180
}

2181
static const struct blk_mq_ops nvme_rdma_mq_ops = {
2182 2183 2184 2185 2186 2187
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
	.init_hctx	= nvme_rdma_init_hctx,
	.timeout	= nvme_rdma_timeout,
2188
	.map_queues	= nvme_rdma_map_queues,
2189
	.poll		= nvme_rdma_poll,
2190 2191
};

2192
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2193 2194
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
2195 2196
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
2197 2198 2199 2200
	.init_hctx	= nvme_rdma_init_admin_hctx,
	.timeout	= nvme_rdma_timeout,
};

2201
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2202
{
2203
	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2204
	nvme_quiesce_admin_queue(&ctrl->ctrl);
2205
	nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2206
	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2207 2208
}

2209
static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2210
{
2211
	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2212 2213 2214 2215
}

static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
2216 2217
	struct nvme_rdma_ctrl *ctrl =
		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2218

2219
	nvme_stop_ctrl(&ctrl->ctrl);
2220
	nvme_rdma_shutdown_ctrl(ctrl, false);
2221

2222
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2223 2224 2225 2226 2227
		/* state change failure should never happen */
		WARN_ON_ONCE(1);
		return;
	}

2228
	if (nvme_rdma_setup_ctrl(ctrl, false))
2229
		goto out_fail;
2230 2231 2232

	return;

2233
out_fail:
2234 2235
	++ctrl->ctrl.nr_reconnects;
	nvme_rdma_reconnect_or_remove(ctrl);
2236 2237 2238 2239 2240
}

static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
	.name			= "rdma",
	.module			= THIS_MODULE,
2241
	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2242 2243 2244 2245 2246
	.reg_read32		= nvmf_reg_read32,
	.reg_read64		= nvmf_reg_read64,
	.reg_write32		= nvmf_reg_write32,
	.free_ctrl		= nvme_rdma_free_ctrl,
	.submit_async_event	= nvme_rdma_submit_async_event,
2247
	.delete_ctrl		= nvme_rdma_delete_ctrl,
2248
	.get_address		= nvmf_get_address,
2249
	.stop_ctrl		= nvme_rdma_stop_ctrl,
2250 2251
};

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
/*
 * Fails a connection request if it matches an existing controller
 * (association) with the same tuple:
 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
 *
 * if local address is not specified in the request, it will match an
 * existing controller with all the other parameters the same and no
 * local port address specified as well.
 *
 * The ports don't need to be compared as they are intrinsically
 * already matched by the port pointers supplied.
 */
static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	bool found = false;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2272
		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2273 2274 2275 2276 2277 2278 2279 2280
		if (found)
			break;
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	return found;
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
		struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	int ret;
	bool changed;

	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return ERR_PTR(-ENOMEM);
	ctrl->ctrl.opts = opts;
	INIT_LIST_HEAD(&ctrl->list);

2294 2295 2296 2297 2298 2299 2300 2301 2302
	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
		opts->trsvcid =
			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
		if (!opts->trsvcid) {
			ret = -ENOMEM;
			goto out_free_ctrl;
		}
		opts->mask |= NVMF_OPT_TRSVCID;
	}
2303 2304

	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2305
			opts->traddr, opts->trsvcid, &ctrl->addr);
2306
	if (ret) {
2307 2308
		pr_err("malformed address passed: %s:%s\n",
			opts->traddr, opts->trsvcid);
2309 2310 2311
		goto out_free_ctrl;
	}

2312
	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2313 2314
		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->host_traddr, NULL, &ctrl->src_addr);
2315
		if (ret) {
2316
			pr_err("malformed src address passed: %s\n",
2317 2318 2319 2320 2321
			       opts->host_traddr);
			goto out_free_ctrl;
		}
	}

2322 2323 2324 2325 2326
	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
		ret = -EALREADY;
		goto out_free_ctrl;
	}

2327 2328 2329
	INIT_DELAYED_WORK(&ctrl->reconnect_work,
			nvme_rdma_reconnect_ctrl_work);
	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2330
	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2331

2332 2333
	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
				opts->nr_poll_queues + 1;
2334
	ctrl->ctrl.sqsize = opts->queue_size - 1;
2335 2336 2337
	ctrl->ctrl.kato = opts->kato;

	ret = -ENOMEM;
2338
	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2339 2340
				GFP_KERNEL);
	if (!ctrl->queues)
2341 2342 2343 2344 2345 2346
		goto out_free_ctrl;

	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
				0 /* no quirks, we're perfect! */);
	if (ret)
		goto out_kfree_queues;
2347

2348 2349 2350
	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
	WARN_ON_ONCE(!changed);

2351
	ret = nvme_rdma_setup_ctrl(ctrl, true);
2352
	if (ret)
2353
		goto out_uninit_ctrl;
2354

2355
	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2356
		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	return &ctrl->ctrl;

out_uninit_ctrl:
	nvme_uninit_ctrl(&ctrl->ctrl);
	nvme_put_ctrl(&ctrl->ctrl);
	if (ret > 0)
		ret = -EIO;
	return ERR_PTR(ret);
2370 2371
out_kfree_queues:
	kfree(ctrl->queues);
2372 2373 2374 2375 2376 2377 2378
out_free_ctrl:
	kfree(ctrl);
	return ERR_PTR(ret);
}

static struct nvmf_transport_ops nvme_rdma_transport = {
	.name		= "rdma",
2379
	.module		= THIS_MODULE,
2380
	.required_opts	= NVMF_OPT_TRADDR,
2381
	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2382
			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2383 2384
			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
			  NVMF_OPT_TOS,
2385 2386 2387
	.create_ctrl	= nvme_rdma_create_ctrl,
};

2388 2389 2390
static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
	struct nvme_rdma_ctrl *ctrl;
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	struct nvme_rdma_device *ndev;
	bool found = false;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev == ib_device) {
			found = true;
			break;
		}
	}
	mutex_unlock(&device_list_mutex);

	if (!found)
		return;
2405 2406 2407 2408 2409 2410

	/* Delete all controllers using this device */
	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		if (ctrl->device->dev != ib_device)
			continue;
2411
		nvme_delete_ctrl(&ctrl->ctrl);
2412 2413 2414
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

2415
	flush_workqueue(nvme_delete_wq);
2416 2417 2418 2419 2420 2421 2422
}

static struct ib_client nvme_rdma_ib_client = {
	.name   = "nvme_rdma",
	.remove = nvme_rdma_remove_one
};

2423 2424
static int __init nvme_rdma_init_module(void)
{
2425 2426 2427
	int ret;

	ret = ib_register_client(&nvme_rdma_ib_client);
2428
	if (ret)
2429
		return ret;
2430 2431 2432 2433

	ret = nvmf_register_transport(&nvme_rdma_transport);
	if (ret)
		goto err_unreg_client;
2434

2435
	return 0;
2436

2437 2438 2439
err_unreg_client:
	ib_unregister_client(&nvme_rdma_ib_client);
	return ret;
2440 2441 2442 2443
}

static void __exit nvme_rdma_cleanup_module(void)
{
2444 2445
	struct nvme_rdma_ctrl *ctrl;

2446
	nvmf_unregister_transport(&nvme_rdma_transport);
2447
	ib_unregister_client(&nvme_rdma_ib_client);
2448 2449 2450 2451 2452 2453

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
		nvme_delete_ctrl(&ctrl->ctrl);
	mutex_unlock(&nvme_rdma_ctrl_mutex);
	flush_workqueue(nvme_delete_wq);
2454 2455 2456 2457 2458 2459
}

module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);

MODULE_LICENSE("GPL v2");