-
Andrii Nakryiko authored
Currently the way that verifier prints SCALAR_VALUE register state (and PTR_TO_PACKET, which can have var_off and ranges info as well) is very ambiguous. In the name of brevity we are trying to eliminate "unnecessary" output of umin/umax, smin/smax, u32_min/u32_max, and s32_min/s32_max values, if possible. Current rules are that if any of those have their default value (which for mins is the minimal value of its respective types: 0, S32_MIN, or S64_MIN, while for maxs it's U32_MAX, S32_MAX, S64_MAX, or U64_MAX) *OR* if there is another min/max value that as matching value. E.g., if smin=100 and umin=100, we'll emit only umin=10, omitting smin altogether. This approach has a few problems, being both ambiguous and sort-of incorrect in some cases. Ambiguity is due to missing value could be either default value or value of umin/umax or smin/smax. This is especially confusing when we mix signed and unsigned ranges. Quite often, umin=0 and smin=0, and so we'll have only `umin=0` leaving anyone reading verifier log to guess whether smin is actually 0 or it's actually -9223372036854775808 (S64_MIN). And often times it's important to know, especially when debugging tricky issues. "Sort-of incorrectness" comes from mixing negative and positive values. E.g., if umin is some large positive number, it can be equal to smin which is, interpreted as signed value, is actually some negative value. Currently, that smin will be omitted and only umin will be emitted with a large positive value, giving an impression that smin is also positive. Anyway, ambiguity is the biggest issue making it impossible to have an exact understanding of register state, preventing any sort of automated testing of verifier state based on verifier log. This patch is attempting to rectify the situation by removing ambiguity, while minimizing the verboseness of register state output. The rules are straightforward: - if some of the values are missing, then it definitely has a default value. I.e., `umin=0` means that umin is zero, but smin is actually S64_MIN; - all the various boundaries that happen to have the same value are emitted in one equality separated sequence. E.g., if umin and smin are both 100, we'll emit `smin=umin=100`, making this explicit; - we do not mix negative and positive values together, and even if they happen to have the same bit-level value, they will be emitted separately with proper sign. I.e., if both umax and smax happen to be 0xffffffffffffffff, we'll emit them both separately as `smax=-1,umax=18446744073709551615`; - in the name of a bit more uniformity and consistency, {u32,s32}_{min,max} are renamed to {s,u}{min,max}32, which seems to improve readability. The above means that in case of all 4 ranges being, say, [50, 100] range, we'd previously see hugely ambiguous: R1=scalar(umin=50,umax=100) Now, we'll be more explicit: R1=scalar(smin=umin=smin32=umin32=50,smax=umax=smax32=umax32=100) This is slightly more verbose, but distinct from the case when we don't know anything about signed boundaries and 32-bit boundaries, which under new rules will match the old case: R1=scalar(umin=50,umax=100) Also, in the name of simplicity of implementation and consistency, order for {s,u}32_{min,max} are emitted *before* var_off. Previously they were emitted afterwards, for unclear reasons. This patch also includes a few fixes to selftests that expect exact register state to accommodate slight changes to verifier format. You can see that the changes are pretty minimal in common cases. Note, the special case when SCALAR_VALUE register is a known constant isn't changed, we'll emit constant value once, interpreted as signed value. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20231011223728.3188086-5-andrii@kernel.org
72f8a1de