-
NeilBrown authored
NFS unlink() (and rename over existing target) must determine if the file is open, and must perform a "silly rename" instead of an unlink (or before rename) if it is. Otherwise the client might hold a file open which has been removed on the server. Consequently if it determines that the file isn't open, it must block any subsequent opens until the unlink/rename has been completed on the server. This is currently achieved by unhashing the dentry. This forces any open attempt to the slow-path for lookup which will block on i_rwsem on the directory until the unlink/rename completes. A future patch will change the VFS to only get a shared lock on i_rwsem for unlink, so this will no longer work. Instead we introduce an explicit interlock. A special value is stored in dentry->d_fsdata while the unlink/rename is running and ->d_revalidate blocks while that value is present. When ->d_revalidate unblocks, the dentry will be invalid. This closes the race without requiring exclusion on i_rwsem. d_fsdata is already used in two different ways. 1/ an IS_ROOT directory dentry might have a "devname" stored in d_fsdata. Such a dentry doesn't have a name and so cannot be the target of unlink or rename. For safety we check if an old devname is still stored, and remove it if it is. 2/ a dentry with DCACHE_NFSFS_RENAMED set will have a 'struct nfs_unlinkdata' stored in d_fsdata. While this is set maydelete() will fail, so an unlink or rename will never proceed on such a dentry. Neither of these can be in effect when a dentry is the target of unlink or rename. So we can expect d_fsdata to be NULL, and store a special value ((void*)1) which is given the name NFS_FSDATA_BLOCKED to indicate that any lookup will be blocked. The d_count() is incremented under d_lock() when a lookup finds the dentry, so we check d_count() is low, and set NFS_FSDATA_BLOCKED under the same lock to avoid any races. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
3c59366c