-
Ryusuke Konishi authored
commit 7ef3ff2f upstream. Nilfs2 eventually hangs in a stress test with fsstress program. This issue was caused by the following deadlock over I_SYNC flag between nilfs_segctor_thread() and writeback_sb_inodes(): nilfs_segctor_thread() nilfs_segctor_thread_construct() nilfs_segctor_unlock() nilfs_dispose_list() iput() iput_final() evict() inode_wait_for_writeback() * wait for I_SYNC flag writeback_sb_inodes() * set I_SYNC flag on inode->i_state __writeback_single_inode() do_writepages() nilfs_writepages() nilfs_construct_dsync_segment() nilfs_segctor_sync() * wait for completion of segment constructor inode_sync_complete() * clear I_SYNC flag after __writeback_single_inode() completed writeback_sb_inodes() calls do_writepages() for dirty inodes after setting I_SYNC flag on inode->i_state. do_writepages() in turn calls nilfs_writepages(), which can run segment constructor and wait for its completion. On the other hand, segment constructor calls iput(), which can call evict() and wait for the I_SYNC flag on inode_wait_for_writeback(). Since segment constructor doesn't know when I_SYNC will be set, it cannot know whether iput() will block or not unless inode->i_nlink has a non-zero count. We can prevent evict() from being called in iput() by implementing sop->drop_inode(), but it's not preferable to leave inodes with i_nlink == 0 for long periods because it even defers file truncation and inode deallocation. So, this instead resolves the deadlock by calling iput() asynchronously with a workqueue for inodes with i_nlink == 0. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
c8d4e7cf