-
Darrick J. Wong authored
On a 10TB filesystem where the free space in each AG is heavily fragmented, I noticed some very high runtimes on a FITRIM call for the entire filesystem. xfs_scrub likes to report progress information on each phase of the scrub, which means that a strace for the entire filesystem: ioctl(3, FITRIM, {start=0x0, len=10995116277760, minlen=0}) = 0 <686.209839> shows that scrub is uncommunicative for the entire duration. Reducing the size of the FITRIM requests to a single AG at a time produces lower times for each individual call, but even this isn't quite acceptable, because the time between progress reports are still very high: Strace for the first 4x 1TB AGs looks like (2): ioctl(3, FITRIM, {start=0x0, len=1099511627776, minlen=0}) = 0 <68.352033> ioctl(3, FITRIM, {start=0x10000000000, len=1099511627776, minlen=0}) = 0 <68.760323> ioctl(3, FITRIM, {start=0x20000000000, len=1099511627776, minlen=0}) = 0 <67.235226> ioctl(3, FITRIM, {start=0x30000000000, len=1099511627776, minlen=0}) = 0 <69.465744> I then had the idea to limit the length parameter of each call to a smallish amount (~11GB) so that we could report progress relatively quickly, but much to my surprise, each FITRIM call still took ~68 seconds! Unfortunately, the by-length fstrim implementation handles this poorly because it walks the entire free space by length index (cntbt), which is a very inefficient way to walk a subset of the blocks of an AG. Therefore, create a second implementation that will walk the bnobt and perform the trims in block number order. This implementation avoids the worst problems of the original code, though it lacks the desirable attribute of freeing the biggest chunks first. On the other hand, this second implementation will be much easier to constrain the system call latency, and makes it much easier to report fstrim progress to anyone who's running xfs_scrub. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com
b0ffe661